

ASX
S E C U R I T Y A S S E S S M E N T

October 25th 2023

Contents
T A B L E O F

Legal Disclaimer

D3ploy Intro

Project Summary

Audit Score

Methodology

Key Findings

Vulnerabilities

Audit Scope Source Code

Appendix

090501

060602

0703

0804

10

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

Disclaimer
L E G A L

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

D3ploy audits are not, nor should be considered, an “endorsement” or “disapproval”

of any particular project or team. These reports are not, nor should be considered, an

indication of the economics or value of any “product” or “asset” created by any team

or project that contracts d3ploy to perform a security review. D3ploy does not provide

any warranty or guarantee regarding the absolute bug-free nature of the technology

analyzed, nor do they provide any indication of the technologies proprietors,

business, business model or legal compliance.

D3ploy’s goal is to help reduce the attack vectors and the high level of variance

associated with utilizing new and consistently changing technologies, and in no way

claims any guarantee of security or functionality of the technology we agree to

analyze.

D3ploy audits should not be used in any way to make decisions around investment

or involvement with any particular project. These reports in no way provide

investment advice, nor should be leveraged as investment advice of any sort. The

report is provided only for the contract(s) mentioned in the report and does not

include any other potential additions and/or contracts deployed by Owner. The

report does not provide a review for contract(s), applications and/or operations, that

are out of this report scope.

D3ploy represents an extensive auditing process intending to help our customers

increase the quality of their code while reducing the high level of risk presented by

cryptographic tokens and blockchain technology. Blockchain technology and

cryptographic assets present a high level of ongoing risk. D3ploy’s position is that

each company and individual are responsible for their own due diligence and

continuous security. The security audit is not meant to replace functional testing

done before a software release. As one audit-based assessment cannot be

considered comprehensive, we always recommend proceeding with several

independent manual audits and a public bug bounty program to ensure the security

of the smart contracts.

Introduction
D 3 P L O Y

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

D3ploy is a leading blockchain security company that serves

to verify the security and correctness of smart contracts and

blockchain-based protocols. Through the utilization of our

world-class technical expertise, alongside our proprietary,

innovative tech, we’re able to support the success of our

clients with best-in-class security, all whilst realizing our

overarching vision; provable trust for all throughout all facets

of blockchain.

Secure your project with d3ploy

Vunerability checking

A crucial manual inspection carried out to eliminate any code flaws and security loopholes. This is vital to

avoid vulnerabilities and exposures incurring costly errors at a later stage.

Contract verification

A thorough and comprehensive review in order to verify the safety of a smart contract and ensure it is ready

for launch and built to protect the end-user

Risk assessment

Analyse the architecture of the blockchain system to evaluate, assess and eliminate probable security

breaches. This includes a full assessment of risk and a list of expert suggestions.

In-depth reporting

A truly custom exhaustive report that is transparent and depicts details of any identified threats and

vulnerabilities and classifies those by severity.

Fast turnaround

We know that your time is valuable and therefore provide you with the fastest turnaround times in the

industry to ensure that both your project and community are at ease.

Best-of-class blockchain engineers

Our engineers combine both experience and knowledge stemming from a large pool of developers at our

disposal. We work with some of the brightest minds that have audited countless smart contracts over the

last 4 years.

We offer field-proven audits with in-depth reporting and a

range of suggestions to improve and avoid contract

vulnerabilities. Industry-leading comprehensive and

transparent smart contract auditing on all public and private

blockchains.

Introduction Social
P R O J E C T I N F O

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

Providing exposure to multiple asset classes including RWA’s, Defi, and early stage

venture capital investments through a single yield bearing token.

The ASX Ecosystem is being developed with a focus on asset diversification and ease of

access for investors. The ecosystem will consist of a number of funds, beginning with the

Flagship Fund, a multi-asset fund consisting of real world assets (RWAs), yield bearing

defi positions, and investments in early stage venture capital deals. The Flagship Fund

will work in tandem with the ecosystem token ($ASX), via both growth and yield

distribution mechanics.

Project Name

Contract Name

Contract Address

Contract Chain

Contract Type

Platform

Language

Network

Codebase

Max Supply

ASX

ASX Token

-

Not Yet Deployed on Mainnet

Smart Contract

EVM

Solidity

BNB Chain (BEP20)

Private GitHub Repository

10,000,000

https://t.me/ASXOfficial

-

https://twitter.com/asx_capital

-

https://www.asx.capital/

https://docs.asx.capital/

-

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

P A S S

90
Score
A U D I T

Critical 0

Major 1

Medium 2

Minor 1

Informational 3

Discussion 9

Issues 16

All issues are described in further detail on

the following pages.

