

SECURITY ASSESSMENT

AVASHARKS
JULY 30 TH 2022

1	 LEGAL DISCLAIMER

2	 MH AUDITS INTRO

3	 PROJECT SUMMARY

4	 AUDIT SCORES

5	 AUDIT SCOPE

6	 METHODOLOGY

7	 KEY FINDINGS

8	 VULNERABILITIES

9	 SOURCE CODE

10	APPENDIX

 TABLE OF
CONTENTS

 WEBSITE
MHAUDITS.IO

 TWITTER
@MHAUDITS

 LEGAL
DISCLAIMER

MH Audits are not, nor should be considered, an “endorsement” or “disapproval”
of any particular project or team. These reports are not, nor should be considered,
an indication of the economics or value of any “product” or “asset” created by
any team or project that contracts MH Audits to perform a security review.

MH Audits does not provide any warranty or guarantee regarding the absolute
bug-free nature of the technology analyzed, nor do they provide any indication
of the technologies proprietors, business, business model or legal compliance.

MH Audits should not be used in any way to make decisions around investment
or involvement with any particular project. These reports in no way provide
investment advice, nor should be leveraged as investment advice of any sort.

The report is provided only for the contract(s) mentioned in the report and does
not include any other potential additions and/or contracts deployed by Owner. The
report does not provide a review for contract(s), applications and/or operations,
that are out of this report scope.

MH Audits’ goal is to help reduce the attack vectors and the high level of variance
associated with utilizing new and consistently changing technologies, and in
no way claims any guarantee of security or functionality of the technology we
agree to analyze.

MH Audits represents an extensive auditing process intending to help our
customers increase the quality of their code while reducing the high level of risk
presented by cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing
risk. MH Audits’ position is that each company and individual are responsible for
their own due diligence and continuous security.

The security audit is not meant to replace functional testing done before a software
release. As one audit-based assessment cannot be considered comprehensive,
we always recommend proceeding with several independent manual audits and
a public bug bounty program to ensure the security of the smart contracts.

 WEBSITE
MHAUDITS.IO

 TWITTER
@MHAUDITS

 MH AUDITS
INTRODUCTION

MH Audits is a leading blockchain security company that serves to verify the
security and correctness of smart contracts and blockchain-based protocols.
Through the utilization of our world-class technical expertise, alongside our
proprietary, innovative tech, we’re able to support the success of our clients
with best-in-class security, all whilst realizing our overarching vision; provable
trust for all throughout all facets of blockchain.

Secure your project with MH Audits
We offer field-proven audits with in-depth reporting and a range of suggestions
to improve and avoid contract vulnerabilities.

Industry-leading comprehensive and transparent smart contract auditing on all
public and private blockchains.

Vunerability checking
A crucial manual inspection carried out to eliminate any code flaws and security
loopholes. This is vital to avoid vulnerabilities and exposures incurring costly
errors at a later stage.

Contract verification
A thorough and comprehensive review in order to verify the safety of a smart
contract and ensure it is ready for launch and built to protect the end-user.

Risk assessment
Analyse the architecture of the blockchain system to evaluate, assess and
eliminate probable security breaches. This includes a full assessment of risk and
a list of expert suggestions.

In-depth reporting
A truly custom exhaustive report that is transparent and depicts details of any
identified threats and vulnerabilities and classifies those by severity.

Fast turnaround
We know that your time is valuable and therefore provide you with the fastest
turnaround times in the industry to ensure that both your project and community
are at ease.

Best-of-class blockchain engineers
Our engineers combine both experience and knowledge stemming from a
large pool of developers at our disposal. We work with some of the brightest
minds that have audited countless smart contracts over the last 4 years.

 WEBSITE
MHAUDITS.IO

 TWITTER
@MHAUDITS

 PROJECT
SUMMARY

PROJECT INTRODUCTION

The AvaSharks are a collection of 2,605 NFTs, born and bred on the Avalanche
Blockchain - first surfacing on December 3, 2021. Since then, the team has
been busy building a grassroots community, as well as growing our network,
within the Avalanche ecosystem.

