

PRINT3R
S E C U R I T Y A S S E S S M E N T

September 01st 2023

Contents
T A B L E O F

Legal Disclaimer

D3ploy Intro

Project Summary

Audit Score

Methodology

Key Findings

Vulnerabilities

Audit Scope Source Code

Appendix

090501

060602

0703

0804

10

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

Disclaimer
L E G A L

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

D3ploy audits are not, nor should be considered, an “endorsement” or “disapproval”

of any particular project or team. These reports are not, nor should be considered, an

indication of the economics or value of any “product” or “asset” created by any team

or project that contracts d3ploy to perform a security review. D3ploy does not provide

any warranty or guarantee regarding the absolute bug-free nature of the technology

analyzed, nor do they provide any indication of the technologies proprietors,

business, business model or legal compliance.

D3ploy’s goal is to help reduce the attack vectors and the high level of variance

associated with utilizing new and consistently changing technologies, and in no way

claims any guarantee of security or functionality of the technology we agree to

analyze.

D3ploy audits should not be used in any way to make decisions around investment

or involvement with any particular project. These reports in no way provide

investment advice, nor should be leveraged as investment advice of any sort. The

report is provided only for the contract(s) mentioned in the report and does not

include any other potential additions and/or contracts deployed by Owner. The

report does not provide a review for contract(s), applications and/or operations, that

are out of this report scope.

D3ploy represents an extensive auditing process intending to help our customers

increase the quality of their code while reducing the high level of risk presented by

cryptographic tokens and blockchain technology. Blockchain technology and

cryptographic assets present a high level of ongoing risk. D3ploy’s position is that

each company and individual are responsible for their own due diligence and

continuous security. The security audit is not meant to replace functional testing

done before a software release. As one audit-based assessment cannot be

considered comprehensive, we always recommend proceeding with several

independent manual audits and a public bug bounty program to ensure the security

of the smart contracts.

Introduction
D 3 P L O Y

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

D3ploy is a leading blockchain security company that serves

to verify the security and correctness of smart contracts and

blockchain-based protocols. Through the utilization of our

world-class technical expertise, alongside our proprietary,

innovative tech, we’re able to support the success of our

clients with best-in-class security, all whilst realizing our

overarching vision; provable trust for all throughout all facets

of blockchain.

Secure your project with d3ploy

Vunerability checking

A crucial manual inspection carried out to eliminate any code flaws and security loopholes. This is vital to

avoid vulnerabilities and exposures incurring costly errors at a later stage.

Contract verification

A thorough and comprehensive review in order to verify the safety of a smart contract and ensure it is ready

for launch and built to protect the end-user

Risk assessment

Analyse the architecture of the blockchain system to evaluate, assess and eliminate probable security

breaches. This includes a full assessment of risk and a list of expert suggestions.

In-depth reporting

A truly custom exhaustive report that is transparent and depicts details of any identified threats and

vulnerabilities and classifies those by severity.

Fast turnaround

We know that your time is valuable and therefore provide you with the fastest turnaround times in the

industry to ensure that both your project and community are at ease.

Best-of-class blockchain engineers

Our engineers combine both experience and knowledge stemming from a large pool of developers at our

disposal. We work with some of the brightest minds that have audited countless smart contracts over the

last 4 years.

We offer field-proven audits with in-depth reporting and a

range of suggestions to improve and avoid contract

vulnerabilities. Industry-leading comprehensive and

transparent smart contract auditing on all public and private

blockchains.

Introduction Social
P R O J E C T I N F O

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

PRINT3R aims to shake-up the existing derivatives market by fully gamifying the trading

experience, creating an immersive and addictive experience for traders at any level.

PRINT3R is a gamified decentralized derivatives platform that focuses on ease of use

and encouraging user loyalty through engaging user interactions, and sharing revenue.

Trade liquid crypto assets at up to 50x leverage without the fuss of KYC or sign-up. Just

connect a wallet, and you're in. The platform guarantees no price impact on longs,

shorts, and swaps, all at minimal fees.

Derivatives are a cornerstone in the crypto realm. PRINT3R’s ambition is to elevate this

model, merging key success elements from each aspect of the web3 landscape.

