

SECURITY ASSESSMENT

POLKAWAR
SEPTEMBER 01 ST 2022

1	 LEGAL DISCLAIMER

2	 MH AUDITS INTRO

3	 PROJECT SUMMARY

4	 AUDIT SCORES

5	 AUDIT SCOPE

6	 METHODOLOGY

7	 KEY FINDINGS

8	 VULNERABILITIES

9	 SOURCE CODE

10	APPENDIX

 TABLE OF
CONTENTS

 WEBSITE
MHAUDITS.IO

 TWITTER
@MHAUDITS

 LEGAL
DISCLAIMER

MH Audits are not, nor should be considered, an “endorsement” or “disapproval”
of any particular project or team. These reports are not, nor should be considered,
an indication of the economics or value of any “product” or “asset” created by
any team or project that contracts MH Audits to perform a security review.

MH Audits does not provide any warranty or guarantee regarding the absolute
bug-free nature of the technology analyzed, nor do they provide any indication
of the technologies proprietors, business, business model or legal compliance.

MH Audits should not be used in any way to make decisions around investment
or involvement with any particular project. These reports in no way provide
investment advice, nor should be leveraged as investment advice of any sort.

The report is provided only for the contract(s) mentioned in the report and does
not include any other potential additions and/or contracts deployed by Owner. The
report does not provide a review for contract(s), applications and/or operations,
that are out of this report scope.

MH Audits’ goal is to help reduce the attack vectors and the high level of variance
associated with utilizing new and consistently changing technologies, and in
no way claims any guarantee of security or functionality of the technology we
agree to analyze.

MH Audits represents an extensive auditing process intending to help our
customers increase the quality of their code while reducing the high level of risk
presented by cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing
risk. MH Audits’ position is that each company and individual are responsible for
their own due diligence and continuous security.

The security audit is not meant to replace functional testing done before a software
release. As one audit-based assessment cannot be considered comprehensive,
we always recommend proceeding with several independent manual audits and
a public bug bounty program to ensure the security of the smart contracts.

 WEBSITE
MHAUDITS.IO

 TWITTER
@MHAUDITS

 MH AUDITS
INTRODUCTION

MH Audits is a leading blockchain security company that serves to verify the
security and correctness of smart contracts and blockchain-based protocols.
Through the utilization of our world-class technical expertise, alongside our
proprietary, innovative tech, we’re able to support the success of our clients
with best-in-class security, all whilst realizing our overarching vision; provable
trust for all throughout all facets of blockchain.

Secure your project with MH Audits
We offer field-proven audits with in-depth reporting and a range of suggestions
to improve and avoid contract vulnerabilities.

Industry-leading comprehensive and transparent smart contract auditing on all
public and private blockchains.

Vunerability checking
A crucial manual inspection carried out to eliminate any code flaws and security
loopholes. This is vital to avoid vulnerabilities and exposures incurring costly
errors at a later stage.

Contract verification
A thorough and comprehensive review in order to verify the safety of a smart
contract and ensure it is ready for launch and built to protect the end-user.

Risk assessment
Analyse the architecture of the blockchain system to evaluate, assess and
eliminate probable security breaches. This includes a full assessment of risk and
a list of expert suggestions.

In-depth reporting
A truly custom exhaustive report that is transparent and depicts details of any
identified threats and vulnerabilities and classifies those by severity.

Fast turnaround
We know that your time is valuable and therefore provide you with the fastest
turnaround times in the industry to ensure that both your project and community
are at ease.

Best-of-class blockchain engineers
Our engineers combine both experience and knowledge stemming from a
large pool of developers at our disposal. We work with some of the brightest
minds that have audited countless smart contracts over the last 4 years.

 WEBSITE
MHAUDITS.IO

 TWITTER
@MHAUDITS

 PROJECT
SUMMARY

PROJECT INTRODUCTION

PolkaWar is a cross-chain decentralized fighting game, integrating NFTs and
competitive gaming aspects. PolkaWar creates a vivid fighting world for players
to develop their characters and engage in combat with each other. There would
be different weapons and equipment to arm one’s in-game character with.

