

BSC News NFT
S E C U R I T Y A S S E S S M E N T

July 25th 2023

Contents
T A B L E O F

Legal Disclaimer

D3ploy Intro

Project Summary

Audit Score

Methodology

Key Findings

Vulnerabilities

Audit Scope Source Code

Appendix

090501

060602

0703

0804

10

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

Disclaimer
L E G A L

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

D3ploy audits are not, nor should be considered, an “endorsement” or “disapproval”

of any particular project or team. These reports are not, nor should be considered, an

indication of the economics or value of any “product” or “asset” created by any team

or project that contracts d3ploy to perform a security review. D3ploy does not provide

any warranty or guarantee regarding the absolute bug-free nature of the technology

analyzed, nor do they provide any indication of the technologies proprietors,

business, business model or legal compliance.

D3ploy’s goal is to help reduce the attack vectors and the high level of variance

associated with utilizing new and consistently changing technologies, and in no way

claims any guarantee of security or functionality of the technology we agree to

analyze.

D3ploy audits should not be used in any way to make decisions around investment

or involvement with any particular project. These reports in no way provide

investment advice, nor should be leveraged as investment advice of any sort. The

report is provided only for the contract(s) mentioned in the report and does not

include any other potential additions and/or contracts deployed by Owner. The

report does not provide a review for contract(s), applications and/or operations, that

are out of this report scope.

D3ploy represents an extensive auditing process intending to help our customers

increase the quality of their code while reducing the high level of risk presented by

cryptographic tokens and blockchain technology. Blockchain technology and

cryptographic assets present a high level of ongoing risk. D3ploy’s position is that

each company and individual are responsible for their own due diligence and

continuous security. The security audit is not meant to replace functional testing

done before a software release. As one audit-based assessment cannot be

considered comprehensive, we always recommend proceeding with several

independent manual audits and a public bug bounty program to ensure the security

of the smart contracts.

Introduction
D 3 P L O Y

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

D3ploy is a leading blockchain security company that serves

to verify the security and correctness of smart contracts and

blockchain-based protocols. Through the utilization of our

world-class technical expertise, alongside our proprietary,

innovative tech, we’re able to support the success of our

clients with best-in-class security, all whilst realizing our

overarching vision; provable trust for all throughout all facets

of blockchain.

Secure your project with d3ploy

Vunerability checking

A crucial manual inspection carried out to eliminate any code flaws and security loopholes. This is vital to

avoid vulnerabilities and exposures incurring costly errors at a later stage.

Contract verification

A thorough and comprehensive review in order to verify the safety of a smart contract and ensure it is ready

for launch and built to protect the end-user

Risk assessment

Analyse the architecture of the blockchain system to evaluate, assess and eliminate probable security

breaches. This includes a full assessment of risk and a list of expert suggestions.

In-depth reporting

A truly custom exhaustive report that is transparent and depicts details of any identified threats and

vulnerabilities and classifies those by severity.

Fast turnaround

We know that your time is valuable and therefore provide you with the fastest turnaround times in the

industry to ensure that both your project and community are at ease.

Best-of-class blockchain engineers

Our engineers combine both experience and knowledge stemming from a large pool of developers at our

disposal. We work with some of the brightest minds that have audited countless smart contracts over the

last 4 years.

We offer field-proven audits with in-depth reporting and a

range of suggestions to improve and avoid contract

vulnerabilities. Industry-leading comprehensive and

transparent smart contract auditing on all public and private

blockchains.

Introduction Social
P R O J E C T I N F O

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

BSC News is the leading media platform covering Decentralized Finance (DeFi) on BNB

Chain covering a wide range of blockchain news revolving mainly around the DeFi

sector of the crypto markets. BSC News aims to inform, educate and share

information with the global investment community through our website, social

media, newsletters, podcasts, research, and live ask me anything (AMA) sessions with

top industry minds.

BSC News NFT - 10,000 premium access memberships that grant holders access to

exclusive perks all around BNB Chain.

Project Name

Contract Name

Contract Address

Contract Chain

Contract Type

Platform

Language

Network

Codebase

Total NFT Supply

BSC News NFT

-

-

Not yet deployed on mainnet

Smart Contract

EVM

Solidity

BNB Chain (BEP20)

Private GitHub Repository

10,000

https://t.me/BSCNewsAnn

https://discord.gg/bscnewsnft

https://twitter.com/BSCNews

-

https://www.bsc.news/

-

info@bsc.news

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

P A S S

94
Score
A U D I T

Critical 0

Major 3

Medium 0

Minor 2

Informational 2

Discussion 9

Issues 16

All issues are described in further detail on

the following pages.