Project Name

Contract Name

Contract Address

Contract Chain

Contract Type

Platform

Language

Network

Codebase

Max Supply

PRINT3R

PRINT Token

-

Not Yet Deployed on Mainnet

Smart Contract

EVM

Solidity

Base Chain (BASE-69)

Private GitHub Repository

8, 121, 212

https://t.me/print3rXYZ

https://discord.gg/uPZf5eqaSZ

https://twitter.com/PRINT3Rxyz

https://github.com/PRINT3Rxyz

https://www.print3r.xyz/

https://print3r.gitbook.io/print3r/

-

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

P A S S

96
Score
A U D I T

Critical 0

Major 1

Medium 1

Minor 3

Informational 2

Discussion 6

Issues 13

All issues are described in further detail on

the following pages.

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

PRINT3Rxyz/print3r-contracts GitHub Repository

ScopeA U D I T

G I T H U B R E P O S I T O R Y L O C A T I O N

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

T E C H N I Q U E S T I M E S T A M P

This report has been prepared for Print3r.xyz to discover issues and vulnerabilities in

the source code of the Print3r project as well as any contract dependencies that

were not part of an officially recognized library. A comprehensive examination has

been performed, utilizing Dynamic, Static Analysis and Manual Review techniques.

The auditing process pays special attention to the following considerationsl

X Testing the smart contracts against both common and uncommon attack

vectorsU

X Assessing the codebase to ensure compliance with current best practices and

industry standardsU

X Ensuring contract logic meets the specifications and intentions of the clientU

X Cross referencing contract structure and implementation against similar smart

contracts producedby industry leadersU

X Thorough line-by-line manual review of the entire codebase by industry experts.

The security assessment resulted in findings that ranged from major to

informational. We recommend addressing these findings to ensure a high level of

security standards and industry practices. We suggest recommendations that could

better serve the project from the security perspective in the comments below.

Version

Date

Descrption

v1.1

2023/09/01

Reaudit addressed vulnerabilities

 Final Summary

Version

Date

Descrption

v1.0

2023/08/30

Layout project

 Architecture / Manual review / Static & dynamic security testing

 Summary

MethodologyR E V I E W

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

Using EXTCODESIZE To Check For Externally Owned Accounts Informational Acknowledged

Superfluous Event Fields Gas Acknowledged

Cheaper Conditional Operators Gas Fixed

Array Length Caching Gas Fixed

Unnecessary Checked Arithmetic In Loop Gas Fixed

Custom Errors instead of Revert Gas Fixed

Require With Empty Message Informational Fixed

Missing Zero Address Validations Minor Acknowledged

Empty Catch Block Minor Fixed

T I T L E S E V E R I T Y S T A T U S

FindingK E Y

Unused Imports Gas Fixed

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

Missing Zero Address Validations Major Fixed

Failure to Delete increasePositionRequestKeys after Execution Medium Acknowledged

Missing Zero Value Validations Minor Acknowledged

T I T L E S E V E R I T Y S T A T U S

FindingK E Y

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

L O C A T I O N

The contract is programmed to receive Ether, but no method was found that

allowed the Ether to be withdrawn, i.e., call, transfer, transferFrom, send, or call.value at

least once.

Without a withdrawal function, the Ethers will forever be locked inside the contract if

the contract’s code is not upgradeable leading to loss of funds.

Issue

Level

Remediation

Alleviation / Retest

 : Locked Ether Inside A Contract

 : Major

 : Implement a withdraw function or reject payments (contracts without

a fallback function do it automatically).

 :

Unitroller.sol L2964-L3102

1

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

Upon reviewing the code, it has come to attention that the extcodesize opcode is

used to determine whether an account is an externally owned account or another

contract. While extcodesize typically returns 0 for externally owned accounts, there is

an important consideration regarding its behavior during contract deployment or

constructor execution. Specifically, when a contract is under construction or its

constructor is running, extcodesize for the contract's address returns zero. This

behavior can lead to inaccurate results when attempting to identify externally

owned accounts during these specific circumstances.

During contract deployment or constructor execution, the extcodesize check may

incorrectly identify the account as externally owned due to the opcode's behavior

returning zero.

Issue

Level

Type

Remediation

Alleviation / Retest

 : Using EXTCODESIZE To Check For Externally Owned Accounts

 : Informational

 : Misconfiguration

 : To accurately identify externally owned accounts, consider using

alternative methods or checks that are not affected by the behavior of extcodesize

during contract deployment or constructor execution.

 : Print3r team acknowledged the issue.