The game would also involve a stat or points system, allowing for level upgrade
and advancement conditions. Therefore, offering more customization and allowing
for a highly unique / interactive game play. Though initially launched on the BNB
Chain for it’s low fees and fast processing times, it would be deployed on Polkadot
and other blockchains in the future.

Project Name PolkaWar

Contract Name PWAR Token

Contract Address 0x16153214e683018d5aa318864c8e692b66e16778

Contract Chain Mainnet

Contract Type Smart Contract

Platform EVM

Language Solidity

Codebase GitHub Repository

INFO & SOCIALS

Network BNB Chain (BEP20)

Max Supply 100,000,000

Website https://polkawar.com/

Twitter https://twitter.com/polkawarnft

Telegram Chat https://t.me/polkawarchat

Telegram Ann https://t.me/polkawar

Discord https://discord.gg/NQFjXkMqgk

Instagram https://www.instagram.com/polkawarnft/

Medium https://polkawar.medium.com/

GitHub https://github.com/polkawar

BSCScan https://polygonscan.com/
token/0x16153214e683018d5aa318864c8e692b66e16778

 WEBSITE
MHAUDITS.IO

 TWITTER
@MHAUDITS

 AUDIT
SCORES

Issues					 16
	 Critical				 0
 	Major					 1
 	Medium				 1
 	Minor					 6
 	 Informational 		 8
 	Discussion 			 0

All issues are described in further detail
on the following pages.

72
PASS

 WEBSITE
MHAUDITS.IO

 TWITTER
@MHAUDITS

 AUDIT
SCOPE

FILE

CorgibStaking.sol

PolkaWar.sol

LOCATION

GitHub Repository polkawar-contract/contracts/

GitHub Repository polkawar-contract/contracts/

 WEBSITE
MHAUDITS.IO

 TWITTER
@MHAUDITS

 REVIEW
METHODOLOGY

TECHNIQUES

This report has been prepared for PolkaWar to discover issues and vulnerabilities
in the source code of the PolkaWar project as well as any contract dependencies
that were not part of an officially recognized library. A comprehensive
examination has been performed, utilizing Dynamic, Static Analysis and Manual
Review techniques.

The auditing process pays special attention to the following considerations:

•	 Testing the smart contracts against both common and uncommon attack vectors.

•	 Assessing the codebase to ensure compliance with current best practices and
industry standards.

•	 Ensuring contract logic meets the specifications and intentions of the client.

•	 Cross referencing contract structure and implementation against similar smart
contracts producedby industry leaders.

•	 Thorough line-by-line manual review of the entire codebase by industry experts.

The security assessment resulted in findings that ranged from major to informational.
We recommend addressing these findings to ensure a high level of security
standards and industry practices. We suggest recommendations that could better
serve the project from the security perspective in the comments below.

TIMESTAMP

Version	 	 v1.0
Date			 2022/09/01
Description	 Layout project
				 Automated / Manual review / Static & dynamic security testing
				 Summary

 WEBSITE
MHAUDITS.IO

 TWITTER
@MHAUDITS

 KEY
FINDINGS

 WEBSITE
MHAUDITS.IO

 TWITTER
@MHAUDITS

SEVERITY

 Low

 Gas

 Major

 Low

 Low

 Medium

 Informational

 Low

 Informational

 Gas

 Gas

TITLE

Floating Pragma

Functions Should Be Declared External

Missing Reentrancy Protections

Missing Zero Address Validations

Missing Events

Missing Return Value Validation

Missing SPDX License

Missing Constant Attribute in Variables

Function Should Return Struct

Use of SafeMath

Large Number Literals

STATUS

Pending

Pending

Pending

Pending

Pending

Pending

Pending

Pending

Pending

Pending

Pending

 KEY
FINDINGS

 WEBSITE
MHAUDITS.IO

 TWITTER
@MHAUDITS

SEVERITY

 Gas

 Gas

 Informational

 Low

 Low

TITLE

Cheaper Inequalities in if()

Cheaper Inequalities in require()

Function State Mutability can be Restricted to Pure

EndDate Can Be Set Past In Time

Missing Input Validation

STATUS

Pending

Pending

Pending

Pending

Pending

 IN-DEPTH
VULNERABILITIES

Issue: Floating Pragma

Type: Floating Pragma (SWC-103)

Level: Low

Recommendation: Keep the compiler versions consistent in
all the smart contract files. Do not allow floating pragmas
anywhere. It is suggested to use 0.8.7 pragma version.

