


Zebec Protocol
S E C U R I T Y  A S S E S S M E N T

June 26th 2023



Contents
T A B L E  O F

Legal Disclaimer

D3ploy Intro

Project Summary

Audit Score

Methodology

Key Findings

Vulnerabilities

Audit Scope Source Code

Appendix

090501

060602

0703

0804

10

W E B S I T E d3ploy.co T W I T T E R@d3ploy_



Disclaimer
L E G A L

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

D3ploy audits are not, nor should be considered, an “endorsement” or “disapproval” 

of any particular project or team. These reports are not, nor should be considered, an 

indication of the economics or value of any “product” or “asset” created by any team 

or project that contracts d3ploy to perform a security review. D3ploy does not provide 

any warranty or guarantee regarding the absolute bug-free nature of the technology 

analyzed, nor do they provide any indication of the technologies proprietors, 

business, business model or legal compliance. 

D3ploy’s goal is to help reduce the attack vectors and the high level of variance 

associated with utilizing new and consistently changing technologies, and in no way 

claims any guarantee of security or functionality of the technology we agree to 

analyze.

D3ploy audits should not be used in any way to make decisions around investment 

or involvement with any particular project. These reports in no way provide 

investment advice, nor should be leveraged as investment advice of any sort. The 

report is provided only for the contract(s) mentioned in the report and does not 

include any other potential additions and/or contracts deployed by Owner. The 

report does not provide a review for contract(s), applications and/or operations, that 

are out of this report scope.

D3ploy represents an extensive auditing process intending to help our customers 

increase the quality of their code while reducing the high level of risk presented by 

cryptographic tokens and blockchain technology. Blockchain technology and 

cryptographic assets present a high level of ongoing risk. D3ploy’s position is that 

each company and individual are responsible for their own due diligence and 

continuous security. The security audit is not meant to replace functional testing 

done before a software release. As one audit-based assessment cannot be 

considered comprehensive, we always recommend proceeding with several 

independent manual audits and a public bug bounty program to ensure the security 

of the smart contracts.



Introduction
D 3 P L O Y

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

D3ploy is a leading blockchain security company that serves 

to verify the security and correctness of smart contracts and 

blockchain-based protocols. Through the utilization of our 

world-class technical expertise, alongside our proprietary, 

innovative tech, we’re able to support the success of our 

clients with best-in-class security, all whilst realizing our 

overarching vision; provable trust for all throughout all facets 

of blockchain. 



Secure your project with d3ploy

Vunerability checking


A crucial manual inspection carried out to eliminate any code flaws and security loopholes. This is vital to 

avoid vulnerabilities and exposures incurring costly errors at a later stage.

Contract verification


A thorough and comprehensive review in order to verify the safety of a smart contract and ensure it is ready 

for launch and built to protect the end-user

Risk assessment


Analyse the architecture of the blockchain system to evaluate, assess and eliminate probable security 

breaches. This includes a full assessment of risk and a list of expert suggestions.

In-depth reporting


A truly custom exhaustive report that is transparent and depicts details of any identified threats and 

vulnerabilities and classifies those by severity.

Fast turnaround


We know that your time is valuable and therefore provide you with the fastest turnaround times in the 

industry to ensure that both your project and community are at ease.

Best-of-class blockchain engineers


Our engineers combine both experience and knowledge stemming from a large pool of developers at our 

disposal. We work with some of the brightest minds that have audited countless smart contracts over the 

last 4 years.

We offer field-proven audits with in-depth reporting and a 

range of suggestions to improve and avoid contract 

vulnerabilities. Industry-leading comprehensive and 

transparent smart contract auditing on all public and private 

blockchains.



Introduction Social
P R O J E C T I N F O

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

Zebec, a pioneer in streaming finance, enables real-time and continuous streams of 

payments and financial transactions for payroll, investments and more.

Zebec’s vision extends beyond web3 applications. The company aims to create a 

future where money is able to move more freely; giving individuals, businesses, 

investors, and teams faster and easier access to funds and tokens. To pave the way 

for the mass adoption of real-time payroll, Zebec deploys its cutting-edge 

technology to the traditional payroll providers.

Project Name 

Contract Name 

Contract Address 

Contract Chain 

Contract Type 

Platform 

Language 

Network 

Codebase 

Total Token Supply 

Zebec Protocol


ZBC Token


0x37a56cdcD83Dce2868f721De58cB3830C44C6303


Mainnet


Smart Contract


EVM


Solidity


Solana (SOL) & BNB Chain (BEP20)


Private GitHub Repository


10,000.000.000

https://t.me/zebececosystem

https://discord.com/jUwZ3cHauZ

https://twitter.com/Zebec_HQ

https://github.com/Zebec-protocol

https://zebec.io/

-

-



W E B S I T E d3ploy.co T W I T T E R@d3ploy_

P A S S

89
Score
A U D I T

Critical 2

Major 1

Medium 0

Minor 3

Informational 5

Discussion 9

Issues 20

All issues are described in further detail on 

the following pages.