As AvaSharks is the first wagering platform to enter this space, they are on
their way to becoming a major player within the blockchain betting industry and
transforming into a fully-operational online gaming platform.

Project Name AvaSharks

Contract Name -

Contract Address -

Contract Chain Not Yet Deployed on Mainnet

Contract Type Smart Contract

Platform EVM

Language Solidity

Codebase GitHub Repository

INFO & SOCIALS

Network Avalanche (AVAX)

Max Token Supply -

Website https://avasharks.io/

Twitter https://twitter.com/Avasharks

Telegram -

Discord https://discord.gg/F3v8R55kpM

 WEBSITE
MHAUDITS.IO

 TWITTER
@MHAUDITS

 AUDIT
SCORES

Issues					 10
	 Critical				 0
 	Major					 2
 	Medium				 0
 	Minor					 7
 	 Informational 		 1
 	Discussion 			 0

All issues are described in further detail
on the following pages.

92
PASS

 WEBSITE
MHAUDITS.IO

 TWITTER
@MHAUDITS

 AUDIT
SCOPE

FILE

AtlantisGate.sol

NFTLender.sol

LOCATION

GitHub Repository

GitHub Repository

 WEBSITE
MHAUDITS.IO

 TWITTER
@MHAUDITS

 REVIEW
METHODOLOGY

TECHNIQUES

This report has been prepared for AvaSharks to discover issues and
vulnerabilities in the source code of the AvaSharks project as well as any
contract dependencies that were not part of an officially recognized library.
A comprehensive examination has been performed, utilizing Dynamic, Static
Analysis and Manual Review techniques.

The auditing process pays special attention to the following considerations:

•	 Testing the smart contracts against both common and uncommon attack vectors.

•	 Assessing the codebase to ensure compliance with current best practices and
industry standards.

•	 Ensuring contract logic meets the specifications and intentions of the client.

•	 Cross referencing contract structure and implementation against similar smart
contracts producedby industry leaders.

•	 Thorough line-by-line manual review of the entire codebase by industry experts.

The security assessment resulted in findings that ranged from major to informational.
We recommend addressing these findings to ensure a high level of security
standards and industry practices. We suggest recommendations that could better
serve the project from the security perspective in the comments below.

TIMESTAMP

Version	 	 v1.0
Date			 2022/07/25
Description	 Layout project
				 Automated / Manual review / Static & dynamic security testing
				 Summary

Version	 	 v1.1
Date			 2022/07/30
Description	 Reaudit
				 Final Summary

 WEBSITE
MHAUDITS.IO

 TWITTER
@MHAUDITS

 KEY
FINDINGS

 WEBSITE
MHAUDITS.IO

 TWITTER
@MHAUDITS

SEVERITY

 Minor

 Informational

 Major

 Minor

 Minor

 Minor

 Major

 Minor

 Minor

 Minor

TITLE

Floating Pragma

Functions Should Be Declared External

Missing Reentrancy Protections

Missing Multiple Zero Address Validations

Missing Events

Use Of Multiple Pragma Versions

Missing Pausable Modifier

Missing Constant Attribute in Variables

Redundant Statement

Incorrect Placement Of require Statements

STATUS

Partially Fixed

Fixed

Fixed

Fixed

Fixed

Fixed

Fixed

Fixed

Fixed

Fixed

 IN-DEPTH
VULNERABILITIES

Issue: Floating Pragma

Type: Floating Pragma (SWC-103)

Level: Minor

Recommendation: Keep the compiler versions consistent in
all the smart contract files. Do not allow floating pragmas
anywhere. It is suggested to use 0.8.7 pragma version

Reference: https://swcregistry.io/docs/SWC-103

Alleviation: The Avasharks team opted to consider our
references and applied the recommendation.

