

ProxyMeta Labs
S E C U R I T Y A S S E S S M E N T

September 21st 2023

Contents
T A B L E O F

Legal Disclaimer

D3ploy Intro

Project Summary

Audit Score

Methodology

Key Findings

Vulnerabilities

Audit Scope Source Code

Appendix

090501

060602

0703

0804

10

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

Disclaimer
L E G A L

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

D3ploy audits are not, nor should be considered, an “endorsement” or “disapproval”

of any particular project or team. These reports are not, nor should be considered, an

indication of the economics or value of any “product” or “asset” created by any team

or project that contracts d3ploy to perform a security review. D3ploy does not provide

any warranty or guarantee regarding the absolute bug-free nature of the technology

analyzed, nor do they provide any indication of the technologies proprietors,

business, business model or legal compliance.

D3ploy’s goal is to help reduce the attack vectors and the high level of variance

associated with utilizing new and consistently changing technologies, and in no way

claims any guarantee of security or functionality of the technology we agree to

analyze.

D3ploy audits should not be used in any way to make decisions around investment

or involvement with any particular project. These reports in no way provide

investment advice, nor should be leveraged as investment advice of any sort. The

report is provided only for the contract(s) mentioned in the report and does not

include any other potential additions and/or contracts deployed by Owner. The

report does not provide a review for contract(s), applications and/or operations, that

are out of this report scope.

D3ploy represents an extensive auditing process intending to help our customers

increase the quality of their code while reducing the high level of risk presented by

cryptographic tokens and blockchain technology. Blockchain technology and

cryptographic assets present a high level of ongoing risk. D3ploy’s position is that

each company and individual are responsible for their own due diligence and

continuous security. The security audit is not meant to replace functional testing

done before a software release. As one audit-based assessment cannot be

considered comprehensive, we always recommend proceeding with several

independent manual audits and a public bug bounty program to ensure the security

of the smart contracts.

Introduction
D 3 P L O Y

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

D3ploy is a leading blockchain security company that serves

to verify the security and correctness of smart contracts and

blockchain-based protocols. Through the utilization of our

world-class technical expertise, alongside our proprietary,

innovative tech, we’re able to support the success of our

clients with best-in-class security, all whilst realizing our

overarching vision; provable trust for all throughout all facets

of blockchain.

Secure your project with d3ploy

Vunerability checking

A crucial manual inspection carried out to eliminate any code flaws and security loopholes. This is vital to

avoid vulnerabilities and exposures incurring costly errors at a later stage.

Contract verification

A thorough and comprehensive review in order to verify the safety of a smart contract and ensure it is ready

for launch and built to protect the end-user

Risk assessment

Analyse the architecture of the blockchain system to evaluate, assess and eliminate probable security

breaches. This includes a full assessment of risk and a list of expert suggestions.

In-depth reporting

A truly custom exhaustive report that is transparent and depicts details of any identified threats and

vulnerabilities and classifies those by severity.

Fast turnaround

We know that your time is valuable and therefore provide you with the fastest turnaround times in the

industry to ensure that both your project and community are at ease.

Best-of-class blockchain engineers

Our engineers combine both experience and knowledge stemming from a large pool of developers at our

disposal. We work with some of the brightest minds that have audited countless smart contracts over the

last 4 years.

We offer field-proven audits with in-depth reporting and a

range of suggestions to improve and avoid contract

vulnerabilities. Industry-leading comprehensive and

transparent smart contract auditing on all public and private

blockchains.

Introduction Social
P R O J E C T I N F O

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

Proxymeta Labs is a comprehensive toolset for web3 developers, that accelerates

projects’ web3 development and reduces costs. One can generate customizable

smart contracts that meet all project requirements. The toolset is not a coding

solution, rather a completely free of charge toolset, with no hidden fees.

Project Name

Contract Name

Contract Address

Contract Chain

Contract Type

Platform

Language

Network

Codebase

Total Supply

ProxyMeta Labs

-

-

Not yet deployed on mainnet

Smart Contract

EVM

Solidity

BNB Chain (BEP20)

Private GitHub Repository

-

-

-

https://twitter.com/Proxymeta_Labs

-

https://proxymetalabs.com/

-

-

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

P A S S

92
Score
A U D I T

Critical 0

Major 1

Medium 1

Minor 5

Informational 1

Discussion 0

Issues 8

All issues are described in further detail on

the following pages.