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

BSCNewsNFTStaking.sol
 Raw Solidity File

ScopeA U D I T

C O D E B A S E F I L E S L O C A T I O N

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

T E C H N I Q U E S T I M E S T A M P

This report has been prepared for BSC News NFT to discover issues and

vulnerabilities in the source code of the BSC News NFT project as well as any contract

dependencies that were not part of an officially recognized library. A comprehensive

examination has been performed, utilizing Dynamic, Static Analysis and Manual

Review techniques.

The auditing process pays special attention to the following considerations`

g Testing the smart contracts against both common and uncommon attack

vectorsW

g Assessing the codebase to ensure compliance with current best practices and

industry standardsW

g Ensuring contract logic meets the specifications and intentions of the clientW

g Cross referencing contract structure and implementation against similar smart

contracts producedby industry leadersW

g Thorough line-by-line manual review of the entire codebase by industry experts.

The security assessment resulted in findings that ranged from major to

informational. We recommend addressing these findings to ensure a high level of

security standards and industry practices. We suggest recommendations that could

better serve the project from the security perspective in the comments below.

Version

Date

Descrption

v1.1

2023/07/25

Re-audit addressed issues

 Final Summary

Version

Date

Descrption

v1.0

2023/07/12

Layout project

 Architecture / Manual review / Static & dynamic security testing

 Summary

MethodologyR E V I E W

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

INSUFFICIENT CHECKS IN CLAIMREWARDS() FUNCTION Informational Fixed

TOKENIDTOINDEX OF TOKEN IS NOT UPDATED IN WITHDRAW() FUNCTION Major Fixed

GREATER REWARDS BY STAKING BEFORE REWARD PERIOD Major Fixed

ARRAY LENGTH CACHING Gas Fixed

CHEAPER CONDITIONAL OPERATORS Gas Fixed

CHEAPER INEQUALITIES IN IF() Gas Fixed

CHEAPER INEQUALITIES IN REQUIRE() Gas Acknowledged

DEFINE CONSTRUCTOR AS PAYABLE Gas Fixed

T I T L E S E V E R I T Y S T A T U S

FindingK E Y

CALLING CLAIMREWARDS() IS MORE PROFITABLE THAN CALLING WITHDRAWALL() Major Fixed

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

USE OF FLOATING PRAGMA Low Fixed

GAS OPTIMIZATION FOR STATE VARIABLES Gas Fixed

GAS OPTIMIZATION IN INCREMENTS Gas Fixed

LONG REQUIRE/REVERT STRINGS Gas Fixed

OUTDATED COMPILER VERSION Low Fixed

STORAGE VARIABLE CACHING IN MEMORY Gas Fixed

VARIABLES SHOULD BE IMMUTABLE
 Informational Fixed

T I T L E S E V E R I T Y S T A T U S

FindingK E Y

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

L O C A T I O N

The contract is programmed to receive Ether, but no method was found that

allowed the Ether to be withdrawn, i.e., call, transfer, transferFrom, send, or call.value at

least once.

Without a withdrawal function, the Ethers will forever be locked inside the contract if

the contract’s code is not upgradeable leading to loss of funds.

Issue

Level

Remediation

Alleviation / Retest

 : Locked Ether Inside A Contract

 : Major

 : Implement a withdraw function or reject payments (contracts without

a fallback function do it automatically).

 :

Unitroller.sol L2964-L3102

1

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

L O C A T I O N

The claimRewards() function in the provided code does not perform any checks on

the available rewards or the current balance of the contract. It directly transfers the

reward tokens to the message sender without verifying if the contract has enough

balance to cover the reward amount. Additionally, it does not validate if the reward

amount stored in the rewards mapping for the sender is greater than zero before

transferring the tokens.

Without the necessary checks, the function allows the sender to claim rewards even

if the contract does not have sufficient balance to cover the reward amount. This

can result in failed transactions or the loss of reward tokens if the contract runs out

of balance during the claim process.