 WEBSITE
MHAUDITS.IO

 TWITTER
@MHAUDITS

Description: Locking the pragma helps ensure that the contracts do not accidentally get
deployed using an older version of the Solidity compiler affected by vulnerabilities.

The contracts found in the repository were allowing floating or unlocked pragma to be
used, i.e., ^0.8.4 and >=0.7.0 <0.9.0. This allows the contracts to be compiled with all the
solidity compiler version above 0.8.4.

Location: AtlantisGate.sol L02
			 NFTLender.sol L02

Impacts:

If the smart contract gets compiled and deployed with an older or too recent version
of the solidity compiler, there’s a chance that it may get compromised due to the bugs
present in the older versions or unidentified exploits in the new versions.

Incompatibility issues may also arise if the contract code does not support features in
other compiler versions, therefore, breaking the logic. The likelihood of exploitation is
really low therefore this is only informational.

 IN-DEPTH
VULNERABILITIES

Issue: Functions Should Be Declared External

Type: Gas Optimization

Level: Informational

Recommendation: Use the “external” state visibility for
functions that are never called from inside the contract.

Alleviation: The Avasharks team opted to consider our
references and applied the recommendation.

 WEBSITE
MHAUDITS.IO

 TWITTER
@MHAUDITS

Description: Public functions that are never called by a contract should be declared
external in order to conserve gas.

The following functions were declared as public but were not called anywhere in the
contract, making the public visibility useless.

Location: AtlantisGate.sol
			 deposit() - L43
			 withdraw() - L48
			 moveBalance() - L57
			 changeWinningsFee() - L68

			 NFTLender.sol
			 addListing() - L136
			 cancelListing() L184
			 fundListing() - L195
			 withdrawBalance()- L215
			 repayForListing() -L221
			 claimCollateralAsFunder() - L237
			 setListingPrice() - L251
			 withdrawToSafe() - L276

 IN-DEPTH
VULNERABILITIES

fdasfasdfsda

 WEBSITE
MHAUDITS.IO

 TWITTER
@MHAUDITS

Impacts:

Smart Contracts are required to have effective Gas usage as they cost real money
and each function should be monitored for the amount of gas it costs to make it gas
efficient.

“public” functions cost more Gas than “external” functions.

 IN-DEPTH
VULNERABILITIES

fdasfasdfsda Issue: Missing Reentrancy Protections

Type: Reentrancy (SWC-107)

Level: Major

Recommendation: Add a Reentrancy guard to the function
making external calls

Alleviation: The Avasharks team opted to consider our
recommendation and applied the recommendation.

 WEBSITE
MHAUDITS.IO

 TWITTER
@MHAUDITS

Description:

In a Reentrancy attack, a malicious contract calls back into the calling contract before
the first invocation of the function is finished. This may cause the different invocations of
the function to interact in undesirable ways. The smart contract was missing reentrancy
protection on the following functions making external calls

Location: The function claimCollateralAsFunder() is making an external call on L244

After the call, the following state changes are occurring

If the user controls the address of the externally called address, i.e., “listing.nftContract”,
they might be able to reenter the function without the reentrancy guard and cause
unexpected behaviour and token manipulation.

 IN-DEPTH
VULNERABILITIES

fdasfasdfsda

 WEBSITE
MHAUDITS.IO

 TWITTER
@MHAUDITS

Affected Code:

 IN-DEPTH
VULNERABILITIES

fdasfasdfsda

 WEBSITE
MHAUDITS.IO

 TWITTER
@MHAUDITS

Impacts:

Lacking reentrancy protection could allow threat actors to abuse the functions and reenter
the contract. This can lead to excessive interactions with the functions and loss of funds
and tokens.

 IN-DEPTH
VULNERABILITIES

Issue: Missing Multiple Zero Address Validations

Type: Missing Input Validation

Level: Minor

Recommendation: Add a zero address validation to all the
functions where addresses are being set.