W E B S I T E d3ploy.co T W I T T E R@d3ploy_

Zebec-protocol/bnb-zebec-contract
 Private Repository

ScopeA U D I T

C O D E B A S E  F I L E S L O C A T I O N



W E B S I T E d3ploy.co T W I T T E R@d3ploy_

T E C H N I Q U E S T I M E S T A M P

This report has been prepared for Zebec Protocol to discover issues and 

vulnerabilities in the source code of the Zebec Protocol project as well as any 

contract dependencies that were not part of an officially recognized library. A 

comprehensive examination has been performed, utilizing Dynamic, Static Analysis 

and Manual Review techniques.

The auditing process pays special attention to the following considerationsa

W Testingthesmartcontractsagainstbothcommonanduncommonattackvectorsh

W Assessing the codebase to ensure compliance with current best practices and 

industry standardsh

W Ensuring contract logic meets the specifications and intentions of the clienth

W Cross referencing contract structure and implementation against similar smart 

contracts producedby industry leadersh

W Thorough line-by-line manual review of the entire codebase by industry experts.



The security assessment resulted in findings that ranged from major to 

informational. We recommend addressing these findings to ensure a high level of 

security standards and industry practices. We suggest recommendations that could 

better serve the project from the security perspective in the comments below.

Version 

Date 

Descrption 

Version 

Date 

Descrption 

v1.0


2023/06/12


Layout project


                    Architecture / Manual review / Static & dynamic security testing 


                    Summary



v1.1


2023/06/26


Re-audit addressed issues 


                    Final Summary

MethodologyR E V I E W



W E B S I T E d3ploy.co T W I T T E R@d3ploy_

MISSING MODIFIERS [ISWHITELISTEDTOKEN] Critical Fixed

MISSING MODIFIERS [WHENNOTPAUSED] Critical Fixed

ARRAY LENGTH CACHING Gas Fixed

CHEAPER INEQUALITIES IN IF() Gas Fixed

EVENT BASED REENTRANCY Low Fixed

USE OF FLOATING PRAGMA Low Fixed

UNCHECKED ARRAY LENGTH Major Fixed

GAS OPTIMIZATION IN INCREMENTS Gas Fixed

INTERNAL FUNCTIONS NEVER USED Gas Fixed

T I T L E S E V E R I T Y S T A T U S

FindingK E Y

VARIABLES DECLARED BUT NEVER USED Gas Fixed



W E B S I T E d3ploy.co T W I T T E R@d3ploy_

MISSING EVENTS Low Fixed

MISSING INDEXED KEYWORDS IN EVENTS Informational Fixed

MISSING STATE VARIABLE VISIBILITY Informational Fixed

PUBLIC CONSTANTS CAN BE PRIVATE Gas Fixed

REQUIRE WITH EMPTY MESSAGE Informational Fixed

RETURN INSIDE LOOP Informational Fixed

USE OF SAFEMATH LIBRARY Gas Fixed

UNNECESSARY CHECKED ARITHMETIC IN LOOP Gas Fixed

FUNCTION SHOULD BE EXTERNAL Gas Fixed

UNUSED RECEIVE FALLBACK Informational Fixed

T I T L E S E V E R I T Y S T A T U S

FindingK E Y



W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N  -  D E P T H

D E S C R I P T I O N

L O C A T I O N

The contract is programmed to receive Ether, but no method was found that 

allowed the Ether to be withdrawn, i.e., call, transfer, transferFrom, send, or call.value at 

least once.


Without a withdrawal function, the Ethers will forever be locked inside the contract if 

the contract’s code is not upgradeable leading to loss of funds.

Issue

Level

Remediation

Alleviation / Retest

 : Locked Ether Inside A Contract



 : Major



 : Implement a withdraw function or reject payments (contracts without 

a fallback function do it automatically).



 : 

Unitroller.sol L2964-L3102

1

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N  -  D E P T H

D E S C R I P T I O N

L O C A T I O N

Access control plays an important role in the segregation of privileges in smart 

contracts and other applications. If this is misconfigured or not properly validated on 

sensitive functions, it may lead to loss of funds, tokens, and in some cases 

compromise of the smart contract.



The contract Core is using a modifier isWhitelistedToken to check if the tokens are 

whitelisted or not but the functions instantStream() and instantStreamTNS are 

missing the modifier.


This could allow users to create streams with any token that is not whitelisted.