Reference: https://swcregistry.io/docs/SWC-103

Alleviation / Retest:

 WEBSITE
MHAUDITS.IO

 TWITTER
@MHAUDITS

Description: Locking the pragma helps ensure that the contracts do not accidentally
get deployed using an older version of the Solidity compiler affected by vulnerabilities.
The contracts found in the repository were allowing floating or unlocked pragma to be
used, i.e., >=0.6.0.

This allows the contracts to be compiled with all the solidity compiler versions above
0.6.0.

Location: CorgibStaking.sol L01
			 PolkaWar.sol L01

Impacts: If the smart contract gets compiled and deployed with an older or too recent
version of the solidity compiler, there’s a chance that it may get compromised due to
the bugs present in the older versions or unidentified exploits in the new versions.

Incompatibility issues may also arise if the contract code does not support features in
other compiler versions, therefore, breaking the logic. The likelihood of exploitation is
really low.

 IN-DEPTH
VULNERABILITIES

Issue: Functions Should Be Declared External

Type: Gas Optimization

Level: Gas

Recommendation: Use the “external” state visibility for
functions that are never called from inside the contract.

Alleviation / Retest:

 WEBSITE
MHAUDITS.IO

 TWITTER
@MHAUDITS

Description: Public functions that are never called by a contract should be declared
external in order to conserve gas.

The following functions were declared as public but were not called anywhere in the
contract, making the public visibility useless.

Location: 	CorgibStaking.sol
			 changeMinimumStakeAmount() - L57-L59
			 addPool() - L65-L92
			 setPool() - L94-L113
			 deposit() - L181-L220
			 withdraw() - L222-248
			 emergencyWithdraw() - L250-L258

Impacts: Smart Contracts are required to have effective Gas usage as they cost real
money, and each function should be monitored for the amount of gas it costs to make it
gas efficient.

“public” functions cost more Gas than “external” functions.

 IN-DEPTH
VULNERABILITIES

fdasfasdfsda Issue: Missing Reentrancy Protections

Type: Reentrancy (SWC-107)
		 https://swcregistry.io/docs/SWC-107

Level: Major

Recommendation: Add a Reentrancy guard to the function
making external calls.

Alleviation / Retest:

 WEBSITE
MHAUDITS.IO

 TWITTER
@MHAUDITS

Description: In a Reentrancy attack, a malicious contract calls back into the calling
contract before the first invocation of the function is finished. This may cause the
different invocations of the function to interact in undesirable ways.

The smart contract was missing reentrancy protection on the following fuctions making
external calls. Both the functions are making calls to the function “safeTokenTransfer()”
which is then making an external call to the “transfer()” function. Multiple state variables
are being written after the external call and the address of the external call can also be
controlled by the user since it’s “msg.sender”.

The function “emergencyWithdraw()” is also affected since there’s an event emitted
after the external call. This is lower in severity when compared to the “deposit()” and
“withdraw()” functions because there’s no state change happening here.

Location: CorgibStaking.sol L222-L248; L250-L258

Impacts: Lacking reentrancy protection could allow threat actors to abuse the
functions and reenter the contract. This can lead to excessive interactions with the
functions and loss of funds and tokens.

 IN-DEPTH
VULNERABILITIES

Issue: Missing Zero Address Validations

Type: Missing Input Validation

Level: Low

Recommendation: Add a zero address validation to all the
functions where addresses are being set.

Alleviation / Retest:

 WEBSITE
MHAUDITS.IO

 TWITTER
@MHAUDITS

Description: The contract “CorgibStaking.sol” was found to be setting or using new
addresses without proper validations for zero addresses.

Address type parameters should include a zero-address check otherwise contract
functionality may become inaccessible or tokens burnt forever.