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

Sonny-CX/SC-Generation/contracts Private GitHub Repository

Sonny-CX/SC-Generation/app Private GitHub Repository

ScopeA U D I T

G I T H U B R E P O S I T O R Y L O C A T I O N

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

T E C H N I Q U E S T I M E S T A M P

This report has been prepared for ProxyMeta Labs to discover issues and

vulnerabilities in the source code of the ProxyMeta Labs project as well as any

contract dependencies that were not part of an officially recognized library. A

comprehensive examination has been performed, utilizing Dynamic, Static Analysis

and Manual Review techniques.

The auditing process pays special attention to the following considerationsh

W Testing the smart contracts against both common and uncommon attack

vectorsb

W Assessing the codebase to ensure compliance with current best practices and

industry standardsb

W Ensuring contract logic meets the specifications and intentions of the clientb

W Cross referencing contract structure and implementation against similar smart

contracts producedby industry leadersb

W Thorough line-by-line manual review of the entire codebase by industry experts.

The security assessment resulted in findings that ranged from major to

informational. We recommend addressing these findings to ensure a high level of

security standards and industry practices. We suggest recommendations that could

better serve the project from the security perspective in the comments below.

Version

Date

Descrption

v1.1

2023/09/21

Re-audit addressed issues

 Final Summary

Version

Date

Descrption

v1.0

2023/08/23

Layout project

 Architecture / Manual review / Static & dynamic security testing

 Summary

MethodologyR E V I E W

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

Excess Eth Not Refunded To Buyer Medium Fixed

Use of Ownable2Step for Safer Ownership Transfer Minor Fixed

Use of Floating Pragma in Solidity Files Minor Fixed

The function Should Be External Minor Fixed

Gas Optimization In Increments Minor Fixed

Gas Optimization in Require Statements Gas Fixed

Path Traversal and File Overwrite Major Fixed

T I T L E S E V E R I T Y S T A T U S

FindingK E Y

Missing Events Minor Fixed

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

L O C A T I O N

The contract is programmed to receive Ether, but no method was found that

allowed the Ether to be withdrawn, i.e., call, transfer, transferFrom, send, or call.value at

least once.

Without a withdrawal function, the Ethers will forever be locked inside the contract if

the contract’s code is not upgradeable leading to loss of funds.

Issue

Level

Remediation

Alleviation / Retest

 : Locked Ether Inside A Contract

 : Major

 : Implement a withdraw function or reject payments (contracts without

a fallback function do it automatically).

 :

Unitroller.sol L2964-L3102

1

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

A F F E C T E D C O D E

Upon reviewing the code, it has been observed that the mint() & buyToken() function,

which facilitates the purchase of NFTs, does not include a mechanism to refund any

excess Ether sent by the buyer. While the function correctly checks whether the

received Ether is greater than or equal to the required amount, it does not handle

situations where the buyer sends an excessive amount of Ether.

Buyers who accidentally send more Ether than required will not have the excess

amount refunded. This can lead to a loss of funds for users and negatively impact

their trust in the protocol.

Issue

Level

Type

Remediation

Alleviation / Retest

 : Excess Eth Not Refunded To Buyer

 : Medium

 : Loss of Funds

 : Modify the mint() & buyToken() functions to include a refund

mechanism that calculates and refunds any excess Ether sent by the buyer beyond

the required amount.

 : Fixed

h mint() & payment.js#buyToken()

I M P A C T S

1

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

L O C A T I O N

The contract is programmed to receive Ether, but no method was found that

allowed the Ether to be withdrawn, i.e., call, transfer, transferFrom, send, or call.value at

least once.

Without a withdrawal function, the Ethers will forever be locked inside the contract if

the contract’s code is not upgradeable leading to loss of funds.

Issue

Level

Remediation

Alleviation / Retest

 : Locked Ether Inside A Contract

 : Major

 : Implement a withdraw function or reject payments (contracts without

a fallback function do it automatically).