Issue

Level

Remediation

Alleviation / Retest

 : MISSING MODIFIERS [ISWHITELISTEDTOKEN]



 : Critical



 : It is recommended to add the isWhitelistedToken modifier to all the 

functions that are creating streams using address inputs obtained from end-users



 :  Fixed

Y contracts/Core.sol L555-618

1



W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N  -  D E P T H

D E S C R I P T I O N

L O C A T I O N

The contract is programmed to receive Ether, but no method was found that 

allowed the Ether to be withdrawn, i.e., call, transfer, transferFrom, send, or call.value at 

least once.


Without a withdrawal function, the Ethers will forever be locked inside the contract if 

the contract’s code is not upgradeable leading to loss of funds.

Issue

Level

Remediation

Alleviation / Retest

 : Locked Ether Inside A Contract



 : Major



 : Implement a withdraw function or reject payments (contracts without 

a fallback function do it automatically).



 : 

Unitroller.sol L2964-L3102

1

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N  -  D E P T H

D E S C R I P T I O N

L O C A T I O N

Access control plays an important role in the segregation of privileges in smart 

contracts and other applications. If this is misconfigured or not properly validated on 

sensitive functions, it may lead to loss of funds, tokens, and in some cases 

compromise of the smart contract.



The contract Core is using a modifier whenNotPaused to check if the contract is 

paused but some of the business-critical functions are missing this modifier.


This could allow users to use the contract's functions even when the contract is in a 

paused state.

Issue

Level

Remediation

Alleviation / Retest

 : MISSING MODIFIERS [WHENNOTPAUSED]



 : Critical



 : It is recommended to add the whenNotPaused modifier to all the 

business-critical functions.



 :  The team commented on the bug with sensible logic.

E contracts/Core.sol L287-315; L796-831; L1209-1257

2



W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N  -  D E P T H

D E S C R I P T I O N

L O C A T I O N

The contract is programmed to receive Ether, but no method was found that allowed 

the Ether to be withdrawn, i.e., call, transfer, transferFrom, send, or call.value at least 

once.


Without a withdrawal function, tss of funds.

Issue

Level

Remediation

Alleviation / Retest

 : Locked Ether Inside A Contract



 : Major



 : Implement a withdraw function or reject payments (contracts without 

a fallback function do it automatically).



 : 

Unitroller.sol L2964-L3102

1

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N  -  D E P T H

D E S C R I P T I O N

L O C A T I O N

The contract Staking has declared a variable coreContract but it is not used 

anywhere in the code. This represents dead code or missing logic.


Unused variables increase the contract's size and complexity, potentially leading to 

higher gas costs and a larger attack surface.

Issue

Level

Remediation

Alleviation / Retest

 : VARIABLES DECLARED BUT NEVER USED



 : Gas



 : To remediate this vulnerability, developers should perform a code 

review and remove any variables that are declared but never used.



 :  Fixed
: /contracts/Staking.sol L50

3



W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N  -  D E P T H

D E S C R I P T I O N

L O C A T I O N

The contract is programmed to receive Ether, but no method was found that 

allowed the Ether to be withdrawn, i.e., call, transfer, transferFrom, send, or call.value at 

least once.


Without a withdrawal function, the Ethers will forever be locked inside the contract if 

the contract’s code is not upgradeable leading to loss of funds.

Issue

Level

Remediation

Alleviation / Retest

 : Locked Ether Inside A Contract



 : Major



 : Implement a withdraw function or reject payments (contracts without 

a fallback function do it automatically).



 : 

Unitroller.sol L2964-L3102

1

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N  -  D E P T H

D E S C R I P T I O N

L O C A T I O N

During each iteration of the loop, reading the length of the array uses more gas than 

is necessary. In the most favorable scenario, in which the length is read from a 

memory variable, storing the array length in the stack can save about 3 gas per 

iteration. In the least favorable scenario, in which external calls are made during 

each iteration, the amount of gas wasted can be significant.

Issue

Level

Remediation

Alleviation / Retest

 : ARRAY LENGTH CACHING



 : Gas



 : Consider storing the array length of the variable before the loop and 

use the stored length instead of fetching it in each iteration.



 :  Fixed

5 /contracts/Staking.sol L108-114; L226-231; L204-213; L1131-1133; L1144-1150; L1285-1301; L 1304-1317 

4



W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N  -  D E P T H

D E S C R I P T I O N

L O C A T I O N

The contract is programmed to receive Ether, but no method was found that 

allowed the Ether to be withdrawn, i.e., call, transfer, transferFrom, send, or call.value at 

least once.


Without a withdrawal function, the Ethers will forever be locked inside the contract if 

the contract’s code is not upgradeable leading to loss of funds.

Issue

Level

Remediation

Alleviation / Retest

 : Locked Ether Inside A Contract



 : Major



 : Implement a withdraw function or reject payments (contracts without 

a fallback function do it automatically).



 : 

Unitroller.sol L2964-L3102

1

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N  -  D E P T H

D E S C R I P T I O N

L O C A T I O N

The contract was found to be doing comparisons using inequalities inside the if 

statement.


