

Magpie Protocol
S E C U R I T Y A S S E S S M E N T

October 20th 2023

Contents
T A B L E O F

Legal Disclaimer

D3ploy Intro

Project Summary

Audit Score

Methodology

Key Findings

Vulnerabilities

Audit Scope Source Code

Appendix

090501

060602

0703

0804

10

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

Disclaimer
L E G A L

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

D3ploy audits are not, nor should be considered, an “endorsement” or “disapproval”

of any particular project or team. These reports are not, nor should be considered, an

indication of the economics or value of any “product” or “asset” created by any team

or project that contracts d3ploy to perform a security review. D3ploy does not provide

any warranty or guarantee regarding the absolute bug-free nature of the technology

analyzed, nor do they provide any indication of the technologies proprietors,

business, business model or legal compliance.

D3ploy’s goal is to help reduce the attack vectors and the high level of variance

associated with utilizing new and consistently changing technologies, and in no way

claims any guarantee of security or functionality of the technology we agree to

analyze.

D3ploy audits should not be used in any way to make decisions around investment

or involvement with any particular project. These reports in no way provide

investment advice, nor should be leveraged as investment advice of any sort. The

report is provided only for the contract(s) mentioned in the report and does not

include any other potential additions and/or contracts deployed by Owner. The

report does not provide a review for contract(s), applications and/or operations, that

are out of this report scope.

D3ploy represents an extensive auditing process intending to help our customers

increase the quality of their code while reducing the high level of risk presented by

cryptographic tokens and blockchain technology. Blockchain technology and

cryptographic assets present a high level of ongoing risk. D3ploy’s position is that

each company and individual are responsible for their own due diligence and

continuous security. The security audit is not meant to replace functional testing

done before a software release. As one audit-based assessment cannot be

considered comprehensive, we always recommend proceeding with several

independent manual audits and a public bug bounty program to ensure the security

of the smart contracts.

Introduction
D 3 P L O Y

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

D3ploy is a leading blockchain security company that serves

to verify the security and correctness of smart contracts and

blockchain-based protocols. Through the utilization of our

world-class technical expertise, alongside our proprietary,

innovative tech, we’re able to support the success of our

clients with best-in-class security, all whilst realizing our

overarching vision; provable trust for all throughout all facets

of blockchain.

Secure your project with d3ploy

Vunerability checking

A crucial manual inspection carried out to eliminate any code flaws and security loopholes. This is vital to

avoid vulnerabilities and exposures incurring costly errors at a later stage.

Contract verification

A thorough and comprehensive review in order to verify the safety of a smart contract and ensure it is ready

for launch and built to protect the end-user

Risk assessment

Analyse the architecture of the blockchain system to evaluate, assess and eliminate probable security

breaches. This includes a full assessment of risk and a list of expert suggestions.

In-depth reporting

A truly custom exhaustive report that is transparent and depicts details of any identified threats and

vulnerabilities and classifies those by severity.

Fast turnaround

We know that your time is valuable and therefore provide you with the fastest turnaround times in the

industry to ensure that both your project and community are at ease.

Best-of-class blockchain engineers

Our engineers combine both experience and knowledge stemming from a large pool of developers at our

disposal. We work with some of the brightest minds that have audited countless smart contracts over the

last 4 years.

We offer field-proven audits with in-depth reporting and a

range of suggestions to improve and avoid contract

vulnerabilities. Industry-leading comprehensive and

transparent smart contract auditing on all public and private

blockchains.

Introduction Social
P R O J E C T I N F O

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

Magpie protocol is a cross-chain liquidity aggregator that enables seamless cross-

chain swaps with near-instant finality and cost efficiency on many of the top

blockchains, all without the need to bridge any assets, making for an extremely fast,

secure, easy, and gas efficient solution.

Magpie protocol incorporates a unique technical implementation that allows

execution of cross-chain swaps without the need for the user to bridge assets from

any of the top bridges. This saves time and cost by reducing the complexity and risks

involved in using any of the bridging solutions to move assets across chains.

Project Name

Contract Name

Contract Address

Contract Chain

Contract Type

Platform

Language

Network

Codebase

Total Token Supply

Magpie Protocol

FLY Token

-

Not Yet Deployed on Mainnet

Smart Contract

EVM

Solidity

Ethereum (ERC20)

Private GitHub Repository

-

https://t.me/magpieprotocol

https://discord.gg/CwJuFeHp6f

https://twitter.com/magpieprotocol

https://github.com/magpieprotocol/

https://www.magpiefi.xyz/

https://medium.com/@Magpieprotocol

contact@magpiefi.xyz

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

P A S S

95
Score
A U D I T

Critical 0

Major 0

Medium 4

Minor 1

Informational 2

Discussion 5

Issues 12

All issues are described in further detail on

the following pages.