Depending on the logic of the contract, this could prove fatal and the users or the contracts
could lose their funds, or the ownership of the contract could be lost.

Affected Variables: 	CorgibStaking.sol L67-L68
						 _stakeToken
						 _rewardToken

Impacts: If address type parameters do not include a zero-address check, contract
functionality may become unavailable or tokens may be burned permanently.

 IN-DEPTH
VULNERABILITIES

fdasfasdfsda Issue: Missing Reentrancy Protections

Type: Missing Best Practices

Level: Low

Recommendation: Consider emitting events for the functions
mentioned above. It is also recommended to have the
addresses indexed.

Alleviation / Retest:

 WEBSITE
MHAUDITS.IO

 TWITTER
@MHAUDITS

Description: Events are inheritable members of contracts. When you call them, they
cause the arguments to be stored in the transaction’s log—a special data structure in
the blockchain. These logs are associated with the address of the contract which can
then be used by developers and auditors to keep track of the transactions.

The contract was found to be missing these events on certain critical functions which
would make it difficult or impossible to track these transactions off-chain.

Affected Functions: CorgibStaking.sol
						 changeMinimumStakeAmount() - L57-L59
						 addPool() - L65-L92
						 setPool() - L94-L113
						 updatePool() - L160-L179

Impacts: Events are used to track the transactions off-chain and missing these events
on critical functions makes it difficult to audit these logs if they’re needed at a later
stage.

 IN-DEPTH
VULNERABILITIES

Issue: Missing Return Value Validation

Type: Unchecked Call Return Value (SWC-104)
		 https://swcregistry.io/docs/SWC-104

Level: Medium

Recommendation: It is recommended to use “SafeERC20”
or check the return values of transfer and handle the errors
appropriately.

Alleviation / Retest:

 WEBSITE
MHAUDITS.IO

 TWITTER
@MHAUDITS

Description: The contract “CorgibStaking.sol” is making an external transfer call on lines
269 and 271 inside the function “safeTokenTransfer()”. Several tokens do not revert and
return false. This may cause issues and failed assumptions when making token transfers.

Affected Code:

Impacts: Missing error handling on transfer return value may cause issues if the call fails
as it will create inconsistencies with failed function calls.

 IN-DEPTH
VULNERABILITIES

Issue: Missing SPDX License

Type: Best Practices

Level: Informational

Recommendation: Every source file should start with a
comment indicating its license. Add a necessary license
identifier in the contract code like the one shown below:

// SPDX-License-Identifier: MIT

Alleviation / Retest:

 WEBSITE
MHAUDITS.IO

 TWITTER
@MHAUDITS

Description: The contracts “CorgibStaking.sol” and “PolkaWar.sol” were missing an SPDX
License identifier in the source code. A smart contract whose source code is available can
better establish trust. In order to minimize legal problems relating to copyright, Solidity
encourages the use of machine-readable SPDX license identifiers

Vulnerable Code:

Impacts: SPDX Licenses help in identifying the legal owner of the software, therefore,
helping in issues like copyright infringement.

 IN-DEPTH
VULNERABILITIES

Issue: Missing Constant Attribute in Variables

Type: Gas Optimization

Level: Low

Recommendation: A “constant” attribute should be added in
the parameters that never change to save the gas.

Alleviation / Retest:

 WEBSITE
MHAUDITS.IO

 TWITTER
@MHAUDITS

Description: State variables can be declared as constant or immutable. In both cases,
the variables cannot be modified after the contract has been constructed. For constant
variables, the value has to be fixed at compile time.

The compiler does not reserve a storage slot for these variables, and every occurrence
is replaced by the respective value.

Compared to regular state variables, the gas costs of constant and immutable
variables are much lower since no SLOAD is executed to retrieve constants from
storage because they're interpolated directly into the bytecode

Location: CorgibStaking.sol L08		

Impacts: Gas usage is increased if the variables that should be constants are not set
as constants.

 IN-DEPTH
VULNERABILITIES

Issue: Function Should Return Struct

Type: Gas Optimization

Level: Informational

Recommendation: Consider returning a struct instead of
multiple values from a function.