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

goerli.etherscan.io/ 0x543956d87CdB2566f498106eB7774a2B1eb58A91#code

ScopeA U D I T

T E S T N E T E X P L O R E R L O C A T I O N

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

T E C H N I Q U E S T I M E S T A M P

This report has been prepared for ASX to discover issues and vulnerabilities in the

source code of the ASX project as well as any contract dependencies that were not

part of an officially recognized library. A comprehensive examination has been

performed, utilizing Dynamic, Static Analysis and Manual Review techniques.

The auditing process pays special attention to the following considerationsW

[Testing the smart contracts against both common and uncommon attack

vectorsa

[Assessing the codebase to ensure compliance with current best practices and

industry standardsa

[Ensuring contract logic meets the specifications and intentions of the clienta

[Cross referencing contract structure and implementation against similar smart

contracts producedby industry leadersa

[Thorough line-by-line manual review of the entire codebase by industry experts.

The security assessment resulted in findings that ranged from major to

informational. We recommend addressing these findings to ensure a high level of

security standards and industry practices. We suggest recommendations that could

better serve the project from the security perspective in the comments below.

Version

Date

Descrption

v1.1

2023/10/25

Reaudit addressed vulnerabilities

 Final Summary

Version

Date

Descrption

v1.0

2023/10/19

Layout project

 Architecture / Manual review / Static & dynamic security testing

 Summary

MethodologyR E V I E W

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

Fee Bypass via Multi-Step Transaction Major Acknowledged

Zero Slippage Value Medium Acknowledged

Missing Zero Address Validations Minor Fixed

Functions Should be Declared External Informational Fixed

Use Ownable2Step Informational Partially Fixed

Missing NatSpec Comments Informational Acknowledged

Array Length Caching Gas Fixed

Gas Optimization in Increments Gas Fixed

Unnecessary Checked Arithmetic in Loops Gas Fixed

T I T L E S E V E R I T Y S T A T U S

FindingK E Y

Uniswap Swap Function with Insecure Deadline Medium Acknowledged

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

Redundant Value Setting Gas Fixed

Large Number Literals Gas Fixed

Public Constants can be Private Gas Fixed

Use of SafeMath Gas Acknowledged

Variables should be Immutable Gas Fixed

Unnecessary Default Value Initialization Gas Fixed

T I T L E S E V E R I T Y S T A T U S

FindingK E Y

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

L O C A T I O N

The contract is programmed to receive Ether, but no method was found that

allowed the Ether to be withdrawn, i.e., call, transfer, transferFrom, send, or call.value at

least once.

Without a withdrawal function, the Ethers will forever be locked inside the contract if

the contract’s code is not upgradeable leading to loss of funds.

Issue

Level

Remediation

Alleviation / Retest

 : Locked Ether Inside A Contract

 : Major

 : Implement a withdraw function or reject payments (contracts without

a fallback function do it automatically).

 :

Unitroller.sol L2964-L3102

1

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

The smart contract includes a fee system for token transfers. However, it can be

bypassed by utilizing a multi-step transaction involving three users: A, B, and C. User

A and User B are normal users and User C is listed in _isExcludedFromFees. Here's a

scenario of how the fee can be skipped:

1. User A intends to send tokens to User B but wishes to avoid paying the associated

fees.

2. User A first transfers the tokens to User C (an intermediary). No fee will be added

since C is listed in _isExcludedFromFees.

3. User C then sends the tokens to User B, effectively bypassing the fee that would

have been applied if User A directly transferred tokens to User B.

By following this sequence of transactions, User A can successfully skip paying the

fees that are intended to be applied to token transfers. This scenario exploits the

condition in the contract that excludes fees when either the sender or the recipient is

on the list of accounts excluded from fees (_isExcludedFromFees).

Issue

Level

Type

Remediation

Alleviation / Retest

 : Fee Bypass via Multi-Step Transaction

 : Major

 : Business Logic

 : To address this issue, it is recommended to use only one between to or

from while validating _isExcludedFromFees, or you can apply any other mechanisms

that can prevent this Multi-step transfer.