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

magpieprotocol/magpie-contracts/contracts/ Private Repository

ScopeA U D I T

C O D E B A S E F I L E S L O C A T I O N

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

T E C H N I Q U E S T I M E S T A M P

This report has been prepared for Magpie Protocol to discover issues and

vulnerabilities in the source code of the Magpie Protocol project as well as any

contract dependencies that were not part of an officially recognized library. A

comprehensive examination has been performed, utilizing Dynamic, Static Analysis

and Manual Review techniques.

The auditing process pays special attention to the following considerationsX

V Testing the smart contracts against both common and uncommon attack

vectorsR

V Assessing the codebase to ensure compliance with current best practices and

industry standardsR

V Ensuring contract logic meets the specifications and intentions of the clientR

V Cross referencing contract structure and implementation against similar smart

contracts produced by industry leadersR

V Thorough line-by-line manual review of the entire codebase by industry experts.

The security assessment resulted in findings that ranged from major to

informational. We recommend addressing these findings to ensure a high level of

security standards and industry practices. We suggest recommendations that could

better serve the project from the security perspective in the comments below.

Version

Date

Descrption

v1.0

2023/10/13

Layout project

 Architecture / Manual review / Static & dynamic security testing

 Summary

Version

Date

Descrption

v1.1

2023/10/20

Re-audit applied fixes

 Final Summary

MethodologyR E V I E W

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

Unreturned Excess Ether in Deposit Function Medium Fixed

Inadequate Handling of Tokens with Fees On Transfer in Uniswap V2 Swap Medium Fixed

Inadequate Approval Handling for Curve LP Token Swaps Medium Fixed

Use of transfer and send Functions in Smart Contract Informational Fixed

Missing State Variable Visibility Informational Acknowledged

Public Function Visibility in LibRouter Library Gas Fixed

Internal Function Never Used Gas Fixed

Gas Optimization in Increments Gas Acknowledged

Uniswap Swap Function with Insecure Deadline Medium Fixed

Use Ownable2Step Minor Fixed

T I T L E S E V E R I T Y S T A T U S

FindingK E Y

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

Array Length Caching Informational Fixed

Unnecessary Checked Arithmetic in Loops Gas Fixed

T I T L E S E V E R I T Y S T A T U S

FindingK E Y

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

A F F E C T E D C O D E

In the provided contracts deposit() function, the contract accepts Ether from the

user and converts it to Wrapped Ether (WETH) if it's native Ether. However, there's an

issue with handling excess Ether sent by the user. If the user sends more Ether than

the specified amount, the contract does not return the excess Ether to the user,

thereby, causing a loss of funds.

Issue

Level

Remediation

Alleviation / Retest

 : Unreturned Excess Ether in Deposit Function

 : Medium

 : To address this issue, consider implementing a mechanism to refund

excess Ether to the user if they send more than the specified amount.

 : This is a feature and not a bug because the excess amount is

paid to the bridge or the data transfer protocol as a fee.
¥ LibAsset.sol#deposit()

1

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

A F F E C T E D C O D E

The provided smart contract swapUniswapV2 function uses the

swapExactTokensForTokens function from Uniswap V2 for token swaps. However, this

function doesn't handle tokens that charge fees on transfer correctly. When

swapping tokens with fees on transfer, the contract should use

swapExactTokensForTokensSupportingFeeOnTransferTokens instead.

Tokens that charge fees on transfer, often referred to as "reflect" or "RFI" tokens, are

designed so that a portion of the transferred amount is retained by the token

contract. Using the standard swapExactTokensForTokens function can result in

unexpected behavior, such as a smaller amount received after the swap due to the

retained fees.

Issue

Level

Remediation

Alleviation / Retest

 : Inadequate Handling of Tokens with Fees On Transfer in

Uniswap V2 Swap

 : Medium

 : To handle tokens with fees on transfer correctly, it's recommended to

use the swapExactTokensForTokensSupportingFeeOnTransferTokens() function

provided by Uniswap V2.

 : This is fixed by adding another function

swapUniswapV2Withfee() that handles fees on transfer.

¾ LibUniswapV2.sol#swapUniswapV2()

2

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

A F F E C T E D C O D E

In swapCurveLp() function, it performs multi-step token swaps through the Curve

protocol. To facilitate these swaps, the contract approves tokens for each iteration.