 :

Unitroller.sol L2964-L3102

1

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

A F F E C T E D C O D E

The smart contract has incorporated the use of the Ownable2Step pattern for

managing ownership. This pattern enhances the safety of ownership transfers

compared to the standard Ownable pattern. In the Ownable2Step pattern,

ownership transfer is a two-step process where the new owner must explicitly

accept ownership before the transfer is completed. This mitigates the risk of

accidental or unauthorized ownership transfers to mistyped or unintended

addresses

The two-step ownership transfer process significantly lowers the risk of accidental

ownership transfers to incorrect or mistyped addresses. The new owner must

confirm the transfer, ensuring a deliberate and secure change of ownership.

Issue

Level

Type

Remediation

Alleviation / Retest

 : Use of Ownable2Step for Safer Ownership Transfer

 : Minor

 : Business Logic

 : Use Ownable2Step instead of Ownable

 : Fixed.  

https://github.com/Sonny-CX/SC-Generation/

blob/808ce04b1233b0b0d1a2fba9284998faf9ca3af2/contracts/templates/ERC1155/

erc1155.js#L11
Z ERC721.sol and ERC1155.sol

I M P A C T S

2

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

L O C A T I O N

The contract is programmed to receive Ether, but no method was found that

allowed the Ether to be withdrawn, i.e., call, transfer, transferFrom, send, or call.value at

least once.

Without a withdrawal function, the Ethers will forever be locked inside the contract if

the contract’s code is not upgradeable leading to loss of funds.

Issue

Level

Remediation

Alleviation / Retest

 : Locked Ether Inside A Contract

 : Major

 : Implement a withdraw function or reject payments (contracts without

a fallback function do it automatically).

 :

Unitroller.sol L2964-L3102

1

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

A F F E C T E D C O D E

During the code review, it has come to light that the smart contract lacks the use of

events within the functions. Events are an integral part of contract functionality,

serving as a means to store arguments in the transaction's log, which is essential for

off-chain transaction tracking. The absence of events within the functions may

hinder the ability of developers and auditors to effectively monitor and analyze

transactions associated with this operation

Events are used to track the transactions off-chain and missing these events on

critical functions makes it difficult to audit these logs if they’re needed at a later stage.

Issue

Level

Type

Remediation

Alleviation / Retest

 : Missing Events

 : Minor

 : Missing Best Practices

 : Consider emitting events for the functions mentioned above. It is also

recommended to have the addresses indexed.

 : Fixed 

https://github.com/Sonny-CX/SC-Generation/

blob/808ce04b1233b0b0d1a2fba9284998faf9ca3af2/contracts/templates/ERC1155/

erc1155.js#L75

e withdrawAll()

I M P A C T S

3

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

L O C A T I O N

The contract is programmed to receive Ether, but no method was found that

allowed the Ether to be withdrawn, i.e., call, transfer, transferFrom, send, or call.value at

least once.

Without a withdrawal function, the Ethers will forever be locked inside the contract if

the contract’s code is not upgradeable leading to loss of funds.

Issue

Level

Remediation

Alleviation / Retest

 : Locked Ether Inside A Contract

 : Major

 : Implement a withdraw function or reject payments (contracts without

a fallback function do it automatically).

 :

Unitroller.sol L2964-L3102

1

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

A F F E C T E D C O D E

Upon reviewing the codebase, it has been observed that the smart contract uses a

floating pragma directive in the Solidity source file. A floating pragma does not

specify a fixed compiler version and instead relies on the specified version and any

compatible later versions. This approach allows the contract to be compiled with

various compiler versions, which may introduce inconsistencies or compatibility

issues over time.

Relying on a floating pragma means the contract may be compiled with different

compiler versions, potentially leading to variations in behavior and output across

different versions.

Issue

Level

Type

Remediation

Alleviation / Retest

 : Use of Floating Pragma in Solidity Files

 : Minor

 : Floating Pragma

 : To ensure consistent behavior, stability, and security of the contract, it

is recommended to avoid the use of floating pragma in Solidity source files. Instead,

adopt a specific compiler version that is thoroughly tested and verified

 : The Pragma version has been fixed and updated. 

https://github.com/Sonny-CX/SC-Generation/

blob/808ce04b1233b0b0d1a2fba9284998faf9ca3af2/contracts/templates/ERC1155/

erc1155.js#L4

t ERC721.sol and ERC1155.sol

I M P A C T S

4

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

L O C A T I O N

The contract is programmed to receive Ether, but no method was found that

allowed the Ether to be withdrawn, i.e., call, transfer, transferFrom, send, or call.value at

least once.