Issue

Level

Remediation

Alleviation / Retest

 : INSUFFICIENT CHECKS IN CLAIMREWARDS() FUNCTION

 : Informational

 : To remediate this bug, it is important to add checks for both, the

available rewards and the contract balance, before transferring the reward tokens

to the sender.

 : Validation have been added.

@ BSCNewsNFTStaking.sol L90-99

1

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

L O C A T I O N

The contract is programmed to receive Ether, but no method was found that

allowed the Ether to be withdrawn, i.e., call, transfer, transferFrom, send, or call.value at

least once.

Without a withdrawal function, the Ethers will forever be locked inside the contract if

the contract’s code is not upgradeable leading to loss of funds.

Issue

Level

Remediation

Alleviation / Retest

 : Locked Ether Inside A Contract

 : Major

 : Implement a withdraw function or reject payments (contracts without

a fallback function do it automatically).

 :

Unitroller.sol L2964-L3102

1

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

L O C A T I O N

In the withdraw() function, the index of the token which is being withdrawn is not set

to zero or not deleted which will further create redundancy where tokenIdToIndex

mapping will return the same index for two tokenIds. Suppose one token is

withdrawn which has the last index let's say 5 and you can see

tokenIdToIndex[tokenIds[I]] is not updated here. After this, suppose the same user

stake another token which will be again indexed as 5.

When a token is withdrawn, its index in the tokenIdToIndex mapping should be set to

zero or deleted. However, with this bug, the index is not updated, resulting in multiple

tokens having the same index. This redundancy can cause confusion and potentially

lead to incorrect data retrieval or processing.

Issue

Level

Remediation

Alleviation / Retest

 : TOKENIDTOINDEX OF TOKEN IS NOT UPDATED IN

WITHDRAW() FUNCTION

 : Major

 : Set the value of the mapping for the withdrawn token to zero or

delete the entry altogether. You can delete the index of withdrawn tokens by

using delete tokenIdToIndex[tokenIds[I]]; inside the withdraw function.

 : Fixed - using delete tokenIdToIndex[tokenId];

i BSCNewsNFTStaking.sol L62-87

2

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

L O C A T I O N

The contract is programmed to receive Ether, but no method was found that allowed

the Ether to be withdrawn, i.e., call, transfer, transferFrom, send, or call.value at least

once.

Without a withdrawal function, tss of funds.

Issue

Level

Remediation

Alleviation / Retest

 : Locked Ether Inside A Contract

 : Major

 : Implement a withdraw function or reject payments (contracts without

a fallback function do it automatically).

 :

Unitroller.sol L2964-L3102

1

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

L O C A T I O N

Calling the claimRewards() function separately may result in higher profitability

compared to calling the withdrawAll() function. The reason for this is that the

withdrawAll() function updates the lastUpdateTime variable to recent timeStamp,

potentially leading to a decrease in the value of (lastTimeRewardApplicable() -

lastUpdateTime) used in the rewardPerToken() function. By analyzing the transactions

user can call the claimRewards() function when there is no transaction. Then

lastUpdateTime will be storing old (small value) which will result in increasing

(lastTimeRewardApplicable() - lastUpdateTime), which will eventually increase the

reward.

The rewards per token may be underestimated, leading to a lower reward payout for

users.

Issue

Level

Remediation

Alleviation / Retest

 : CALLING CLAIMREWARDS() IS MORE PROFITABLE THAN

CALLING WITHDRAWALL()

 : Major

 : To address this bug and ensure consistent and accurate reward

calculations, it is recommended that Instead of updating the lastUpdateTime

variable for every invocation of withdrawAll(), it should only be updated when a direct

withdrawal (withdraw()) is made. This ensures that the rewards calculation is not

affected by multiple updates of lastUpdateTime within the same transaction.

 : Withdrawall logic has been updated.

f BSCNewsNFTStaking.sol L90-99

3

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

L O C A T I O N

The contract is programmed to receive Ether, but no method was found that

allowed the Ether to be withdrawn, i.e., call, transfer, transferFrom, send, or call.value at

least once.

Without a withdrawal function, the Ethers will forever be locked inside the contract if

the contract’s code is not upgradeable leading to loss of funds.

Issue

Level

Remediation

Alleviation / Retest

 : Locked Ether Inside A Contract

 : Major

 : Implement a withdraw function or reject payments (contracts without

a fallback function do it automatically).