 : According to the client this is intentional behavior as the user is

trusted.

1

A F F E C T E D C O D E

] 0x2FF52489A957C3d07381713723664F9d7454F3de#code#F1 #L475

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

L O C A T I O N

The contract is programmed to receive Ether, but no method was found that

allowed the Ether to be withdrawn, i.e., call, transfer, transferFrom, send, or call.value at

least once.

Without a withdrawal function, the Ethers will forever be locked inside the contract if

the contract’s code is not upgradeable leading to loss of funds.

Issue

Level

Remediation

Alleviation / Retest

 : Locked Ether Inside A Contract

 : Major

 : Implement a withdraw function or reject payments (contracts without

a fallback function do it automatically).

 :

Unitroller.sol L2964-L3102

1

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

In some of the functions, a token swap operation and adding liquidity is performed

with a hardcoded minAmt (slippage) value set to zero. Slippage refers to the

maximum acceptable difference between the expected price of an asset and the

actual executed price during a swap. A slippage of zero means that the code

expects the swap to return a value near 0.

Issue

Level

Type

Remediation

Alleviation / Retest

 : Zero Slippage value

 : Medium

 : Slippage Risk

 : To make the token swap function more robust and adaptable to

market conditions, it is recommended to set a non-zero slippage tolerance (e.g., a

small percentage) rather than a hardcoded zero value. This will allow the code to

accommodate minor price fluctuations and ensure that the swap is more likely to

succeed. Or take input from the user to set minAmt.

 : This won’t be fixed as it will need external price oracles like

Chainlink or Uniswap Twap which will result in large codebase updates. Nonetheless,

there are management features that allow admin to turn swaps or liquidity features

on or off so the situation can be controlled.

2

A F F E C T E D C O D E

M 0x2FF52489A957C3d07381713723664F9d7454F3de#code#F1 #L587, L615, L634, L654

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

L O C A T I O N

The contract is programmed to receive Ether, but no method was found that

allowed the Ether to be withdrawn, i.e., call, transfer, transferFrom, send, or call.value at

least once.

Without a withdrawal function, the Ethers will forever be locked inside the contract if

the contract’s code is not upgradeable leading to loss of funds.

Issue

Level

Remediation

Alleviation / Retest

 : Locked Ether Inside A Contract

 : Major

 : Implement a withdraw function or reject payments (contracts without

a fallback function do it automatically).

 :

Unitroller.sol L2964-L3102

1

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

A F F E C T E D C O D E

The provided Contracts swapUniswapV3V1 function contains a vulnerability related

to the use of the block.timestamp as the deadline for Uniswap swaps. This allows a

malicious miner or sequencer to manipulate the execution of the swap, potentially

profiting from front-running or arbitrage opportunities.

In Ethereum, the block.timestamp represents the current block's timestamp, and it

can be manipulated to a certain extent by miners or sequencers. This means that an

attacker with control over when to mine or include transactions in a block can delay

or reorder transactions to their advantage.

By setting the deadline to block.timestamp, the function makes it possible for a miner

or sequencer to control when the swap transaction is actually executed, potentially

gaining an advantage in price movements.

Issue

Level

Type

Remediation

Alleviation / Retest

 : Uniswap Swap Function with Insecure Deadline

 : Medium

 : Front-Running

 : To mitigate this front-running risk, it's recommended to use a more

secure and deterministic deadline in your Uniswap swaps. One common approach is

to set the deadline to a fixed point in the future, allowing for a reasonable execution

window.

 : In the current contract, the swap is executed in ERC20 common

transfer function that must have only standard parameters not including a deadline.

User transfer transactions can't have any other parameters like deadline.

Z 0x2FF52489A957C3d07381713723664F9d7454F3de#code#F1 #L615, L634, L654

3

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

L O C A T I O N

The contract is programmed to receive Ether, but no method was found that

allowed the Ether to be withdrawn, i.e., call, transfer, transferFrom, send, or call.value at

least once.

Without a withdrawal function, the Ethers will forever be locked inside the contract if

the contract’s code is not upgradeable leading to loss of funds.

Issue

Level

Remediation

Alleviation / Retest

 : Locked Ether Inside A Contract

 : Major

 : Implement a withdraw function or reject payments (contracts without

a fallback function do it automatically).