I M P A C T S

1

A F F E C T E D C O D E

e /src/core/PositionRouter.sol #L836

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

L O C A T I O N

The contract is programmed to receive Ether, but no method was found that

allowed the Ether to be withdrawn, i.e., call, transfer, transferFrom, send, or call.value at

least once.

Without a withdrawal function, the Ethers will forever be locked inside the contract if

the contract’s code is not upgradeable leading to loss of funds.

Issue

Level

Remediation

Alleviation / Retest

 : Locked Ether Inside A Contract

 : Major

 : Implement a withdraw function or reject payments (contracts without

a fallback function do it automatically).

 :

Unitroller.sol L2964-L3102

1

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

Upon reviewing the code, it has been identified that certain events include fields for

block.timestamp and block.number. These fields are automatically added to event

information by default. However, manually adding them can lead to unnecessary

gas consumption. To optimize gas usage and reduce transaction costs, it is

recommended to avoid including these superfluous event fields.

Including superfluous event fields, such as block.timestamp and block.number, in

events can have implications on the contract's gas consumption and efficiency

Issue

Level

Type

Remediation

Alleviation / Retest

 : Superfluous Event Fields

 : Gas

 : Gas Optimization

 : Remove any manually added event fields that duplicate

block.timestamp or block.number

 : Print3r team acknowledged the issue.

I M P A C T S

2

A F F E C T E D C O D E

\ /src/core/PositionRouter.sol #L725-L740

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

L O C A T I O N

The contract is programmed to receive Ether, but no method was found that

allowed the Ether to be withdrawn, i.e., call, transfer, transferFrom, send, or call.value at

least once.

Without a withdrawal function, the Ethers will forever be locked inside the contract if

the contract’s code is not upgradeable leading to loss of funds.

Issue

Level

Remediation

Alleviation / Retest

 : Locked Ether Inside A Contract

 : Major

 : Implement a withdraw function or reject payments (contracts without

a fallback function do it automatically).

 :

Unitroller.sol L2964-L3102

1

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

A F F E C T E D C O D E

The contract PositionRouter.sol was importing contracts ITimelock.sol & IVault.sol

which was not used anywhere in the code. This increases the gas cost and overall

contract’s complexity.

Unused imports in smart contracts can lead to an increase in the size of the code,

making it more difficult to verify and potentially slowing down its execution. Moreover,

having unused code in a smart contract can also increase the attack surface by

potentially introducing vulnerabilities that can be exploited by malicious actors. This

can lead to security issues and compromise the integrity of the contract. Additionally,

including unused imports in smart contracts can also increase deployment and gas

costs, making it more expensive to deploy and run the contract on the Ethereum

network.

Issue

Level

Type

Remediation

Alleviation / Retest

 : Unused Imports

 : Gas

 : Gas Optimization

 : It is recommended to remove the import statement if the external

contracts or libraries are not used anywhere in the contract.

 : Fixed. Unused imports have been removed.

h /src/core/PositionRouter.sol #L07, L13

I M P A C T S

3

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

L O C A T I O N

The contract is programmed to receive Ether, but no method was found that

allowed the Ether to be withdrawn, i.e., call, transfer, transferFrom, send, or call.value at

least once.

Without a withdrawal function, the Ethers will forever be locked inside the contract if

the contract’s code is not upgradeable leading to loss of funds.

Issue

Level

Remediation

Alleviation / Retest

 : Locked Ether Inside A Contract

 : Major

 : Implement a withdraw function or reject payments (contracts without

a fallback function do it automatically).

 :

Unitroller.sol L2964-L3102

1

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

A F F E C T E D C O D E

Solidity supports multiple rational and integer literals, including decimal fractions

and scientific notations. The use of very large numbers with too many digits was

detected in the code that could have been optimized using a different notation also

supported by Solidity.

Employing x != 0 in conditional statements can result in reduced gas consumption

compared to using x > 0. This optimization contributes to cost-effectiveness in

contract interactions.

Issue

Level

Type

Remediation

Alleviation / Retest

 : Cheaper Conditional Operators

 : Gas

 : Gas Optimization

 : Whenever possible, use the x != 0 conditional operator instead of x > 0

for unsigned integer variables in conditional statements.

 : Fixed. Conditional operators have been adjusted to != 0 to save

gas.

V /src/staking/BrrrXpAmplifier.sol

V /src/core/PositionRouter.sol

#L209, L22W

#L336, L452, L562

I M P A C T S

4

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

L O C A T I O N

The contract is programmed to receive Ether, but no method was found that allowed

the Ether to be withdrawn, i.e., call, transfer, transferFrom, send, or call.value at least

once.