 :

Unitroller.sol L2964-L3102

1

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

L O C A T I O N

This issue allows users to exploit the timing of their staking activities to maximize

their rewards. Staking tokens just before the reward period begins, and claiming

rewards after the reward period starts, can result in higher rewards due to the way

the rewardPerToken() and calculateRewards() functions are implemented. Suppose

the user stake token just before the reward period starts (lastTimeRewardApplicable()

- lastUpdateTime) will result in zero inside rewardPerToken() returned value of

rewardPerToken() will be stored in userRewardPerTokenPaid[account] which will be

less as compared to the normal value stored when the user tries to claim reward

subtraction of rewardPerToken() - userRewardPerTokenPaid[_user] will result in a big

number which will result in more reward calculation.

Issue

Level

Remediation

Alleviation / Retest

 : GREATER REWARDS BY STAKING BEFORE REWARD PERIOD

 : Major

 : The bug allows users who stake their tokens just before the reward

period begins to receive a disproportionately higher amount of rewards compared

to other users who stake their tokens during the reward period.

 : Staking period status is now updated with OPEN and CLOSED

during staking cycle.

T BSCNewsNFTStaking.sol L44-58

4

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

L O C A T I O N

The contract is programmed to receive Ether, but no method was found that

allowed the Ether to be withdrawn, i.e., call, transfer, transferFrom, send, or call.value at

least once.

Without a withdrawal function, the Ethers will forever be locked inside the contract if

the contract’s code is not upgradeable leading to loss of funds.

Issue

Level

Remediation

Alleviation / Retest

 : Locked Ether Inside A Contract

 : Major

 : Implement a withdraw function or reject payments (contracts without

a fallback function do it automatically).

 :

Unitroller.sol L2964-L3102

1

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

L O C A T I O N

During each iteration of the loop, reading the length of the array uses more gas than

is necessary. In the most favorable scenario, in which the length is read from a

memory variable, storing the array length in the stack can save about 3 gas per

iteration. In the least favorable scenario, in which external calls are made during

each iteration, the amount of gas wasted can be significant.

The following array was detected to be used inside loop without caching it's value in

memory: userTokens.

Issue

Level

Remediation

Alleviation / Retest

 : ARRAY LENGTH CACHING

 : Gas

 : Consider storing the array length of the variable before the loop and

use the stored length instead of fetching it in each iteration.

 : Fixed

5 BSCNewsNFTStaking.sol L48-54; L66-83

5

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

L O C A T I O N

The contract is programmed to receive Ether, but no method was found that

allowed the Ether to be withdrawn, i.e., call, transfer, transferFrom, send, or call.value at

least once.

Without a withdrawal function, the Ethers will forever be locked inside the contract if

the contract’s code is not upgradeable leading to loss of funds.

Issue

Level

Remediation

Alleviation / Retest

 : Locked Ether Inside A Contract

 : Major

 : Implement a withdraw function or reject payments (contracts without

a fallback function do it automatically).

 :

Unitroller.sol L2964-L3102

1

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

L O C A T I O N

During compilation, x != 0 is cheaper than x > 0 for unsigned integers in solidity inside

conditional statements.

Issue

Level

Remediation

Alleviation / Retest

 : CHEAPER CONDITIONAL OPERATORS

 : Gas

 : Consider using x != 0 in place of x > 0 in uint wherever possible.

 : X > 0 has been updated as X != 0 for uints.
A BSCNewsNFTStaking.sol L92; L142; L143

6

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

L O C A T I O N

The contract is programmed to receive Ether, but no method was found that

allowed the Ether to be withdrawn, i.e., call, transfer, transferFrom, send, or call.value at

least once.

Without a withdrawal function, the Ethers will forever be locked inside the contract if

the contract’s code is not upgradeable leading to loss of funds.

Issue

Level

Remediation

Alleviation / Retest

 : Locked Ether Inside A Contract

 : Major

 : Implement a withdraw function or reject payments (contracts without

a fallback function do it automatically).

 :

Unitroller.sol L2964-L3102

1

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

L O C A T I O N

The contract was found to be doing comparisons using inequalities inside the if

statement.

When inside the if statements, non-strict inequalities (>=, <=) are usually cheaper

than the strict equalities (>, <).

Issue

Level

Remediation

Alleviation / Retest

 : CHEAPER INEQUALITIES IN IF()

 : Gas

 : It is recommended to go through the code logic, and, if possible,

modify the strict inequalities with the non-strict ones to save ~3 gas as long as the

logic of the code is not affected.