 :

Unitroller.sol L2964-L3102

1

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

A F F E C T E D C O D E

The contracts were found to be setting new addresses without proper validations for

zero addresses.

Address type parameters should include a zero-address check otherwise contract

functionality may become inaccessible or tokens burned forever. Depending on the

logic of the contract, this could prove fatal and the users or the contracts could lose

their funds, or the ownership of the contract could be lost forever.

Issue

Level

Type

Remediation

Alleviation / Retest

 : Cheaper Conditional Operators

 : Minor

 : Missing Input Validation

 : Add a zero address validation to all the functions where addresses are

being set.

 : Zero address validations have been implemented in the

functions mentioned above.
8 0x2FF52489A957C3d07381713723664F9d7454F3de#code#F1 #L264, L283, L344

4

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

L O C A T I O N

The contract is programmed to receive Ether, but no method was found that allowed

the Ether to be withdrawn, i.e., call, transfer, transferFrom, send, or call.value at least

once.

Issue

Level

Remediation

Alleviation / Retest

 : Locked Ether Inside A Contract

 : Major

 : Implement a withdraw function or reject payments (contracts without

a fallback function do it automatically).

 :

Unitroller.sol L2964-L3102

1

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

A F F E C T E D C O D E

Public functions that are never called by a contract should be declared external in

order to conserve gas.

The following functions were declared as public but were not called anywhere in the

contract, making public visibility useless

Issue

Level

Type

Remediation

Alleviation / Retest

 : Functions should be declared External

 : Informational

 : Best Practices

 : Use the “external” state visibility for functions that are never called

from inside the contract.

 : The functions that are not called anywhere inside the contract

have been made external.

8 0x2FF52489A957C3d07381713723664F9d7454F3de#code#F1 #L192, L212, L226, L292, L309

5

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

L O C A T I O N

The contract is programmed to receive Ether, but no method was found that

allowed the Ether to be withdrawn, i.e., call, transfer, transferFrom, send, or call.value at

least once.

Without a withdrawal function, the Ethers will forever be locked inside the contract if

the contract’s code is not upgradeable leading to loss of funds.

Issue

Level

Remediation

Alleviation / Retest

 : Locked Ether Inside A Contract

 : Major

 : Implement a withdraw function or reject payments (contracts without

a fallback function do it automatically).

 :

Unitroller.sol L2964-L3102

1

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

A F F E C T E D C O D E

The "Ownable2Step" pattern is an improvement over the traditional "Ownable"

pattern, designed to enhance the security of ownership transfer functionality in a

smart contract. Unlike the original "Ownable" pattern, where ownership can be

transferred directly to a specified address, the "Ownable2Step" pattern introduces an

additional step in the ownership transfer process. Ownership transfer only

completes when the proposed new owner explicitly accepts the ownership,

mitigating the risk of accidental or unintended ownership transfers to mistyped

addresses.

Issue

Level

Type

Remediation

Alleviation / Retest

 : Use Ownable2Step

 : Informational

 : Missing Best Practices

 : It is recommended to use either Ownable2Step or

Ownable2StepUpgradeable depending on the smart contract.

 : The AssetX.sol contract has implemented the 2step flow but

others have not.

; 0x2FF52489A957C3d07381713723664F9d7454F3de#code#F1 #L08, L39, L72

6

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

L O C A T I O N

The contract is programmed to receive Ether, but no method was found that

allowed the Ether to be withdrawn, i.e., call, transfer, transferFrom, send, or call.value at

least once.

Without a withdrawal function, the Ethers will forever be locked inside the contract if

the contract’s code is not upgradeable leading to loss of funds.

Issue

Level

Remediation

Alleviation / Retest

 : Locked Ether Inside A Contract

 : Major

 : Implement a withdraw function or reject payments (contracts without

a fallback function do it automatically).

 :

Unitroller.sol L2964-L3102

1

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

Solidity contracts use a special form of comments to document code. This special

form is named the Ethereum Natural Language Specification Format (NatSpec).

The document is divided into descriptions for developers and end-users along with

the title and the author.

The contracts in the scope were missing these comments.

Issue

Level

Type

Remediation

Alleviation / Retest

 : Missing NatSpec Comments

 : Informational

 : Missing Best Practices

 : Developers should review their codebase and add Natspec

comments to all relevant functions, variables, and events. Natspec comments

should include a description of the function or event, its parameters, and its return

values.