Alleviation / Retest:

 WEBSITE
MHAUDITS.IO

 TWITTER
@MHAUDITS

Description: The contract “CorgibStaking.sol” was found to be returning multiple uint256
values in the function “getPoolInfo()”. Consider using a struct instead of multiple return
values as It can improve code readability.

Location: CorgibStaking.sol L286-L292		

Impacts: This affects the overall gas usage and code readability of the contract.

 IN-DEPTH
VULNERABILITIES

Issue: Use of SafeMath

Type: Gas Optimization

Level: Gas

Recommendation: We do not recommend using SafeMath
library for all arithmetic operations. It is good practice to use
explicit checks where it is really needed and to avoid extra
checks where overflow/underflow is impossible.

The compiler should be upgraded to Solidity version 0.8.0+
which automatically checks for overflows and underflows.

Alleviation / Retest:

 WEBSITE
MHAUDITS.IO

 TWITTER
@MHAUDITS

Description: SafeMath library is found to be used in the contract. This increases gas
consumption than traditional methods and validations if done manually.

Also, Solidity 0.8.0 and above includes checked arithmetic operations by default, and
this renders SafeMath unnecessary.

Location: CorgibStaking.sol L09		

Impacts: This increases the gas usage of the contract.

 IN-DEPTH
VULNERABILITIES

Issue: Large Number Literals

Type: Gas & Missing Best Practices

Level: Gas

Recommendation: Scientific notation in the form of 2e10
is also supported, where the mantissa can be fractional
but the exponent has to be an integer. The literal MeE is
equivalent to M * 10**E. Examples include 2e10, 2e10, 2e-10,
2.5e1, as suggested in official solidity documentation.

https://docs.soliditylang.org/en/latest/types.html#rational-and-
integer-literals

Alleviation / Retest:

 WEBSITE
MHAUDITS.IO

 TWITTER
@MHAUDITS

Description: Solidity supports multiple rational and integer literals, including decimal
fractions and scientific notations. The use of very large numbers with too many digits
was detected in the code that could have been optimized using a different notation
also supported by Solidity.

Location: CorgibStaking.sol L54		

Impacts: Having a large number literals in the code increases the gas usage of the
contract while its deployment and when the functions are used or called from the
contract. It also makes the code harder to read and audit and increases the chances of
introducing code errors.

 IN-DEPTH
VULNERABILITIES

Issue: Cheaper Inequalities in if()

Type: Gas & Missing Best Practices

Level: Gas

Recommendation: It is recommended to go through the
code logic, and, if possible, modify the strict inequalities with
the non-strict ones to save gas as long as the logic of the
code is not affected.

Alleviation / Retest:

 WEBSITE
MHAUDITS.IO

 TWITTER
@MHAUDITS

Description: The contract was found to be doing comparisons using inequalities inside
the “if” statement. When inside the “if” statements, non-strict inequalities (>=, <=) are
usually cheaper than the strict equalities (>, <).

Location: CorgibStaking.sol L104; L107; L110; L139; L192; L197; L208; L231; L236; L268		

Impacts: Using strict inequalities inside “if” statements cost more gas.

 IN-DEPTH
VULNERABILITIES

Issue: Cheaper Inequalities in require()

Type: Gas & Missing Best Practices

Level: Gas

Recommendation: It is recommended to go through the
code logic, and, if possible, modify the strict inequalities with
the non-strict ones to save gas as long as the logic of the
code is not affected.

Alleviation / Retest:

 WEBSITE
MHAUDITS.IO

 TWITTER
@MHAUDITS

Description: The contract was found to be performing comparisons using inequalities
inside the “require” statement. When inside the “require” statements, non-strict
inequalities (>=, <=) are usually costlier than strict equalities (>, <).

Location: CorgibStaking.sol L186; L225		

Impacts: Using non-strict inequalities inside “require” statements cost more gas.

 IN-DEPTH
VULNERABILITIES

Issue: Function State Mutability can be Restricted to Pure

Type: Best Practices

Level: Informational

Recommendation: Change the state mutability of the
function “getMultiplier()” to pure.