Issue

Level

Remediation

Alleviation / Retest

 : Locked Ether Inside A Contract

 : Major

 : Implement a withdraw function or reject payments (contracts without

a fallback function do it automatically).

 :

Unitroller.sol L2964-L3102

1

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

A F F E C T E D C O D E

During each iteration of the loop, reading the length of the array uses more gas than

is necessary. In the most favorable scenario, in which the length is read from a

memory variable, storing the array length in the stack can save about 3 gas per

iteration. In the least favorable scenario, in which external calls are made during

each iteration, the amount of gas wasted can be significant.

Reading the length of an array multiple times in a loop by calling .length costs more

gas.

Issue

Level

Type

Remediation

Alleviation / Retest

 : Array Length Caching

 : Gas

 : Gas Optimization

 : Consider storing the array length of the variable before the loop and

use the stored length instead of fetching it in each iteration.

 : Fixed. Array length is now cached before using.
Q /src/staking/BrrrXpAmplifier.sol #L135, L269

I M P A C T S

5

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

L O C A T I O N

The contract is programmed to receive Ether, but no method was found that

allowed the Ether to be withdrawn, i.e., call, transfer, transferFrom, send, or call.value at

least once.

Without a withdrawal function, the Ethers will forever be locked inside the contract if

the contract’s code is not upgradeable leading to loss of funds.

Issue

Level

Remediation

Alleviation / Retest

 : Locked Ether Inside A Contract

 : Major

 : Implement a withdraw function or reject payments (contracts without

a fallback function do it automatically).

 :

Unitroller.sol L2964-L3102

1

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

A F F E C T E D C O D E

Upon reviewing the code, it has been identified that the contract uses checked

arithmetic operations inside loops where increments occur. However, it's important

to note that increments inside loops are unlikely to cause overflow since the

transaction will run out of gas before the variable reaches its limits. As a result, using

checked arithmetic for increments within loops may be unnecessary and can lead

to additional gas consumption.

Unnecessary checked arithmetic operations can lead to higher gas consumption, as

each arithmetic operation comes with its own gas cost. This can contribute to

increased transaction fees and operational costs.

Issue

Level

Type

Remediation

Alleviation / Retest

 : Unnecessary Checked Arithmetic In Loop

 : Gas

 : Gas Optimization

 : Consider having the increment value inside the unchecked block to

save some gas.

 : Fixed. Loops have been unchecked.
R /main/src/staking/BrrrXpA mplifier.sol #L135, L269

I M P A C T S

6

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

L O C A T I O N

The contract is programmed to receive Ether, but no method was found that

allowed the Ether to be withdrawn, i.e., call, transfer, transferFrom, send, or call.value at

least once.

Without a withdrawal function, the Ethers will forever be locked inside the contract if

the contract’s code is not upgradeable leading to loss of funds.

Issue

Level

Remediation

Alleviation / Retest

 : Locked Ether Inside A Contract

 : Major

 : Implement a withdraw function or reject payments (contracts without

a fallback function do it automatically).

 :

Unitroller.sol L2964-L3102

1

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

V U L N E R A B L E C O D E

The contract was found to be using revert() statements in multiple places. Since

Solidity v0.8.4, custom errors have been introduced which are a better alternative to

the revert. This allows the developers to pass custom errors with dynamic data while

reverting the transaction and also makes the whole implementation a bit cheaper

than using revert.

Using revert() instead of error() costs more gas.

Issue

Level

Type

Remediation

Alleviation / Retest

 : Custom Errors instead of Revert

 : Gas

 : Gas Optimization

 : It is recommended to replace the instances of revert() statements

with error() to save gas.

 : Fixed. Custom errors are implemented.
L /src/core/PositionRouter.sol #L659, L681

I M P A C T S

7

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

L O C A T I O N

The contract is programmed to receive Ether, but no method was found that

allowed the Ether to be withdrawn, i.e., call, transfer, transferFrom, send, or call.value at

least once.

Without a withdrawal function, the Ethers will forever be locked inside the contract if

the contract’s code is not upgradeable leading to loss of funds.

Issue

Level

Remediation

Alleviation / Retest

 : Locked Ether Inside A Contract

 : Major

 : Implement a withdraw function or reject payments (contracts without

a fallback function do it automatically).