 :

7

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

L O C A T I O N

The contract is programmed to receive Ether, but no method was found that

allowed the Ether to be withdrawn, i.e., call, transfer, transferFrom, send, or call.value at

least once.

Without a withdrawal function, the Ethers will forever be locked inside the contract if

the contract’s code is not upgradeable leading to loss of funds.

Issue

Level

Remediation

Alleviation / Retest

 : Locked Ether Inside A Contract

 : Major

 : Implement a withdraw function or reject payments (contracts without

a fallback function do it automatically).

 :

Unitroller.sol L2964-L3102

1

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

A F F E C T E D C O D E

During each iteration of the loop, reading the length of the array uses more gas than

is necessary.

In the most favorable scenario, in which the length is read from a memory variable,

storing the array length in the stack can save about 3 gas per iteration.

In the least favorable scenario, in which external calls are made during each

iteration, the amount of gas wasted can be significant.

Issue

Level

Type

Remediation

Alleviation / Retest

 : Array Length Caching

 : Discussion

 : Gas Optimization

 : Consider storing the array length of the variable before the loop and

using the stored length instead of fetching it in each iteration.

 : Array length is being cached to save gas during each iteration.
6 0x2FF52489A957C3d07381713723664F9d7454F3de#code#F1 #L227, L350

8

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

L O C A T I O N

The contract is programmed to receive Ether, but no method was found that

allowed the Ether to be withdrawn, i.e., call, transfer, transferFrom, send, or call.value at

least once.

Without a withdrawal function, the Ethers will forever be locked inside the contract if

the contract’s code is not upgradeable leading to loss of funds.

Issue

Level

Remediation

Alleviation / Retest

 : Locked Ether Inside A Contract

 : Major

 : Implement a withdraw function or reject payments (contracts without

a fallback function do it automatically).

 :

Unitroller.sol L2964-L3102

1

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

A F F E C T E D C O D E

The contract uses for loops that use post increments for the variable “i”. The contract

can save some gas by changing this to ++i.

++i costs less gas compared to i++ or i += 1 for unsigned integers. In i++, the compiler

has to create a temporary variable to store the initial value. This is not the case with

++i in which the value is directly incremented and returned, thus, making it a cheaper

alternative.

Issue

Level

Type

Remediation

Alleviation / Retest

 : Gas Optimization in Increments

 : Discussion

 : Gas Optimization

 : It is recommended to switch to ++i and change the code accordingly

so the function logic remains the same and saves some gas.

 : The loops are now using ++i instead to save gas.
6 0x2FF52489A957C3d07381713723664F9d7454F3de#code#F1 #L227, L350

9

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

L O C A T I O N

Issue

Level

Remediation

Alleviation / Retest

 : Locked Ether Inside A Contract

 : Major

 : Implement a withdraw function or reject payments (contracts without

a fallback function do it automatically).

 :

Unitroller.sol L2964-L3102

1

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

A F F E C T E D C O D E

Loops are in most cases bounded by definition (the bounding is represented by the

exit condition). Therefore in the vast majority of cases, checking for overflows is really

not needed, and can get very gas expensive.

Issue

Level

Type

Remediation

Alleviation / Retest

 : Unnecessary Checked Arithmetic in Loops

 : Discussion

 : Gas Optimization

 : It is recommended to implement unchecked blocks in for loops

wherever possible since they are already bounded by an upper length and there’s a

very rare chance that it might overflow.

 : Unchecked loops have been implemented to save gas.

� 0x2FF52489A957C3d07381713723664F9d7454F3de#code#F1 #L227, L350

10

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

L O C A T I O N

The contract is programmed to receive Ether, but no method was found that

allowed the Ether to be withdrawn, i.e., call, transfer, transferFrom, send, or call.value at

least once.

Without a withdrawal function, the Ethers will forever be locked inside the contract if

the contract’s code is not upgradeable leading to loss of funds.

Issue

Level

Remediation

Alleviation / Retest

 : Locked Ether Inside A Contract

 : Major

 : Implement a withdraw function or reject payments (contracts without

a fallback function do it automatically).

 :

Unitroller.sol L2964-L3102

1

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

A F F E C T E D C O D E

The smart contract has functions named excludeMultipleAccountsFromFees &

whitelistMultipleAccounts. This function is designed to exclude or include & whitelist

multiple accounts from fees based on the provided input. However, the function does not

verify whether accounts that are already excluded or whitelisted from fees are being

added again. This can lead to inefficient use of gas and confusion within the contract's

state.