 : Fixed
@ BSCNewsNFTStaking.sol L92

7

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

L O C A T I O N

The contract is programmed to receive Ether, but no method was found that

allowed the Ether to be withdrawn, i.e., call, transfer, transferFrom, send, or call.value at

least once.

Without a withdrawal function, the Ethers will forever be locked inside the contract if

the contract’s code is not upgradeable leading to loss of funds.

Issue

Level

Remediation

Alleviation / Retest

 : Locked Ether Inside A Contract

 : Major

 : Implement a withdraw function or reject payments (contracts without

a fallback function do it automatically).

 :

Unitroller.sol L2964-L3102

1

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

L O C A T I O N

The contract was found to be performing comparisons using inequalities inside the

require statement. When inside the require statements, non-strict inequalities (>=, <=)

are usually costlier than strict equalities (>, <).

Issue

Level

Remediation

Alleviation / Retest

 : CHEAPER INEQUALITIES IN REQUIRE()

 : Gas

 : It is recommended to go through the code logic, and, if possible,

modify the non-strict inequalities with the strict ones to save ~3 gas as long as the

logic of the code is not affected.

 : Acknowledged, gas related only.

@ BSCNewsNFTStaking.sol L156

8

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

L O C A T I O N

The contract is programmed to receive Ether, but no method was found that

allowed the Ether to be withdrawn, i.e., call, transfer, transferFrom, send, or call.value at

least once.

Without a withdrawal function, the Ethers will forever be locked inside the contract if

the contract’s code is not upgradeable leading to loss of funds.

Issue

Level

Remediation

Alleviation / Retest

 : Locked Ether Inside A Contract

 : Major

 : Implement a withdraw function or reject payments (contracts without

a fallback function do it automatically).

 :

Unitroller.sol L2964-L3102

1

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

L O C A T I O N

Developers can save around 10 opcodes and some gas if the constructors are

defined as payable.

However, it should be noted that it comes with risks because payable constructors

can accept ETH during deployment.

Issue

Level

Remediation

Alleviation / Retest

 : DEFINE CONSTRUCTOR AS PAYABLE

 : Gas

 : It is suggested to mark the constructors as payable to save some gas.

Make sure it does not lead to any adverse effects in case an upgrade pattern is

involved.

 : Constructor is now payable to save some gas
> BSCNewsNFTStaking.sol L35-38

9

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

L O C A T I O N

The contract is programmed to receive Ether, but no method was found that

allowed the Ether to be withdrawn, i.e., call, transfer, transferFrom, send, or call.value at

least once.

Without a withdrawal function, the Ethers will forever be locked inside the contract if

the contract’s code is not upgradeable leading to loss of funds.

Issue

Level

Remediation

Alleviation / Retest

 : Locked Ether Inside A Contract

 : Major

 : Implement a withdraw function or reject payments (contracts without

a fallback function do it automatically).

 :

Unitroller.sol L2964-L3102

1

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

L O C A T I O N

Solidity source files indicate the versions of the compiler they can be compiled with

using a pragma directive at the top of the solidity file. This can either be a floating

pragma or a specific compiler version.

The contract was found to be using a floating pragma which is not considered safe

as it can be compiled with all the versions described.The following affected files were

found to be using floating pragma:

['BSCNewsNFTStaking.sol'] - ^0.8.0

Issue

Level

Remediation

Alleviation / Retest

 : USE OF FLOATING PRAGMA

 : Low

 : It is recommended to use a fixed pragma version, as future compiler

versions may handle certain language constructions in a way the developer did not

foresee.Using a floating pragma may introduce several vulnerabilities if compiled

with an older version.

The developers should always use the exact Solidity compiler version when

designing their contracts as it may break the changes in the future.Instead of ^0.8.0

use pragma solidity 0.8.18, which is a stable and recommended version right now.

 : Pragma is strict.

d BSCNewsNFTStaking.sol L04

10

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

L O C A T I O N

The contract is programmed to receive Ether, but no method was found that allowed

the Ether to be withdrawn, i.e., call, transfer, transferFrom, send, or call.value at least

once.

Without a withdrawal function, the Ethers will forever be locked inside the contract if

the contract’s code is not upgradeable leading to loss of funds.

