

LEND
S E C U R I T Y A S S E S S M E N T

August 16th 2022

Contents
T A B L E O F

Legal Disclaimer

D3ploy Intro

Project Summary

Audit Score

Methodology

Key Findings

Vulnerabilities

Audit Scope Source Code

Appendix

090501

060602

0703

0804

10

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

Disclaimer
L E G A L

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

D3ploy audits are not, nor should be considered, an “endorsement” or “disapproval”

of any particular project or team. These reports are not, nor should be considered, an

indication of the economics or value of any “product” or “asset” created by any team

or project that contracts d3ploy to perform a security review. D3ploy does not provide

any warranty or guarantee regarding the absolute bug-free nature of the technology

analyzed, nor do they provide any indication of the technologies proprietors,

business, business model or legal compliance.

D3ploy’s goal is to help reduce the attack vectors and the high level of variance

associated with utilizing new and consistently changing technologies, and in no way

claims any guarantee of security or functionality of the technology we agree to

analyze.

D3ploy audits should not be used in any way to make decisions around investment

or involvement with any particular project. These reports in no way provide

investment advice, nor should be leveraged as investment advice of any sort. The

report is provided only for the contract(s) mentioned in the report and does not

include any other potential additions and/or contracts deployed by Owner. The

report does not provide a review for contract(s), applications and/or operations, that

are out of this report scope.

D3ploy represents an extensive auditing process intending to help our customers

increase the quality of their code while reducing the high level of risk presented by

cryptographic tokens and blockchain technology. Blockchain technology and

cryptographic assets present a high level of ongoing risk. D3ploy’s position is that

each company and individual are responsible for their own due diligence and

continuous security. The security audit is not meant to replace functional testing

done before a software release. As one audit-based assessment cannot be

considered comprehensive, we always recommend proceeding with several

independent manual audits and a public bug bounty program to ensure the security

of the smart contracts.

Introduction
D 3 P L O Y

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

D3ploy is a leading blockchain security company that serves

to verify the security and correctness of smart contracts and

blockchain-based protocols. Through the utilization of our

world-class technical expertise, alongside our proprietary,

innovative tech, we’re able to support the success of our

clients with best-in-class security, all whilst realizing our

overarching vision; provable trust for all throughout all facets

of blockchain.

Secure your project with d3ploy

Vunerability checking

A crucial manual inspection carried out to eliminate any code flaws and security loopholes. This is vital to

avoid vulnerabilities and exposures incurring costly errors at a later stage.

Contract verification

A thorough and comprehensive review in order to verify the safety of a smart contract and ensure it is ready

for launch and built to protect the end-user

Risk assessment

Analyse the architecture of the blockchain system to evaluate, assess and eliminate probable security

breaches. This includes a full assessment of risk and a list of expert suggestions.

In-depth reporting

A truly custom exhaustive report that is transparent and depicts details of any identified threats and

vulnerabilities and classifies those by severity.

Fast turnaround

We know that your time is valuable and therefore provide you with the fastest turnaround times in the

industry to ensure that both your project and community are at ease.

Best-of-class blockchain engineers

Our engineers combine both experience and knowledge stemming from a large pool of developers at our

disposal. We work with some of the brightest minds that have audited countless smart contracts over the

last 4 years.

We offer field-proven audits with in-depth reporting and a

range of suggestions to improve and avoid contract

vulnerabilities. Industry-leading comprehensive and

transparent smart contract auditing on all public and private

blockchains.

Introduction Social
P R O J E C T I N F O

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

LEND is simply lending & borrowing, amplified, with real yield value extraction, from

protocol, to holder.
 A lending protocol that generates revenue through facilitating

swaps and interest rate differentials, generating revenue on the spread.

LEND will establish pools of algorithmically derived interest rate model, based on

current supply and demand of each respective asset. Suppliers and Borrowers of

assets interact directly with the protocol in earning and paying a floating interest

rate. This is all done without the need to negotiate terms of maturity, interest rate

or collateral with any peer or counterparty!