Issue

Level

Type

Remediation

Alleviation / Retest

 : Redundant Value setting

 : Discussion

 : Gas & Missing Best Practices

 : To address this issue, it's recommended to add checks to ensure that

accounts are not redundantly excluded from or included in fees. Before setting an

account as excluded or included, whitelist.

 : Proper validations have been added to check for redundant

value updates.

> 0x2FF52489A957C3d07381713723664F9d7454F3de#code#F1 #L226, L349

11

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

L O C A T I O N

The contract is programmed to receive Ether, but no method was found that

allowed the Ether to be withdrawn, i.e., call, transfer, transferFrom, send, or call.value at

least once.

Without a withdrawal function, the Ethers will forever be locked inside the contract if

the contract’s code is not upgradeable leading to loss of funds.

Issue

Level

Remediation

Alleviation / Retest

 : Locked Ether Inside A Contract

 : Major

 : Implement a withdraw function or reject payments (contracts without

a fallback function do it automatically).

 :

Unitroller.sol L2964-L3102

1

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

A F F E C T E D C O D E

Solidity supports multiple rational and integer literals, including decimal fractions and scientific

notations. The use of very large numbers with too many digits was detected in the code that

could have been optimized using a different notation also supported by Solidity.

Issue

Level

Type

Remediation

Alleviation / Retest :

 : Large Number Literals

 : Discussion

 : Gas & Missing Best Practices

 : Scientific notation in the form of 2e10 is also supported, where the mantissa

can be fractional, but the exponent has to be an integer. The literal MeE is equivalent to M *

10**E. Examples include 2e10, 2e10, 2e-10, 2.5e1, as suggested in official solidity

documentation.

https://docs.soliditylang.org/en/latest/types.html#rational-and-integer-literals

It is recommended to use numbers in the form “35 * 1e7 * 1e18” or “35 * 1e25”. The numbers

can also be represented by using underscores between them to make them more

readable such as “35_00_00_000”

The numbers are now using a more readable format with

underscores.

b 0x2FF52489A957C3d07381713723664F9d7454F3de#code#F1 #L70, L310

12

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

L O C A T I O N

The contract is programmed to receive Ether, but no method was found that

allowed the Ether to be withdrawn, i.e., call, transfer, transferFrom, send, or call.value at

least once.

Without a withdrawal function, the Ethers will forever be locked inside the contract if

the contract’s code is not upgradeable leading to loss of funds.

Issue

Level

Remediation

Alleviation / Retest

 : Locked Ether Inside A Contract

 : Major

 : Implement a withdraw function or reject payments (contracts without

a fallback function do it automatically).

 :

Unitroller.sol L2964-L3102

1

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

A F F E C T E D C O D E

Public constant variables cost more gas because the EVM automatically creates getter

functions for them and adds entries to the method ID table. The values can be read from

the source code instead.

Issue

Level

Type

Remediation

Alleviation / Retest

 : Public Constants can be Private

 : Discussion

 : Gas Optimization

 : If reading the values for the constants is not necessary, consider

changing the public visibility to private.

 : The variable has been updated to private visibility.

8 0x2FF52489A957C3d07381713723664F9d7454F3de#code#F1 #L48

13

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

L O C A T I O N

The contract is programmed to receive Ether, but no method was found that

allowed the Ether to be withdrawn, i.e., call, transfer, transferFrom, send, or call.value at

least once.

Without a withdrawal function, the Ethers will forever be locked inside the contract if

the contract’s code is not upgradeable leading to loss of funds.

Issue

Level

Remediation

Alleviation / Retest

 : Locked Ether Inside A Contract

 : Major

 : Implement a withdraw function or reject payments (contracts without

a fallback function do it automatically).

 :

Unitroller.sol L2964-L3102

1

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

A F F E C T E D C O D E

SafeMath library is found to be used in the contracts. This increases gas consumption

more than traditional methods and validations if done manually.

Also, Solidity 0.8.0 and above includes checked arithmetic operations by default, rendering

SafeMath unnecessary

Issue

Level

Type

Remediation

Alleviation / Retest

 : Use of SafeMath

 : Discussion

 : Gas Optimization

 : We do not recommend using the SafeMath library for all arithmetic

operations. It is good practice to use explicit checks where it is really needed and to

avoid extra checks where overflow/underflow is impossible.