When inside the if statements, non-strict inequalities (>=, <=) are usually cheaper 

than the strict equalities (>, <).

Issue

Level

Remediation

Alleviation / Retest

 : CHEAPER INEQUALITIES IN IF()



 : Gas



 : It is recommended to go through the code logic, and, if possible, 

modify the strict inequalities with the non-strict ones to save ~3 gas as long as the 

logic of the code is not affected.



 :  Fixed
@ /contracts/libs/BulkTransferLibrary.sol 

@ /contracts/BulkTransfer.sol 

@ /contracts/Staking.sol 

@ /contracts/Core.sol 

L36-39; L90-9W

L51; L87; L9W

L135: L15U

L301; L410; L706; L721-722; L731; L914; L968; L984; L1033; L1035; L1057; L1059


                                              L1099; L1169; L1232; L1237

5



W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N  -  D E P T H

D E S C R I P T I O N

L O C A T I O N

The contract is programmed to receive Ether, but no method was found that 

allowed the Ether to be withdrawn, i.e., call, transfer, transferFrom, send, or call.value at 

least once.


Without a withdrawal function, the Ethers will forever be locked inside the contract if 

the contract’s code is not upgradeable leading to loss of funds.

Issue

Level

Remediation

Alleviation / Retest

 : Locked Ether Inside A Contract



 : Major



 : Implement a withdraw function or reject payments (contracts without 

a fallback function do it automatically).



 : 

Unitroller.sol L2964-L3102

1

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N  -  D E P T H

D E S C R I P T I O N

L O C A T I O N

n a Re-entrancy attack, a malicious contract calls back into the calling contract 

before the first invocation of the function is finished. This may cause the different 

invocations of the function to interact in undesirable ways, especially in cases where 

the function is updating state variables after the external calls.In the case of event-

based Re-entrancy attacks, events are emitted after an external call leading to 

missing event calls.

Issue

Level

Remediation

Alleviation / Retest

 : EVENT BASED REENTRANCY



 : Low



 : It is recommended to add a [Re-entrancy Guard] to the functions 

making external calls. The functions should use a Checks-Effects-Interactions 

pattern. The external calls should be executed at the end of the function and all the 

state-changing and event emits must happen before the call.



 :  Fixed
; /contracts/Core.sol L555-618

6

https://docs.openzeppelin.com/contracts/4.x/api/security#ReentrancyGuard


W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N  -  D E P T H

D E S C R I P T I O N

L O C A T I O N

The contract is programmed to receive Ether, but no method was found that 

allowed the Ether to be withdrawn, i.e., call, transfer, transferFrom, send, or call.value at 

least once.


Without a withdrawal function, the Ethers will forever be locked inside the contract if 

the contract’s code is not upgradeable leading to loss of funds.

Issue

Level

Remediation

Alleviation / Retest

 : Locked Ether Inside A Contract



 : Major



 : Implement a withdraw function or reject payments (contracts without 

a fallback function do it automatically).



 : 

Unitroller.sol L2964-L3102

1

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N  -  D E P T H

D E S C R I P T I O N

L O C A T I O N

Solidity source files indicate the versions of the compiler they can be compiled with 

using a pragma directive at the top of the solidity file. This can either be a floating 

pragma or a specific compiler version.The contract was found to be using a floating 

pragma which is not considered safe as it can be compiled with all the versions 

described.


The following affected files were found to be using floating pragma:

Issue

Level

Remediation

Alleviation / Retest

 : USE OF FLOATING PRAGMA



 : Low



 : It is recommended to use a fixed pragma version, as future compiler 

versions may handle certain language constructions in a way the developer did not 

foresee.Using a floating pragma may introduce several vulnerabilities if compiled 

with an older version.


The developers should always use the exact Solidity compiler version when 

designing their contracts as it may break the changes in the future.Instead of ^0.8.18 

use pragma solidity 0.8.18, which is a stable and recommended version right now.



 :  Fixed

Y /contracts/interface/IStaking.sol 

Y /contracts/interface/ICore.sol 

Y /contracts/interface/IBulkTransfer.sol 

Y /contracts/interface/IFundTransfer.sol 

Y /contracts/interface/IRegistry.sol 

Y /contracts/libs/CoreUtilsLibrary.sol 

Y /contracts/libs/BulkTransferLibrary.sol 

Y /contracts/BulkTransfer.sol 

Y /contracts/Staking.sol 

Y /contracts/Core.sol 

L0`

L0`

L0`

L0`

L0`

L0_

L0_

L0`

L0`

L03

7



W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N  -  D E P T H

D E S C R I P T I O N

L O C A T I O N

The contract is programmed to receive Ether, but no method was found that 

allowed the Ether to be withdrawn, i.e., call, transfer, transferFrom, send, or call.value at 

least once.