Project Name

Contract Name

Contract Address -

Contract Chain

Contract Type

Platform

Language

Network

Codebase

Total Token Supply

LEND

LEND Token

Mainnet

Smart Contract

EVM

Solidity

BNB Chain (BEP20) Ethereum (ERC20) Polygon (Matic)

Private GitHub Repository

1,000.000.000

https://t.me/lendfinance

-

https://twitter.com/LEND_finance

https://github.com/tenfinance

https://www.lend.finance/

https://medium.com/lendfinance

contact@lend.finance

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

P A S S

94
Score
A U D I T

Critical 0

Major 1

Medium 3

Minor 3

Informational 4

Discussion 0

Issues 11

All issues are described in further detail on

the following pages.

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

JumpRateModelV2c.sol Private Repository

JumpRateModelV2s.sol
 Private Repository

Unitroller.sol
 Private Repository

ScopeA U D I T

C O D E B A S E F I L E S L O C A T I O N

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

T E C H N I Q U E S T I M E S T A M P

This report has been prepared for LEND to discover issues and vulnerabilities in the
source code of the LEND project as well as any contract dependencies that were not
part of an officially recognized library. A comprehensive examination has been
performed, utilizing Dynamic, Static Analysis and Manual Review techniques.

The auditing process pays special attention to the following considerations�
� Testing the smart contracts against both common and uncommon attack

vectors�
� Assessing the codebase to ensure compliance with current best practices and

industry standards�
� Ensuring contract logic meets the specifications and intentions of the client�
� Cross referencing contract structure and implementation against similar smart

contracts producedby industry leaders.

The security assessment resulted in findings that ranged from major to
informational. We recommend addressing these findings to ensure a high level of
security standards and industry practices. We suggest recommendations that could
better serve the project from the security perspective in the comments below.

Version

Date

Descrption

v1.0

2022/08/16

Layout project

 Architecture / Static security testing

 Summary

MethodologyR E V I E W

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

Locked Ether Inside A Contract Major Pending

Missing Exception On BEP20 Transfer Failure
 Medium Pending

BEP20 Approve Font-Running Attack
 Medium Pending

Cheaper Inequalities In Require()
 Minor Pending

Use Of Floating Pragma
 Minor Pending

Block Values As A Proxy For Time
 Informational Pending

In-Line Assembly Detected
 Informational Pending

Function Should Return Struct
 Informational Pending

Array Length Manipulation
 Medium Pending

Use Of SafeMath Library
 Minor Pending

T I T L E S E V E R I T Y S T A T U S

FindingK E Y

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

Presence Of Overpowered Role
 Informational Pending

T I T L E S E V E R I T Y S T A T U S

FindingK E Y

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

L O C A T I O N

The contract is programmed to receive Ether, but no method was found that
allowed the Ether to be withdrawn, i.e., call, transfer, transferFrom, send, or call.value at
least once.

Without a withdrawal function, the Ethers will forever be locked inside the contract if
the contract’s code is not upgradeable leading to loss of funds.

Issue

Level

Remediation

Alleviation / Retest

 : Locked Ether Inside A Contract

 : Major

 : Implement a withdraw function or reject payments (contracts without
a fallback function do it automatically).

 :

Unitroller.sol L2964-L3102

1

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

L O C A T I O N

Functions of BEP-20 Token Standard should throw in special cases:

- transfer should throw if the _from account balance does not have enough tokens
to spend.

- transferFrom should throw unless the _from account has deliberately authorized
the sender of the message via some mechanism.

Unitroller.sol
L720-L1001; L1112-L1246

Issue

Level

Remediation

Alleviation / Retest

 : Missing Exception On BEP20 Transfer Failure

 : Medium

 : The BEP20 standard recommends throwing exceptions in functions
transfer and transferFrom.

SafeBEP20 standard can also be used that automatically throws on failure

:

2

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

L O C A T I O N

The approve() method overrides current allowance regardless of whether the
spender already used it or not, so there is no way to increase or decrease allowance
by a certain value atomically unless the token owner is a smart contract, not an
account.

This can be abused by a token receiver when they try to withdraw certain tokens
from the sender’s account.

Meanwhile, if the sender decides to change the amount and sends another
approve
transaction, the receiver can notice this transaction before it’s mined and
can extract tokens from both the transactions, therefore, ending up with tokens from
both the transactions. This is a front-running attack affecting the BEP20 Approve
function.

Unitroller.sol L1440-L1445

Issue

Level

Remediation

Alleviation / Retest

 : BEP20 Approve Font-Running Attack

 : Medium

 : Only use the approve function of the BEP�20 standard to change the
allowed amount to 0 or from 0 (wait till transaction is mined and approved).