However, the issue lies in the approval logic for the next swap. For each swap

iteration, you approve h.amountIn, which remains constant for all iterations. Ideally,

you should be approving the amount that was received from the previous swap,

which becomes the amountIn for the next one.

This means that the contract doesn't take into account the changing amountIn after

each swap. In other words, the amount approved might not match the actual tokens

available for the next swap. This could result in unexpected behavior and potential

issues during the multi-step swap process.

Issue

Level

Remediation

Alleviation / Retest

 : Inadequate Approval Handling for Curve LP Token Swaps

 : Medium

 : To address this issue and ensure the correct amount is approved for

each swap . amountIn is being updated after every swap. It should use amountIn to

approve tokens.

 : This is fixed by using the updated amount after each swap.

² LibCurveLp.sol#swapCurveLp()

3

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

A F F E C T E D C O D E

The provided Contracts swapUniswapV3V1 function contains a vulnerability related

to the use of the block.timestamp as the deadline for Uniswap swaps. This allows a

malicious miner or sequencer to manipulate the execution of the swap, potentially

profiting from front-running or arbitrage opportunities.

In Ethereum, the block.timestamp represents the current block's timestamp, and it

can be manipulated to a certain extent by miners or sequencers. This means that an

attacker with control over when to mine or include transactions in a block can delay

or reorder transactions to their advantage.

By setting the deadline to block.timestamp, the function makes it possible for a miner

or sequencer to control when the swap transaction is actually executed, potentially

gaining an advantage in price movements.

Issue

Level

Remediation

Alleviation / Retest

 : Uniswap Swap Function with Insecure Deadline

 : Medium

 : To mitigate this front-running risk, it's recommended to use a more

secure and deterministic deadline in your Uniswap swaps. One common approach is

to set the deadline to a fixed point in the future, allowing for a reasonable execution

window.

 : The contracts already have a higher level of validation for the

deadline. Any attempt to exploit will fail the transaction due to that check.

º LibUniswapV3.sol#swapUniswapV3V1(§

º LibUniswapV2.sol#swapUniswapV2()

4

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

A F F E C T E D C O D E

The "Ownable2Step" pattern is an improvement over the traditional "Ownable"

pattern, designed to enhance the security of ownership transfer functionality in a

smart contract. Unlike the original "Ownable" pattern, where ownership can be

transferred directly to a specified address, the "Ownable2Step" pattern introduces an

additional step in the ownership transfer process. Ownership transfer only

completes when the proposed new owner explicitly accepts the ownership,

mitigating the risk of accidental or unintended ownership transfers to mistyped

addresses.

Issue

Level

Remediation

Alleviation / Retest

 : Use Ownable2Step

 : Minor

 : It is recommended to use either Ownable2Step or

Ownable2StepUpgradeable depending on the smart contract.

 : The contracts are now using Ownable2Step for additional

security.

ª MagpieCelerBridge.so�

ª MagpieStargateBridge.so�

ª MagpieStargateBridgeV2.sol

5

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

A F F E C T E D C O D E

The contract uses the transfer and send functions to transfer funds to other

addresses. This can be considered a potential security issue, primarily due to the

following reason:

Gas Limitation: The transfer and send functions have a fixed gas stipend, which

might not be adequate for the recipient's contract execution, especially if it contains

complex logic or needs to perform multiple operations. This could result in a failed

transfer.

Issue

Level

Remediation

Alleviation / Retest

 : Use of transfer and send Functions in Smart Contract

 : Informational

 : It's advisable to replace the transfer and send functions with the call

method, which provides better control over gas and error handling. When using call,

you can specify the gas amount to send with the call and check its return value to

handle errors gracefully

 : This will create additional issues in the contract regarding gas

estimation leading to loss of funds if not addressed properly. Since this is not an issue

and is only “Informational”,
· MagpieCelerBridge.sol#deposit(¡

· LibLayerZero.sol#dataTransfer()

6

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

A F F E C T E D C O D E

In Solidity, the visibility of state variables is important as it determines how those

variables can be accessed and modified by other contracts or functions.

The contract defined state variables that were missing a visibility modifier.

Issue

Level

Remediation

Alleviation / Retest

 : Missing State Variable Visibility

 : Informational

 : Explicitly define visibility for all state variables. These variables can be

specified as public, internal, or private.

 : Variable visibility is now explicitly defined.
« MagpieCelerBridge.sol#refundAddresses[mapping]

7

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

A F F E C T E D C O D E

The functions within the LibRouter library are currently defined as public. This means

that these functions can be called from outside the library, including from other

contracts and externally. Making functions public can be useful in certain scenarios.