Without a withdrawal function, the Ethers will forever be locked inside the contract if 

the contract’s code is not upgradeable leading to loss of funds.

Issue

Level

Remediation

Alleviation / Retest

 : Locked Ether Inside A Contract



 : Major



 : Implement a withdraw function or reject payments (contracts without 

a fallback function do it automatically).



 : 

Unitroller.sol L2964-L3102

1

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N  -  D E P T H

D E S C R I P T I O N

L O C A T I O N

Ethereum is a very resource-constrained environment. Prices per computational 

step are orders of magnitude higher than with centralized providers. Moreover, 

Ethereum miners impose a limit on the total number of Gas consumed in a block. If 

array.length is large enough, the function exceeds the block gas limit, and 

transactions calling it will never be confirmed.


for (uint256 i = 0; i < array.length ; i++) { cosltyFunc(); }



This becomes a security issue if an external actor influences array.length.


E.g., if an array enumerates all registered addresses, an adversary can register many 

addresses, causing the problem described above.

Issue

Level

Remediation

Alleviation / Retest

 : UNCHECKED ARRAY LENGTH



 : Major



 : Either explicitly or just due to normal operation, the number of 

iterations in a loop can grow beyond the block gas limit, which can cause the 

complete contract to be stalled at a certain point. Therefore, loops with a bigger or 

unknown number of steps should always be avoided.



 :  Fixed. 600 limit is in place.

T /contracts/Staking.sol L108

8



W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N  -  D E P T H

D E S C R I P T I O N

L O C A T I O N

The contract is programmed to receive Ether, but no method was found that 

allowed the Ether to be withdrawn, i.e., call, transfer, transferFrom, send, or call.value at 

least once.


Without a withdrawal function, the Ethers will forever be locked inside the contract if 

the contract’s code is not upgradeable leading to loss of funds.

Issue

Level

Remediation

Alleviation / Retest

 : Locked Ether Inside A Contract



 : Major



 : Implement a withdraw function or reject payments (contracts without 

a fallback function do it automatically).



 : 

Unitroller.sol L2964-L3102

1

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N  -  D E P T H

D E S C R I P T I O N

L O C A T I O N

++i costs less gas compared to i++ or i += 1 for unsigned integers. In i++, the compiler 

has to create a temporary variable to store the initial value. This is not the case with 

++i in which the value is directly incremented and returned, thus, making it a 

cheaper alternative.

Issue

Level

Remediation

Alleviation / Retest

 : GAS OPTIMIZATION IN INCREMENTS



 : Gas



 : Consider changing the post-increments (i++) to pre-increments (++i) 

as long as the value is not used in any calculations or inside returns. Make sure that 

the logic of the code is not changed.



 :  Fixed
@ /contracts/Staking.sol 

@ /contracts/Core.sol 

L108; L22D

L204; L1131; L1144; L1285; L1287; L1304

9



W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N  -  D E P T H

D E S C R I P T I O N

L O C A T I O N

The contract is programmed to receive Ether, but no method was found that 

allowed the Ether to be withdrawn, i.e., call, transfer, transferFrom, send, or call.value at 

least once.


Without a withdrawal function, the Ethers will forever be locked inside the contract if 

the contract’s code is not upgradeable leading to loss of funds.

Issue

Level

Remediation

Alleviation / Retest

 : Locked Ether Inside A Contract



 : Major



 : Implement a withdraw function or reject payments (contracts without 

a fallback function do it automatically).



 : 

Unitroller.sol L2964-L3102

1

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N  -  D E P T H

D E S C R I P T I O N

L O C A T I O N

The contract declared internal functions but was not using them in any of the 

functions or contracts.


Since internal functions can only be called from inside the contracts, it makes no 

sense to have them if they are not used. This uses up gas and causes issues for 

auditors when understanding the contract logic.

Issue

Level

Remediation

Alleviation / Retest

 : INTERNAL FUNCTIONS NEVER USED



 : Gas



 : Having dead code in the contracts uses up unnecessary gas and 

increases the complexity of the overall smart contract.


It is recommended to remove the internal functions from the contracts if they are 

never used.



 :  Fixed. The team commented on the bug with sensible logic.
: /contracts/Core.sol L1320-1322; L1353-1365

10



W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N  -  D E P T H

D E S C R I P T I O N

L O C A T I O N

The contract is programmed to receive Ether, but no method was found that 

allowed the Ether to be withdrawn, i.e., call, transfer, transferFrom, send, or call.value at 

least once.


Without a withdrawal function, the Ethers will forever be locked inside the contract if 

the contract’s code is not upgradeable leading to loss of funds.

Issue

Level

Remediation

Alleviation / Retest

 : Locked Ether Inside A Contract



 : Major



 : Implement a withdraw function or reject payments (contracts without 

a fallback function do it automatically).