Alleviation / Retest:

 WEBSITE
MHAUDITS.IO

 TWITTER
@MHAUDITS

Description: The contract “CorgibStaking.sol” was using a function called “getMultiplier()”
which is neither reading nor writing to the state and therefore, it’s state mutability can
be restricted to pure.

Location: CorgibStaking.sol L116-L122		

Impacts: It is a good practice to set the state mutability of a function to pure that is not
modifying or reading from the state.

 IN-DEPTH
VULNERABILITIES

Issue: EndDate Can Be Set Past In Time

Type: Input validation

Level: Low

Recommendation: Use a require() validation in the function
that validates if the value of the _endDate parameter is not in
the past.

Alleviation / Retest:

 WEBSITE
MHAUDITS.IO

 TWITTER
@MHAUDITS

Description: Input validation is a frequently-used technique for checking potentially
dangerous inputs in order to ensure that the inputs are safe for processing within the
code, or when communicating with other components.

When the smart contract does not validate the inputs properly, it may introduce a
range of vulnerabilities.

The contracts “CorgibStaking.sol” was missing input validation in the functions “addPool()”
and “setPool()” in which the end date of the vesting period - “_endDate”, has no
validation and can be set in the past.

Location: CorgibStaking.sol L70; L98		

Impacts: This issue allows a malicious contract owner to manipulate the release of
tokens in the beneficiary’s account or maybe by mistake if there is an error in epoch
value leading to past dates of vesting period.

 IN-DEPTH
VULNERABILITIES

Issue: Missing Input Validation

Type: Input validation

Level: Low

Recommendation: Use a require() input validation in the
function parameters shown above.

Alleviation / Retest:

 WEBSITE
MHAUDITS.IO

 TWITTER
@MHAUDITS

Description: Input validation is a frequently-used technique for checking potentially
dangerous inputs in order to ensure that the inputs are safe for processing within the
code, or when communicating with other components.

When the smart contract does not validate the inputs properly, it may introduce a
range of vulnerabilities.

The contracts “CorgibStaking.sol” was missing input validation in the function “addPool()”
on the following parameters:

Vulnerable Code	: 	 CorgibStaking.sol
						 _allocPoint - L66
						 _rewardPerBlock - L69

Impacts: Missing input validation on sensitive function parameters may introduce
inconsistencies and erroneous logic when the user will interact with the added pools.

 SOURCE
CODE

 WEBSITE
MHAUDITS.IO

 TWITTER
@MHAUDITS

GitHub Repository - https://github.com/polkawar/polkawar-contract

BNB Chain Deployment - https://bscscan.com/address/0x16153214e683018d5aa318864c8e692b66e16778#code

 REPORT
APPENDIX

 WEBSITE
MHAUDITS.IO

 TWITTER
@MHAUDITS

FINDING CATEGORIES

The assessment process will utilize a mixture of static analysis, dynamic analysis,
in-depth manual review and/or other security techniques.

This report has been prepared for PolkaWar project using the above techniques
to examine and discover vulnerabilities and safe coding practices in PolkaWar’s
smart contract including the libraries used by the contract that are not officially
recognized.

A comprehensive static and dynamic analysis has been performed on the solidity
code in order to find vulnerabilities ranging from minor gas optimizations to major
vulnerabilities leading to the loss of funds.

Various common and uncommon attack vectors will be investigated to ensure
that the smart contracts are secure from malicious actors. The testing methods
find and flag issues related to gas optimizations that help in reducing the overall
gas cost It scans and evaluates the codebase against industry best practices
and standards to ensure compliance It makes sure that the officially recognized
libraries used in the code are secure and up to date.

AUDIT SCORES

MH Audits AuditScores is not a live dynamic score. It is a fixed value determined
at the time of the report issuance date.

MH Audits AuditScores are not, nor should be considered, an “endorsement”
or “disapproval” of any particular project or team. These reports and scores
are not, nor should be considered, an indication of the economics or value
of any “product” or “asset” created by any team or project that contracts MH
Audits to perform a security review.

 WEBSITE
MHAUDITS.IO

 TWITTER
@MHAUDITS