 :

Unitroller.sol L2964-L3102

1

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

V U L N E R A B L E C O D E

During code analysis, it has been observed that some require statements lack

descriptive messages, which provide crucial information to users when conditions

are not met. These messages, limited to 32 bytes, improve user understanding of

why a transaction was reverted.

Users may be left without clear context when a transaction is reverted due to unmet

conditions, leading to confusion and frustration

Issue

Level

Type

Remediation

Alleviation / Retest

 : Require With Empty Message

 : Informational

 : Gas Optimization

 : Add concise, informative messages to require statements, explaining

why the condition failed. Ensure messages are clear and within the 32-byte limit

 : Fixed

Y /src/staking/BrrrXpAmplifier.sol #L67

I M P A C T S

8

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

L O C A T I O N

The contract is programmed to receive Ether, but no method was found that

allowed the Ether to be withdrawn, i.e., call, transfer, transferFrom, send, or call.value at

least once.

Without a withdrawal function, the Ethers will forever be locked inside the contract if

the contract’s code is not upgradeable leading to loss of funds.

Issue

Level

Remediation

Alleviation / Retest

 : Locked Ether Inside A Contract

 : Major

 : Implement a withdraw function or reject payments (contracts without

a fallback function do it automatically).

 :

Unitroller.sol L2964-L3102

1

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

A F F E C T E D C O D E

The contracts were found to be setting new addresses without proper validations for

zero addresses.

Address type parameters should include a zero-address check otherwise contract

functionality may become inaccessible or tokens burned forever. Depending on the

logic of the contract, this could prove fatal and the users or the contracts could lose

their funds, or the ownership of the contract could be lost forever.

If address type parameters do not include a zero-address check, contract

functionality may become unavailable or tokens may be burned permanently.

Issue

Level

Type

Remediation

Alleviation / Retest

 : Missing Zero Address Validations

 : Minor

 : Missing Input Validation

 : Add a zero address validation to all the functions where addresses are

being set.

 : Print3r team acknowledged the issue.
K /src/core/PositionRouter.sol #L195, L205-206, L317, L390

I M P A C T S

9

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

L O C A T I O N

The contract is programmed to receive Ether, but no method was found that

allowed the Ether to be withdrawn, i.e., call, transfer, transferFrom, send, or call.value at

least once.

Without a withdrawal function, the Ethers will forever be locked inside the contract if

the contract’s code is not upgradeable leading to loss of funds.

Issue

Level

Remediation

Alleviation / Retest

 : Locked Ether Inside A Contract

 : Major

 : Implement a withdraw function or reject payments (contracts without

a fallback function do it automatically).

 :

Unitroller.sol L2964-L3102

1

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

A F F E C T E D C O D E

The contract PositionRouter._callRequestCallback() is making a call to

gmxPositionCallback() inside a try/catch block. However, the catch block is left

empty and is not doing anything. This shows a missing error handling.

Missing error handling could go unnoticed and the user won’t know if the function

executed properly or not.

Issue

Level

Type

Remediation

Alleviation / Retest

 : Empty Catch Block

 : Minor

 : Missing Error Handling

 : It is recommended to handle all errors properly inside the catch

statement and emit an event for the failed reason as well if needed.

 : Fixed. The catch block now reverts.

L /src/core/PositionRouter.sol #L857

I M P A C T S

10

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

L O C A T I O N

The contract is programmed to receive Ether, but no method was found that

allowed the Ether to be withdrawn, i.e., call, transfer, transferFrom, send, or call.value at

least once.

Without a withdrawal function, the Ethers will forever be locked inside the contract if

the contract’s code is not upgradeable leading to loss of funds.

Issue

Level

Remediation

Alleviation / Retest

 : Locked Ether Inside A Contract

 : Major

 : Implement a withdraw function or reject payments (contracts without

a fallback function do it automatically).

 :

Unitroller.sol L2964-L3102

1

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

V U L N E R A B L E C O D E

Upon a comprehensive assessment of the contract's code, a potential scenario leading to

the loss of rewards has been identified within the claimPendingRewards() function. The

function checks if the available balance of a specific token is equal to the user's claimable

token rewards, it does not include the mechanism to revert if the available balance is less

than userTokenRewards.

Users will lose their rewards if userTokenRewards is not available in the contract

while calling claimPendingRewards()

Issue

Level

Type

Remediation

Alleviation / Retest

 : Missing Zero Address Validations

 : Major

 : Missing Validation

 : Apply mechanism to revert if contract balance is less than

userTokenRewards.