Issue

Level

Remediation

Alleviation / Retest

 : Locked Ether Inside A Contract

 : Major

 : Implement a withdraw function or reject payments (contracts without

a fallback function do it automatically).

 :

Unitroller.sol L2964-L3102

1

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

L O C A T I O N

Plus equals (+=) costs more gas than addition operator. The same thing happens

with minus equals (-=). Therefore, x +=y costs more gas than x = x + y.

Issue

Level

Remediation

Alleviation / Retest

 : GAS OPTIMIZATION FOR STATE VARIABLES

 : Gas

 : Conside�

� addition operator over plus equal�

� subtraction operator over minus equal�

� division operator over divide equal�

� multiplication operator over multiply equals

 : x += y has been updated as x = x+y

� BSCNewsNFTStaking.sol L55; L84

11

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

L O C A T I O N

The contract is programmed to receive Ether, but no method was found that

allowed the Ether to be withdrawn, i.e., call, transfer, transferFrom, send, or call.value at

least once.

Without a withdrawal function, the Ethers will forever be locked inside the contract if

the contract’s code is not upgradeable leading to loss of funds.

Issue

Level

Remediation

Alleviation / Retest

 : Locked Ether Inside A Contract

 : Major

 : Implement a withdraw function or reject payments (contracts without

a fallback function do it automatically).

 :

Unitroller.sol L2964-L3102

1

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

L O C A T I O N

++i costs less gas compared to i++ or i += 1 for unsigned integers. In i++, the compiler

has to create a temporary variable to store the initial value. This is not the case with

++i in which the value is directly incremented and returned, thus, making it a

cheaper alternative.

Issue

Level

Remediation

Alleviation / Retest

 : GAS OPTIMIZATION IN INCREMENTS

 : Gas

 : Consider changing the post-increments (i++) to pre-increments (++i)

as long as the value is not used in any calculations or inside returns. Make sure that

the logic of the code is not changed.

 : Loop counter has been updated to save gas.
? BSCNewsNFTStaking.sol L48; L66

12

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

L O C A T I O N

The contract is programmed to receive Ether, but no method was found that

allowed the Ether to be withdrawn, i.e., call, transfer, transferFrom, send, or call.value at

least once.

Without a withdrawal function, the Ethers will forever be locked inside the contract if

the contract’s code is not upgradeable leading to loss of funds.

Issue

Level

Remediation

Alleviation / Retest

 : Locked Ether Inside A Contract

 : Major

 : Implement a withdraw function or reject payments (contracts without

a fallback function do it automatically).

 :

Unitroller.sol L2964-L3102

1

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

L O C A T I O N

The require() and revert() functions take an input string to show errors if the

validation fails.

This strings inside these functions that are longer than 32 bytes require at least one

additional MSTORE, along with additional overhead for computing memory offset,

and other parameters.

Issue

Level

Remediation

Alleviation / Retest

 : LONG REQUIRE/REVERT STRINGS

 : Gas

 : It is recommended to short the strings passed inside require() and

revert() to fit under 32 bytes. This will decrease the gas usage at the time of

deployment and at runtime when the validation condition is met.

 : require strings have been shortened.
G BSCNewsNFTStaking.sol L142; L143: L144-147; L156

13

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

L O C A T I O N

The contract is programmed to receive Ether, but no method was found that

allowed the Ether to be withdrawn, i.e., call, transfer, transferFrom, send, or call.value at

least once.

Without a withdrawal function, the Ethers will forever be locked inside the contract if

the contract’s code is not upgradeable leading to loss of funds.

Issue

Level

Remediation

Alleviation / Retest

 : Locked Ether Inside A Contract

 : Major

 : Implement a withdraw function or reject payments (contracts without

a fallback function do it automatically).

 :

Unitroller.sol L2964-L3102

1

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

L O C A T I O N

Using an outdated compiler version can be problematic especially if there are

publicly disclosed bugs and issues that affect the current compiler version.

The following outdated versions were detected:

['BSCNewsNFTStaking.sol'] - ^0.8.0

Issue

Level

Remediation

Alleviation / Retest

 : OUTDATED COMPILER VERSION

 : Low

 : It is recommended to use a recent version of the Solidity compiler that

should not be the most recent version, and it should not be an outdated version as

well. Using very old versions of Solidity prevents the benefits of bug fixes and newer

security checks. Consider using the solidity version 0.8.18, which patches most solidity

vulnerabilities.