Public functions introduce additional gas costs due to the compiler-generated

checks for msg.value and input data size. In cases where these checks are

unnecessary, this can lead to suboptimal gas consumption.

Issue

Level

Remediation

Alleviation / Retest

 : Public Function Visibility in LibRouter Library

 : Gas

 : It's recommended to review the functions within the LibRouter library

and consider reducing their visibility to internal or private if they are not intended to be

accessed from external contracts or users

 : The function has been made private in the library.

¯ LibRouter.sol#getHopParams()

8

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

A F F E C T E D C O D E

In the provided smart contract, there are internal functions declared but not used

within the contract's functions or by any other contracts. These unused internal

functions consume gas when deploying and executing the contract. Additionally,

having unused functions can potentially confuse auditors and developers trying to

understand the contract's logic.

Issue

Level

Remediation

Alleviation / Retest

 : Internal Function Never Used

 : Gas

 : To improve code quality and reduce unnecessary gas consumption,

it's recommended to remove any internal functions that are not used within the

contract or by any other contracts in the system

 : Unused functions are not removed from the code.
« LibAsset.sol#getAllowance(�

« LibAsset.sol#getBalanceOf()

9

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

A F F E C T E D C O D E

The contract uses for loops that use post increments for the variable “i”. The contract

can save some gas by changing this to ++i.

++i costs less gas compared to i++ or i += 1 for unsigned integers. In i++, the compiler

has to create a temporary variable to store the initial value. This is not the case with

++i in which the value is directly incremented and returned, thus, making it a cheaper

alternative.

Issue

Level

Remediation

Alleviation / Retest

 : Gas Optimization in Increments

 : Gas

 : It is recommended to switch to ++i and change the code accordingly

so the function logic remains the same and saves some gas.

 : The loop is still using i++.

¦ LibMulticall.sol#multicall()

10

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

A F F E C T E D C O D E

During each iteration of the loop, reading the length of the array uses more gas than

is necessary. In the most favorable scenario, in which the length is read from a

memory variable, storing the array length in the stack can save about 3 gas per

iteration. In the least favorable scenario, in which external calls are made during

each iteration, the amount of gas wasted can be significant.

Issue

Level

Remediation

Alleviation / Retest

 : Array Length Caching

 : Gas

 : Consider storing the array length of the variable before the loop and

use the stored length instead of fetching it in each iteration.

 : Array lengths are now cached before using them in loops.

¦ LibRouter.sol#swap(�

¦ LibMulticall.sol#multicall()

11

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

A F F E C T E D C O D E

Loops are in most cases bounded by definition (the bounding is represented by the

exit condition). Therefore in the vast majority of cases, checking for overflows is really

not needed, and can get very gas-expensive.

Issue

Level

Remediation

Alleviation / Retest

 : Unnecessary Checked Arithmetic in Loops

 : Gas

 : It is recommended to implement unchecked blocks in for loops

wherever possible since they are already bounded by an upper length and there’s a

very rare chance that it might overflow.

 : The loop has been made unchecked to save gas

¨ LibMulticall.sol#multicall()

12

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

CodeS O U R C E

P r i v a t e G i t H u b R e p o s i t o r y

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

AppendixR E P O R T

F I N D I N G C A T E G O R I E S A U D I T S C O R E S

The assessment process will utilize a mixture of static analysis, dynamic analysis, in-

depth manual review and/or other security techniques.

This report has been prepared for Magpie Protocol project using the above

techniques to examine and discover vulnerabilities and safe coding practices in

Magpie Protocol’s smart contract including the libraries used by the contract that

are not officially recognized.

A comprehensive static and dynamic analysis has been performed on the solidity

code in order to find vulnerabilities ranging from minor gas optimizations to major

vulnerabilities leading to the loss of funds.

Various common and uncommon attack vectors will be investigated to ensure that

the smart contracts are secure from malicious actors. The testing methods find and

flag issues related to gas optimizations that help in reducing the overall gas cost It

scans and evaluates the codebase against industry best practices and standards to

ensure compliance It makes sure that the officially recognized libraries used in the

code are secure and up to date.

D3ploy Audit Score is not a live dynamic score. It is a fixed value determined at the

time of the report issuance date.

D3ploy Audit Score is not, nor should be considered, an “endorsement” or

“disapproval” of any particular project or team. These reports and scores are not,

nor should be considered, an indication of the economics or value of any “product”

or “asset” created by any team or project that contracts d3ploy to perform a

security review.

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