Token owner just needs to make sure that the first transaction actually changed
allowance from N to 0, i.e., that the spender didn’t manage to transfer some of N
allowed tokens before the first transaction was mined. Such checking is possible

using advanced blockchain explorers such as [bscscan.io]
(https://bscscan.io/).

Another way to mitigate the threat is to approve token transfers only to smart
contracts with verified source code that does not contain logic for performing
attacks like described above, and to accounts owned by the people you may trust.

:

3

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

L O C A T I O N

A smart contract’s data (e.g., storing the owner of the contract) is persistently stored
at some storage location (i.e., a key or address) on the EVM level. The contract is
responsible for ensuring that only authorized user or contract accounts may write to
sensitive storage locations. If an attacker is able to write to arbitrary storage
locations of a contract, the authorization checks may easily be circumvented. This
can allow an attacker to corrupt the storage; for instance, by overwriting a field that
stores the address of the contract owner.

The length of the dynamic array is changed directly. In this case, the appearance of
gigantic arrays is possible and it can lead to a storage overlap attack (collisions
with other data in storage)

Unitroller.sol L1812; L1921; L 1939; L2171; L2181; L2183: L2197; L2395-L2396; L2401-L2404

Issue

Level

Remediation

Alleviation / Retest

 : Array Length Manipulation

 : Medium

 : Only use the approve function of the BEP�20 standard to change
allowed amount to 0 or from 0 (wait till transaction is mined and approved).

:

4

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

L O C A T I O N

SafeMath library is found to be used in the contract. This increases gas consumption
than traditional methods and validations if done manually.

Also, Solidity 0.8 includes checked arithmetic operations by default, and this renders
SafeMath unnecessary.

JumpRateModelV2c.sol

JumpRateModelV2s.sol

L233
L233

Issue

Level

Remediation

Alleviation / Retest

 : Use Of SafeMath Library

 : Minor

 : We do not recommend using SafeMath
library for all arithmetic
operations. It is good practice to use explicit checks where it is really needed and to
avoid extra checks where overflow/underflow is impossible.

The compiler should be upgraded to Solidity version 0.8.0+ which automatically
checks for overflows and underflows.

:

5

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

L O C A T I O N

The contract was found to be doing comparisons using inequalities inside the
require statement. When inside the require statements, non-strict inequalities (>=,
<=) are usually costlier than the strict equalities (>, <).

JumpRateModelV2c.sol
JumpRateModelV2s.sol

L65; L80

L65; L80

Issue

Level

Remediation

Alleviation / Retest

 : Cheaper Inequalities In Require()

 : Minor

 : It is recommended to go through the code logic, and, if possible,
modify the non-strict inequalities with the strict ones to save ~3 gas as long as the
logic of the code is not affected.

:

6

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

L O C A T I O N

Solidity source files indicate the versions of the compiler they can be compiled with

using a pragma directive at the top of the solidity file. This can either be a floating

pragma or a specific compiler version.

The contract was found to be using a floating pragma which is not considered safe
as it can be compiled with all the versions described

Unitroller.sol
 JumpRateModelV2c.sol

 JumpRateModelV2s.sol

 L04

L04
L04

Issue

Level

Remediation

Alleviation / Retest

 : Use Of Floating Pragma

 : Minor

 : It is recommended to follow the latter example, as future compiler
versions may handle certain language constructions in a way the developer did not
foresee. The developers should always use the exact Solidity compiler

version when designing their contracts as it may break the

changes in the future.

pragma solidity ^0.4.17; not recommended -> compiles with 0.4.17 and above

pragma solidity 0.8.4; recommended -> compiles with 0.8.4 only

:

7

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

L O C A T I O N

Contracts often need access to time values to perform certain types of functionality.

Values such as block.timestamp and block.number can be used to determine the
current time or the time delta. However, they are not recommended for most use
cases.

For block.number, as Ethereum block times are generally around 14 seconds, the
delta between blocks can be predicted. The block times, on the other hand, do not
remain constant and are subject to change for a number of reasons, e.g., fork
reorganizations and the difficulty bomb.

Due to variable block times, block.number should not be relied on for precise

calculations of time

Unitroller.sol L1510

Issue

Level

Remediation

Alleviation / Retest

 : Block Values As A Proxy For Time

 : Informational

 : Smart contracts should be written with the idea that block values are
not precise, and their use can have unexpected results. Alternatively, oracles can be
used.