The compiler above 0.8.0+ automatically checks for overflows and underflows.

 : Print3r team acknowledged the issue.

C 0x2FF52489A957C3d07381713723664F9d7454F3de#code#F1 #L09, L40, L73

14

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

L O C A T I O N

The contract is programmed to receive Ether, but no method was found that

allowed the Ether to be withdrawn, i.e., call, transfer, transferFrom, send, or call.value at

least once.

Without a withdrawal function, the Ethers will forever be locked inside the contract if

the contract’s code is not upgradeable leading to loss of funds.

Issue

Level

Remediation

Alleviation / Retest

 : Locked Ether Inside A Contract

 : Major

 : Implement a withdraw function or reject payments (contracts without

a fallback function do it automatically).

 :

Unitroller.sol L2964-L3102

1

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

A F F E C T E D C O D E

Declaring state variables that are not updated following deployment as immutable can

save gas costs in smart contract deployments and function executions. Immutable state

variables are those that cannot be changed once they are initialized, and their values are

set permanently.

By declaring state variables as immutable, the compiler can optimize their storage in a

way that reduces gas costs. Specifically, the compiler can store the value directly in the

bytecode of the contract, rather than in storage, which is a more expensive operation.

Issue

Level

Type

Remediation

Alleviation / Retest

 : Variables should be Immutable

 : Discussion

 : Gas Optimization

 : An “immutable” attribute should be added in the parameters that are

never updated outside of the constructor to save the gas

 : The variables have been made immutable.

8 0x2FF52489A957C3d07381713723664F9d7454F3de#code#F1 #L21, L26

15

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

L O C A T I O N

The contract is programmed to receive Ether, but no method was found that

allowed the Ether to be withdrawn, i.e., call, transfer, transferFrom, send, or call.value at

least once.

Without a withdrawal function, the Ethers will forever be locked inside the contract if

the contract’s code is not upgradeable leading to loss of funds.

Issue

Level

Remediation

Alleviation / Retest

 : Locked Ether Inside A Contract

 : Major

 : Implement a withdraw function or reject payments (contracts without

a fallback function do it automatically).

 :

Unitroller.sol L2964-L3102

1

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

A F F E C T E D C O D E

In Solidity, data types are automatically assigned default values if they are not explicitly

initialized. However, the initialization of default values can sometimes be unnecessary or

inefficient, depending on the specific use case.

Issue

Level

Type

Remediation

Alleviation / Retest

 : Unnecessary Default Value Initialization

 : Discussion

 : Gas Optimization

 : It’s not recommended to initialize the data types to their default

values unless there’s a use-case because it’s unnecessary and costs around ~3 gas.

 : The variable is not defining a default value now.

; 0x2FF52489A957C3d07381713723664F9d7454F3de#code#F1 #L65

16

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

CodeS O U R C E

T e s t n e t E x p l o r e r

https://goerli.etherscan.io/

address/0x543956d87CdB2566f498106eB7774a2B1eb58A91#code

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

AppendixR E P O R T

F I N D I N G C A T E G O R I E S A U D I T S C O R E S

The assessment process will utilize a mixture of static analysis, dynamic analysis, in-

depth manual review and/or other security techniques.

This report has been prepared for ASX project using the above techniques to

examine and discover vulnerabilities and safe coding practices in ASX’s smart

contract including the libraries used by the contract that are not officially

recognized.

A comprehensive static and dynamic analysis has been performed on the solidity

code in order to find vulnerabilities ranging from minor gas optimizations to major

vulnerabilities leading to the loss of funds.

Various common and uncommon attack vectors will be investigated to ensure that

the smart contracts are secure from malicious actors. The testing methods find and

flag issues related to gas optimizations that help in reducing the overall gas cost It

scans and evaluates the codebase against industry best practices and standards to

ensure compliance It makes sure that the officially recognized libraries used in the

code are secure and up to date.

D3ploy Audit Score is not a live dynamic score. It is a fixed value determined at the

time of the report issuance date.

D3ploy Audit Score is not, nor should be considered, an “endorsement” or

“disapproval” of any particular project or team. These reports and scores are not,

nor should be considered, an indication of the economics or value of any “product”

or “asset” created by any team or project that contracts d3ploy to perform a

security review.

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