 : 

Unitroller.sol L2964-L3102

1

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N  -  D E P T H

D E S C R I P T I O N

L O C A T I O N

Events are inheritable members of contracts. When you call them, they cause the 

arguments to be stored in the transaction’s log — a special data structure in the 

blockchain.These logs are associated with the address of the contract which can 

then be used by developers and auditors to keep track of the transactions.


The contract Staking / Core was found to be missing these events on the function 

grantWhitelisterRole which would make it difficult or impossible to track these 

transactions off-chain.

Issue

Level

Remediation

Alleviation / Retest

 : MISSING EVENTS



 : Low



 : Consider emitting events for the functions mentioned above. It is also 

recommended to have the addresses indexed.



 :  The team commented on the bug with sensible logic.

6 /contracts/Staking.sol 

6 /contracts/Core.sol

L63-72; L102-115; L179-218

 L182-186; L188-191; L1328-1330

11



W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N  -  D E P T H

D E S C R I P T I O N

L O C A T I O N

The contract is programmed to receive Ether, but no method was found that 

allowed the Ether to be withdrawn, i.e., call, transfer, transferFrom, send, or call.value at 

least once.


Without a withdrawal function, the Ethers will forever be locked inside the contract if 

the contract’s code is not upgradeable leading to loss of funds.

Issue

Level

Remediation

Alleviation / Retest

 : Locked Ether Inside A Contract



 : Major



 : Implement a withdraw function or reject payments (contracts without 

a fallback function do it automatically).



 : 

Unitroller.sol L2964-L3102

1

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N  -  D E P T H

D E S C R I P T I O N

L O C A T I O N

Events are essential for tracking off-chain data and when the event paraemters are 

indexed they can be used as filter options which will help getting only the specific 

data instead of all the logs.

Issue

Level

Remediation

Alleviation / Retest

 : MISSING INDEXED KEYWORDS IN EVENTS



 : Informational



 : Consider adding indexed keyword to crucial event parameters that 

could be used in off-chain tracking. Do remember that the indexed keyword costs 

more gas.



 :  Fixed

H /contracts/interface/IStaking.sol 

H /contracts/interface/ICore.sol

L06; L0M

 L49-59

12



W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N  -  D E P T H

D E S C R I P T I O N

L O C A T I O N

The contract is programmed to receive Ether, but no method was found that 

allowed the Ether to be withdrawn, i.e., call, transfer, transferFrom, send, or call.value at 

least once.


Without a withdrawal function, the Ethers will forever be locked inside the contract if 

the contract’s code is not upgradeable leading to loss of funds.

Issue

Level

Remediation

Alleviation / Retest

 : Locked Ether Inside A Contract



 : Major



 : Implement a withdraw function or reject payments (contracts without 

a fallback function do it automatically).



 : 

Unitroller.sol L2964-L3102

1

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N  -  D E P T H

D E S C R I P T I O N

L O C A T I O N

Visibility modifiers determine the level of access to the variables in your smart 

contract. This defines the level of access for contracts and other external users. It 

makes it easier to understand who can access the variable.


The contract defined a state variable coreContract / tokenAddress / 

whitelistedTokens / staking / bulkTransfer / tnsRegistry that was missing a visibility 

modifier.

Issue

Level

Remediation

Alleviation / Retest

 : MISSING STATE VARIABLE VISIBILITY



 : Informational



 : Explicitly define visibility for all state variables. These variables can be 

specified as public, internal or private.



 :  Fixed

: /contracts/Staking.sol 

: /contracts/Staking.sol 

: /contracts/Core.sol

: /contracts/Core.sol

: /contracts/Core.sol

: /contracts/Core.sol

L5C

L5B

 L16C

 L16=

 L16<

 L164

13



W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N  -  D E P T H

D E S C R I P T I O N

L O C A T I O N

The contract is programmed to receive Ether, but no method was found that 

allowed the Ether to be withdrawn, i.e., call, transfer, transferFrom, send, or call.value at 

least once.


Without a withdrawal function, the Ethers will forever be locked inside the contract if 

the contract’s code is not upgradeable leading to loss of funds.

Issue

Level

Remediation

Alleviation / Retest

 : Locked Ether Inside A Contract



 : Major



 : Implement a withdraw function or reject payments (contracts without 

a fallback function do it automatically).



 : 

Unitroller.sol L2964-L3102

1

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N  -  D E P T H

D E S C R I P T I O N

L O C A T I O N

Public constant variables cost more gas because the EVM automatically creates 

getter functions for them and adds entries to the method ID table. The values can be 

read from the source code instead.