:

8

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

L O C A T I O N

Inline assembly is a way to access the Ethereum Virtual Machine at a low level. This

bypasses several important safety features and checks of Solidity. This should only
be used for tasks that need it and if there is confidence in using it.

Multiple vulnerabilities have been detected previously when the assembly is not

properly used within the Solidity code; therefore, caution should be exercised while

using them.

Unitroller.sol L288-L300; L305-L311; L316-L348; L370-L532; L971; L974; L1232-L1245;

 L1272-1303; L1564-L1594; L1621-L1651; L2239-L2254: L2265-L2334;

 L2504-L2521; L2708-L2716;
L2724-L2752

Issue

Level

Remediation

Alleviation / Retest

 : In-Line Assembly Detected

 : Informational

 : Avoid using inline assembly instructions if possible because it might
introduce certain issues in the code if not dealt with properly because it bypasses
several safety features that are already implemented in Solidity.

:

9

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

L O C A T I O N

Internal or private functions were detected to be returning multiple values.

Consider using a struct instead of multiple return values for internal or private
functions. It can improve code readability.

Most decentralized applications and games need to store data on the blockchain,
so they have to interact with the storage.

Minimizing storage costs is a major part of Gas optimization for your smart
contracts.

Unitroller.sol L1494; L1499; L1502

Issue

Level

Remediation

Alleviation / Retest

 : Function Should Return Struct

 : Informational

 : Use struct for internal or private function, which returns several
parameters and improves code readability. This also helps in reducing the Gas
used.

:

10

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

L O C A T I O N

The overpowered owner (i.e., the person who has too much power) is a project
design where the contract is tightly coupled to their owner (or owners); only they
can manually invoke critical functions.

Due to the fact that this function is only accessible from a single address, the system
is heavily dependent on the address of the owner. In this case, there are scenarios

that may lead to undesirable consequences for investors, e.g., if the private key of
this address is compromised, then an attacker can take control of the contract.

Unitroller.sol L1278

Issue

Level

Remediation

Alleviation / Retest

 : Presence Of Overpowered Role

 : Informational

 : We recommend designing contracts in a trust-less manner. For
instance, this functionality can be implemented in the contract’s constructor.
Another option is to use a MultiSig wallet for this address.

For systems that are provisioned for a single user, you can use [Ownable.sol](https://
github.com/OpenZeppelin/openzeppelin�contracts/blob/release-v2.5.0/contracts/
ownership/Ownable.sol).

For systems that require provisioning users in a group, you can use [@openzeppelin/
Roles.sol] (https://github.com/OpenZeppelin/openzeppelin-contracts/blob/release-
v2.5.0/contracts/access/Roles.sol) or [@hq20/Whitelist.sol]

(https://github.com/HQ20/contracts/blob/v0.0.2/contracts/access/Whitelist.sol)

:

11

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

CodeS O U R C E

P r i v a t e G i t H u b R e p o s i t o r y

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

AppendixR E P O R T

F I N D I N G C A T E G O R I E S A U D I T S C O R E S

The assessment process will utilize a mixture of static analysis, dynamic analysis, in-
depth manual review and/or other security techniques.

This report has been prepared for LEND project using the above techniques to
examine and discover vulnerabilities and safe coding practices in LEND’s smart
contract including the libraries used by the contract that are not officially
recognized.

A comprehensive static and dynamic analysis has been performed on the solidity
code in order to find vulnerabilities ranging from minor gas optimizations to major
vulnerabilities leading to the loss of funds.

Various common and uncommon attack vectors will be investigated to ensure that
the smart contracts are secure from malicious actors. The testing methods find and
flag issues related to gas optimizations that help in reducing the overall gas cost It
scans and evaluates the codebase against industry best practices and standards
to ensure compliance It makes sure that the officially recognized libraries used in
the code are secure and up to date.

D3ploy Audit Score is not a live dynamic score. It is a fixed value determined at the
time of the report issuance date.

D3ploy Audit Score is not, nor should be considered, an “endorsement” or
“disapproval” of any particular project or team. These reports and scores are not,
nor should be considered, an indication of the economics or value of any “product”
or “asset” created by any team or project that contracts d3ploy to perform a
security review.

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