Without a withdrawal function, the Ethers will forever be locked inside the contract if

the contract’s code is not upgradeable leading to loss of funds.

Issue

Level

Remediation

Alleviation / Retest

 : Locked Ether Inside A Contract

 : Major

 : Implement a withdraw function or reject payments (contracts without

a fallback function do it automatically).

 :

Unitroller.sol L2964-L3102

1

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

A F F E C T E D C O D E

During the analysis of the code, it was identified that a function with a public visibility

modifier has been used that is not called internally within the contract. The public

visibility modifier makes a function accessible both internally within the contract and

externally from other contracts. However, since this function is not invoked internally,

it could be optimized for gas usage by changing its visibility to external.

Functions with public visibility involve copying arguments to memory, which can

result in higher gas consumption, especially when dealing with large arrays of data.

This can lead to increased gas costs for transactions that interact with the function.

Issue

Level

Type

Remediation

Alleviation / Retest

 : The function Should Be External

 : Minor

 : Missing Best Practices

 : To optimize gas usage and improve the efficiency of the contract, it is

recommended to change the visibility modifier of the identified function from public

to external

 : The functions have been made external. 

https://github.com/Sonny-CX/SC-Generation/

blob/808ce04b1233b0b0d1a2fba9284998faf9ca3af2/contracts/templates/ERC1155/

components/payments.js#L20-L49

g buyToken() in both the contracts

I M P A C T S

5

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

L O C A T I O N

The contract is programmed to receive Ether, but no method was found that

allowed the Ether to be withdrawn, i.e., call, transfer, transferFrom, send, or call.value at

least once.

Without a withdrawal function, the Ethers will forever be locked inside the contract if

the contract’s code is not upgradeable leading to loss of funds.

Issue

Level

Remediation

Alleviation / Retest

 : Locked Ether Inside A Contract

 : Major

 : Implement a withdraw function or reject payments (contracts without

a fallback function do it automatically).

 :

Unitroller.sol L2964-L3102

1

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

A F F E C T E D C O D E

Upon reviewing the code, it has been identified that the contract uses various

increment operations (i++, i += 1) for unsigned integer variables. However, it's worth

noting that the ++i increment operation is more gas-efficient compared to i++ or i +=

1. This is due to the compiler's optimization behavior, where ++i directly increments

the value and returns it, resulting in lower gas consumption.

The use of i++ or i += 1 increment operations can result in higher gas costs compared

to ++i. This can contribute to increased transaction fees and operational costs.

Issue

Level

Type

Remediation

Alleviation / Retest

 : Gas Optimization In Increments

 : Minor

 : Gas Optimization

 : To optimize gas usage and improve the efficiency of the contract, it is

recommended to replace instances of i++ and i += 1 with ++i for unsigned integer

variables

 : This is fixed. +i is being used to save gas. 

https://github.com/Sonny-CX/SC-Generation/

blob/808ce04b1233b0b0d1a2fba9284998faf9ca3af2/contracts/templates/ERC1155/

erc1155.js#L48

g ERC721.sol & ERC1155.sol#constructor & mint()

I M P A C T S

6

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

L O C A T I O N

The contract is programmed to receive Ether, but no method was found that

allowed the Ether to be withdrawn, i.e., call, transfer, transferFrom, send, or call.value at

least once.

Without a withdrawal function, the Ethers will forever be locked inside the contract if

the contract’s code is not upgradeable leading to loss of funds.

Issue

Level

Remediation

Alleviation / Retest

 : Locked Ether Inside A Contract

 : Major

 : Implement a withdraw function or reject payments (contracts without

a fallback function do it automatically).

 :

Unitroller.sol L2964-L3102

1

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

A F F E C T E D C O D E

The require() statement takes an input string to show errors if the validation fails. The

strings inside these functions that are longer than 32 bytes require at least one

additional MSTORE, along with additional overhead for computing memory offset

and other parameters. For this purpose, having strings lesser than 32 bytes saves a

significant amount of gas.