The following variable is affected: MAX_FEE / WHITELISTER_ROLE / WHITELIST_ROLE / 

FUND_WITHDRAW_ROLE / WITHDRAW_ROLE

Issue

Level

Remediation

Alleviation / Retest

 : PUBLIC CONSTANTS CAN BE PRIVATE



 : Gas



 : If reading the values for the constants are not necessary, consider 

changing the public visibility to private.



 :  Fixed

F /contracts/Staking.sol 

F /contracts/Staking.sol 

F /contracts/Core.sol

F /contracts/Core.sol

F /contracts/Core.sol

L4P

L5L

 L3J

 L38-3G

 L40

14



W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N  -  D E P T H

D E S C R I P T I O N

L O C A T I O N

The contract is programmed to receive Ether, but no method was found that 

allowed the Ether to be withdrawn, i.e., call, transfer, transferFrom, send, or call.value at 

least once.


Without a withdrawal function, the Ethers will forever be locked inside the contract if 

the contract’s code is not upgradeable leading to loss of funds.

Issue

Level

Remediation

Alleviation / Retest

 : Locked Ether Inside A Contract



 : Major



 : Implement a withdraw function or reject payments (contracts without 

a fallback function do it automatically).



 : 

Unitroller.sol L2964-L3102

1

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N  -  D E P T H

D E S C R I P T I O N

L O C A T I O N

A require statement was detected with an empty message. It takes two parameters 

and the message part is optional. This is shown to the user when and if the require 

statement evaluates to false. This message gives more information about the 

statement and why it gave a false response.

Issue

Level

Remediation

Alleviation / Retest

 : REQUIRE WITH EMPTY MESSAGE



 : Informational



 : It is recommended to add a descriptive message, no longer than 32 

bytes, inside the require statement to give more detail to the user about why the 

condition failed.



 :  Fixed
D /contracts/Core.sol L1372

15



W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N  -  D E P T H

D E S C R I P T I O N

L O C A T I O N

The contract is programmed to receive Ether, but no method was found that 

allowed the Ether to be withdrawn, i.e., call, transfer, transferFrom, send, or call.value at 

least once.


Without a withdrawal function, the Ethers will forever be locked inside the contract if 

the contract’s code is not upgradeable leading to loss of funds.

Issue

Level

Remediation

Alleviation / Retest

 : Locked Ether Inside A Contract



 : Major



 : Implement a withdraw function or reject payments (contracts without 

a fallback function do it automatically).



 : 

Unitroller.sol L2964-L3102

1

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N  -  D E P T H

D E S C R I P T I O N

L O C A T I O N

The function _getStakingStreamFee has defined a return keyword inside a 

ForStatement loop. This represents an error because the loop will simply return on it’s 

first iteration.

Issue

Level

Remediation

Alleviation / Retest

 : RETURN INSIDE LOOP



 : Informational



 : Instead of return, the contract should have used break to at least run 

the other iterations of the first loop.



 :  Fixed
: /contracts/Staking.sol L226-231

16



W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N  -  D E P T H

D E S C R I P T I O N

L O C A T I O N

The contract is programmed to receive Ether, but no method was found that allowed 

the Ether to be withdrawn, i.e., call, transfer, transferFrom, send, or call.value at least 

once.


Without a withdrawal function, tss of funds.

Issue

Level

Remediation

Alleviation / Retest

 : Locked Ether Inside A Contract



 : Major



 : Implement a withdraw function or reject payments (contracts without 

a fallback function do it automatically).



 : 

Unitroller.sol L2964-L3102

1

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N  -  D E P T H

D E S C R I P T I O N

L O C A T I O N

SafeMath library is found to be used in the contract. This increases gas consumption 

than traditional methods and validations if done manually.


Also, Solidity 0.8.0 includes checked arithmetic operations by default, and this 

renders SafeMath unnecessary.

Issue

Level

Remediation

Alleviation / Retest

 : USE OF SAFEMATH LIBRARY



 : Gas



 : We do not recommend using SafeMath library for all arithmetic 

operations. It is good practice to use explicit checks where it is really needed and to 

avoid extra checks where overflow/underflow is impossible.


The compiler should be upgraded to Solidity version 0.8.0+ which automatically 

checks for overflows and underflows.



 :  safemath is not used anymore. It is also recommended to 

remove it's import statement.

K /contracts/libs/CoreUtilsLibrary.sol

K /contracts/BulkTransfer.sol

K /contracts/Staking.sol

K /contracts/Core.sol

 L0Y

 L1Y

 L2Z

 L34

17



W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N  -  D E P T H

D E S C R I P T I O N

L O C A T I O N

The contract is programmed to receive Ether, but no method was found that allowed 

the Ether to be withdrawn, i.e., call, transfer, transferFrom, send, or call.value at least 

once.


Without a withdrawal function, tss of funds.

Issue

Level

Remediation

Alleviation / Retest

 : Locked Ether Inside A Contract



 : Major



 : Implement a withdraw function or reject payments (contracts without 

a fallback function do it automatically).