 : Compiler version is updated.

S BSCNewsNFTStaking.sol L04

14

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

The contract is programmed to receive Ether, but no method was found that

allowed the Ether to be withdrawn, i.e., call, transfer, transferFrom, send, or call.value at

least once.

Without a withdrawal function, the Ethers will forever be locked inside the contract if

the contract’s code is not upgradeable leading to loss of funds.

Issue

Level

Remediation

Alleviation / Retest

 : Locked Ether Inside A Contract

 : Major

 : Implement a withdraw function or reject payments (contracts without

a fallback function do it automatically).

 :

Unitroller.sol L2964-L3102

1

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

L O C A T I O N

The contract BSCNewsNFTStaking is using the state variables multiple times in functions.

SLOADs are expensive (100 gas after the 1st one) compared to MLOAD/MSTORE (3 gas

each).

Issue

Level

Remediation

Alleviation / Retest

 : STORAGE VARIABLE CACHING IN MEMORY

 : Gas

 : Storage variables read multiple times inside a function should instead

be cached in the memory the first time (costing 1 SLOAD) and then read from this

cache to avoid multiple SLOADs.

 : Fixed.

y BSCNewsNFTStaking.sol tokensStaked / function stake

y BSCNewsNFTStaking.sol stakedAssets / function withdraw

y BSCNewsNFTStaking.sol tokenIdToIndex / function withdraw

y BSCNewsNFTStaking.sol rewards / function claimRewards

y BSCNewsNFTStaking.sol periodFinish / function startStakingPeriod

y BSCNewsNFTStaking.sol rewardRate / function startStakingPeriod

y BSCNewsNFTStaking.sol rewardsDuration / function startStakingPeriod

y BSCNewsNFTStaking.sol periodFinish / function lastTimeRewardApplicable

y BSCNewsNFTStaking.sol rewardPerTokenStored / function rewardPerToken

 L3�

 L2�

 L3�

 L2�

 L1�

 L1�

 L2�

 L1�

 L22

15

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

L O C A T I O N

The contract is programmed to receive Ether, but no method was found that allowed

the Ether to be withdrawn, i.e., call, transfer, transferFrom, send, or call.value at least

once.

Without a withdrawal function, tss of funds.

Issue

Level

Remediation

Alleviation / Retest

 : Locked Ether Inside A Contract

 : Major

 : Implement a withdraw function or reject payments (contracts without

a fallback function do it automatically).

 :

Unitroller.sol L2964-L3102

1

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

L O C A T I O N

Constants and Immutables should be used in their appropriate contexts.

constant should only be used for literal values written into the code. immutable

variables should be used for expressions, or values calculated in, or passed into the

constructor.

Issue

Level

Remediation

Alleviation / Retest

 : VARIABLES SHOULD BE IMMUTABLE

 : Informational

 : It is recommended to use immutable instead of constant.

 : Fixed.

> BSCNewsNFTStaking.sol L15; L16

16

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

CodeS O U R C E

R a w S o l i d i t y F i l e

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

AppendixR E P O R T

F I N D I N G C A T E G O R I E S A U D I T S C O R E S

The assessment process will utilize a mixture of static analysis, dynamic analysis, in-

depth manual review and/or other security techniques.

This report has been prepared for BSC News NFT project using the above techniques

to examine and discover vulnerabilities and safe coding practices in BSC News NFT’s

smart contract including the libraries used by the contract that are not officially

recognized.

A comprehensive static and dynamic analysis has been performed on the solidity

code in order to find vulnerabilities ranging from minor gas optimizations to major

vulnerabilities leading to the loss of funds.

Various common and uncommon attack vectors will be investigated to ensure that

the smart contracts are secure from malicious actors. The testing methods find and

flag issues related to gas optimizations that help in reducing the overall gas cost It

scans and evaluates the codebase against industry best practices and standards to

ensure compliance It makes sure that the officially recognized libraries used in the

code are secure and up to date.

D3ploy Audit Score is not a live dynamic score. It is a fixed value determined at the

time of the report issuance date.

D3ploy Audit Score is not, nor should be considered, an “endorsement” or

“disapproval” of any particular project or team. These reports and scores are not,

nor should be considered, an indication of the economics or value of any “product”

or “asset” created by any team or project that contracts d3ploy to perform a

security review.

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