Having longer require strings than 32 bytes costs a significant amount of gas.

Issue

Level

Type

Remediation

Alleviation / Retest

 : Gas Optimization in Require Statements

 : Gas

 : Gas Optimization

 : It is recommended to shorten the strings passed inside require()

statements to fit under 32 bytes. This will decrease the gas usage at the time of

deployment and at runtime when the validation condition is met.

 : All require statements are updated to fit under 32 bytes

P Require statements inside the constructor and buyToken

I M P A C T S

7

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

L O C A T I O N

The contract is programmed to receive Ether, but no method was found that

allowed the Ether to be withdrawn, i.e., call, transfer, transferFrom, send, or call.value at

least once.

Without a withdrawal function, the Ethers will forever be locked inside the contract if

the contract’s code is not upgradeable leading to loss of funds.

Issue

Level

Remediation

Alleviation / Retest

 : Locked Ether Inside A Contract

 : Major

 : Implement a withdraw function or reject payments (contracts without

a fallback function do it automatically).

 :

Unitroller.sol L2964-L3102

1

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

P R O O F O F C O N C E P T

The API is taking “user” and “name” parameters as input from the user. These

parameters are being used to create files and directories for the generated smart

contracts. Due to missing input validation on these parameters, it is possible to

provide malicious inputs such as “../” which will lead to folder and file creation at the

attacker-defined path.

This vulnerability could allow attackers to create directories and files in the choice of

their own folders anywhere on the server. They could also cause the application to

crash by supplying invalid payloads creating a permanent Denial of Service.

Issue

Level

Type

Remediation

Alleviation / Retest

 : Path Traversal and File Overwrite

 : Major

 : High

 : Implement input validation on all the user input parameters. Ensure

malicious characters are blocked and encoded properly before being used. Also,

make sure that the server does not crash when invalid arguments are supplied.

Implement proper error handling.

 : Validations have been added that validate name and address

parameters which prevent path traversal

` 1. Send an API request using a manipulate “user” and “name” parameter as shown below.W

` 2. It can be seen that the file was created at a different location.

I M P A C T S

8-1

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

L O C A T I O N

The contract is programmed to receive Ether, but no method was found that

allowed the Ether to be withdrawn, i.e., call, transfer, transferFrom, send, or call.value at

least once.

Without a withdrawal function, the Ethers will forever be locked inside the contract if

the contract’s code is not upgradeable leading to loss of funds.

Issue

Level

Remediation

Alleviation / Retest

 : Locked Ether Inside A Contract

 : Major

 : Implement a withdraw function or reject payments (contracts without

a fallback function do it automatically).

 :

1

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

P R O O F O F C O N C E P T

8-2

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

CodeS O U R C E

P r i v a t e G i t H u b R e p o s i t o r y

Sonny-CX/SC-Generation/

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

AppendixR E P O R T

F I N D I N G C A T E G O R I E S A U D I T S C O R E S

The assessment process will utilize a mixture of static analysis, dynamic analysis, in-

depth manual review and/or other security techniques.

This report has been prepared for ProxyMeta Labs project using the above

techniques to examine and discover vulnerabilities and safe coding practices in

ProxyMeta Labs’s smart contract including the libraries used by the contract that are

not officially recognized.

A comprehensive static and dynamic analysis has been performed on the solidity

code in order to find vulnerabilities ranging from minor gas optimizations to major

vulnerabilities leading to the loss of funds.

Various common and uncommon attack vectors will be investigated to ensure that

the smart contracts are secure from malicious actors. The testing methods find and

flag issues related to gas optimizations that help in reducing the overall gas cost It

scans and evaluates the codebase against industry best practices and standards to

ensure compliance It makes sure that the officially recognized libraries used in the

code are secure and up to date.

D3ploy Audit Score is not a live dynamic score. It is a fixed value determined at the

time of the report issuance date.

D3ploy Audit Score is not, nor should be considered, an “endorsement” or

“disapproval” of any particular project or team. These reports and scores are not,

nor should be considered, an indication of the economics or value of any “product”

or “asset” created by any team or project that contracts d3ploy to perform a

security review.

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