 : 

Unitroller.sol L2964-L3102

1

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N  -  D E P T H

D E S C R I P T I O N

L O C A T I O N

Increments inside a loop could never overflow due to the fact that the transaction 

will run out of gas before the variable reaches its limits. Therefore, it makes no sense 

to have checked arithmetic in such a place.

Issue

Level

Remediation

Alleviation / Retest

 : UNNECESSARY CHECKED ARITHMETIC IN LOOP



 : Gas



 : It is recommended to have the increment value inside the unchecked 

block to save some gas.



 :  Fixed
< /contracts/Staking.sol 

< /contracts/Core.sol 

L108; L22@

L204; L1131; L1144; L1285; L1287; L1304

18



W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N  -  D E P T H

D E S C R I P T I O N

L O C A T I O N

The contract is programmed to receive Ether, but no method was found that allowed 

the Ether to be withdrawn, i.e., call, transfer, transferFrom, send, or call.value at least 

once.


Without a withdrawal function, tss of funds.

Issue

Level

Remediation

Alleviation / Retest

 : Locked Ether Inside A Contract



 : Major



 : Implement a withdraw function or reject payments (contracts without 

a fallback function do it automatically).



 : 

Unitroller.sol L2964-L3102

1

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N  -  D E P T H

D E S C R I P T I O N

L O C A T I O N

A function with public visibility modifier was detected that is not called internally.


public and external differs in terms of gas usage. The former use more than the latter 

when used with large arrays of data. This is due to the fact that Solidity copies 

arguments to memory on a public function while external read from calldata which a 

cheaper than memory allocation.

Issue

Level

Remediation

Alleviation / Retest

 : FUNCTION SHOULD BE EXTERNAL



 : Gas



 : If you know the function you create only allows for external calls, use 

the external visibility modifier instead of public. It provides performance benefits and 

you will save on gas.



 :  Fixed
I /contracts/Core.sol L431-456

19



W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N  -  D E P T H

D E S C R I P T I O N

L O C A T I O N

The contract is programmed to receive Ether, but no method was found that allowed 

the Ether to be withdrawn, i.e., call, transfer, transferFrom, send, or call.value at least 

once.


Without a withdrawal function, tss of funds.

Issue

Level

Remediation

Alleviation / Retest

 : Locked Ether Inside A Contract



 : Major



 : Implement a withdraw function or reject payments (contracts without 

a fallback function do it automatically).



 : 

Unitroller.sol L2964-L3102

1

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N  -  D E P T H

D E S C R I P T I O N

L O C A T I O N

The contract was found to be defining an empty fallback / receive function.


It is not recommended to leave them empty unless there’s a specific use case such 

as to receive Ether via an empty receive() function.

Issue

Level

Remediation

Alleviation / Retest

 : UNUSED RECEIVE FALLBACK



 : Informational



 : It is recommended to go through the code to make sure these 

functions are properly implemented and are not missing any validations in the 

definition.



 :  receive() has been removed. An empty fallback is kept. Fixed.

C /contracts/Staking.sol 

C /contracts/Core.sol 

L241; L24I

L1324; L1326

20



W E B S I T E d3ploy.co T W I T T E R@d3ploy_

CodeS O U R C E

P r i v a t e  G i t H u b  R e p o s i t o r y



W E B S I T E d3ploy.co T W I T T E R@d3ploy_

AppendixR E P O R T

F I N D I N G  C A T E G O R I E S A U D I T  S C O R E S

The assessment process will utilize a mixture of static analysis, dynamic analysis, in-

depth manual review and/or other security techniques.



This report has been prepared for Zebec Protocol project using the above 

techniques to examine and discover vulnerabilities and safe coding practices in 

Zebec Protocol’s smart contract including the libraries used by the contract that are 

not officially recognized.



A comprehensive static and dynamic analysis has been performed on the solidity 

code in order to find vulnerabilities ranging from minor gas optimizations to major 

vulnerabilities leading to the loss of funds.



Various common and uncommon attack vectors will be investigated to ensure that 

the smart contracts are secure from malicious actors. The testing methods find and 

flag issues related to gas optimizations that help in reducing the overall gas cost It 

scans and evaluates the codebase against industry best practices and standards to 

ensure compliance It makes sure that the officially recognized libraries used in the 

code are secure and up to date.

D3ploy Audit Score is not a live dynamic score. It is a fixed value determined at the 

time of the report issuance date.



D3ploy Audit Score is not, nor should be considered, an “endorsement” or 

“disapproval” of any particular project or team. These reports and scores are not, 

nor should be considered, an indication of the economics or value of any “product” 

or “asset” created by any team or project that contracts d3ploy to perform a 

security review.



W E B S I T E d3ploy.co T W I T T E R@d3ploy_