 : Fixed. Validation has been added.
< /src/staking/BrrrXpAmplifier.sol #L149-L161

I M P A C T S

11

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

L O C A T I O N

The contract is programmed to receive Ether, but no method was found that

allowed the Ether to be withdrawn, i.e., call, transfer, transferFrom, send, or call.value at

least once.

Without a withdrawal function, the Ethers will forever be locked inside the contract if

the contract’s code is not upgradeable leading to loss of funds.

Issue

Level

Remediation

Alleviation / Retest

 : Locked Ether Inside A Contract

 : Major

 : Implement a withdraw function or reject payments (contracts without

a fallback function do it automatically).

 :

Unitroller.sol L2964-L3102

1

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

A F F E C T E D C O D E

The function PositionRouter.executeIncreasePositions() executes all the positions in batch inside

a loop and inside every execution it deletes the index value for increasePositionRequestKeys.

However, the deletion part is missing inside the function

PositionRouter.executeIncreasePosition(). This will leave residual values inside the mapping if the

user tries to execute single positions. This also affects the decreasePositionRequestKeys

mapping.

Failure to delete the mapping after execution could leave residual results after

executing the mapping. This would get executed again if the user tries to execute

them in batch creating inconsistencies and incorrect calculations.

Issue

Level

Type

Remediation

Alleviation / Retest

 : Failure to Delete increasePositionRequestKeys after Execution

 : Medium

 : Business Logic

 : It is recommended to delete the mappings in both the batch and single

execution functions.

 : Print3r team acknowledged the issue.
o /src/staking/BrrrXpAmplifier.sol #L149-L161

I M P A C T S

12

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

L O C A T I O N

The contract is programmed to receive Ether, but no method was found that

allowed the Ether to be withdrawn, i.e., call, transfer, transferFrom, send, or call.value at

least once.

Without a withdrawal function, the Ethers will forever be locked inside the contract if

the contract’s code is not upgradeable leading to loss of funds.

Issue

Level

Remediation

Alleviation / Retest

 : Locked Ether Inside A Contract

 : Major

 : Implement a withdraw function or reject payments (contracts without

a fallback function do it automatically).

 :

Unitroller.sol L2964-L3102

1

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

A F F E C T E D C O D E

Upon a thorough examination of the contract's code, it has come to attention that the

createIncreasePosition() function lacks validation to ensure that specific input values,

such as _minOut, are greater than zero. This absence of validation can potentially lead to

unintended behavior and errors during the function's execution.

Input values that are not greater than zero can result in unexpected and inaccurate

behavior during the execution of the function. This can result in a Sandwich Attack

Issue

Level

Type

Remediation

Alleviation / Retest

 : Missing Zero Value Validations

 : Minor

 : Missing Input Validation

 : Apply mechanism to check whether is _minOut greater than zero.

 : Print3r team acknowledged the issue.
i /main/src/core/PositionRouter.sol #L317-L353

I M P A C T S

13

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

CodeS O U R C E

G i t H u b R e p o s i t o r y

PRINT3Rxyz/print3r-contracts

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

AppendixR E P O R T

F I N D I N G C A T E G O R I E S A U D I T S C O R E S

The assessment process will utilize a mixture of static analysis, dynamic analysis, in-

depth manual review and/or other security techniques.

This report has been prepared for Print3r project using the above techniques to

examine and discover vulnerabilities and safe coding practices in Print3r’s smart

contract including the libraries used by the contract that are not officially

recognized.

A comprehensive static and dynamic analysis has been performed on the solidity

code in order to find vulnerabilities ranging from minor gas optimizations to major

vulnerabilities leading to the loss of funds.

Various common and uncommon attack vectors will be investigated to ensure that

the smart contracts are secure from malicious actors. The testing methods find and

flag issues related to gas optimizations that help in reducing the overall gas cost It

scans and evaluates the codebase against industry best practices and standards to

ensure compliance It makes sure that the officially recognized libraries used in the

code are secure and up to date.

D3ploy Audit Score is not a live dynamic score. It is a fixed value determined at the

time of the report issuance date.

D3ploy Audit Score is not, nor should be considered, an “endorsement” or

“disapproval” of any particular project or team. These reports and scores are not,

nor should be considered, an indication of the economics or value of any “product”

or “asset” created by any team or project that contracts d3ploy to perform a

security review.

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