Alleviation: The Avasharks team opted to consider our
recommendation and applied the recommendation.

 WEBSITE
MHAUDITS.IO

 TWITTER
@MHAUDITS

Description: Multiple Solidity contracts were found to be setting new addresses without
proper validations for zero addresses. Address type parameters should include a zero-
address check otherwise contract functionality may become inaccessible or tokens
burned forever.

Depending on the logic of the contract, this could prove fatal and the users or the contracts
could lose their funds, or the ownership of the contract could be lost forever.

Location: AtlantisGate.sol
			 address _adminAddress, address _serverWithdrawAddress, address
			 _serverJudgeAddress - L20
			 address payable _to - L48
			 address _source, address _destination - L57

			 NFTLender.sol
			 address _contractSafe - L63
			 address _nftContract - L136
			 address payable _destAddress - L215

Impacts: If address type parameters do not include a zero-address check, contract
functionality may become unavailable or tokens may be burned permanently.

 IN-DEPTH
VULNERABILITIES

Issue: Missing Events

Type: Missing Best Practices

Level: Minor

Recommendation: Consider emitting events for the functions
mentioned above. It is also recommended to have the
addresses indexed.

Alleviation: The Avasharks team opted to consider our
recommendation and applied the recommendation.

 WEBSITE
MHAUDITS.IO

 TWITTER
@MHAUDITS

Description: Events are inheritable members of contracts. When you call them, they
cause the arguments to be stored in the transaction’s log—a special data structure in the
blockchain. These logs are associated with the address of the contract which can then
be used by developers and auditors to keep track of the transactions.

The contract was found to be missing these events on certain critical functions which
would make it difficult or impossible to track these transactions off-chain.

Location: AtlantisGate.sol
			 withdraw() - L48
			 moveBalance() - L57
			 changeWinningsFee() - L68

			 NFTLender.sol
			 cancelListing - L184
			 setListingPrice - L251
			 withdrawToSafe - L276

Impacts: Events are used to track the transactions off-chain and missing these events on
critical functions makes it difficult to audit these logs if they’re needed at a later stage.

 IN-DEPTH
VULNERABILITIES

Issue: Use of Multiple Pragma Versions

Type: Missing Best Practices

Level: Minor

Recommendation: nstead of using different versions of the
Solidity compiler with different bugs and security checks, it is
better to use one version across all contracts.

Alleviation: The Avasharks team opted to consider our
references and applied the recommendation.

 WEBSITE
MHAUDITS.IO

 TWITTER
@MHAUDITS

Description:

The contracts were found to be using multiple Solidity Compiler versions across different
solidity files. This is not a good coding practice because different versions of the compiler
have different caveats, breaking changes and introducing vulnerabilities.

Location: AtlantisGate.sol L02
			 NFTLender.sol L02

Impacts:

Having different pragma versions across multiple contracts increases the chances of
introducing vulnerabilities since each solidity version have their own set of issues and
coding practices. Some major version upgrades may also break the contract logic if not
handled properly.

 IN-DEPTH
VULNERABILITIES

Issue: Missing Pausable Modifier

Type: Missing Access Control

Level: Major

Recommendation: It is recommended to implement the
whenNotPaused modifier on all the sensitive functions that
deal with Ether or tokens or sensitive access roles and their
modifications.

Alleviation: The Avasharks team opted to consider our
recommendation and applied the recommendation.

 WEBSITE
MHAUDITS.IO

 TWITTER
@MHAUDITS

Description: Openzeppelin’s Pausable Library is used as a modifier to check if a contract
is paused or not. This is typically used in contracts to protect sensitive functions in the
case there’s a malicious activity going on or if the contract is compromised by pausing
the critical functions of the contract. The contracts were found to be missing a pausable
modifier on business-critical functions which can cause state-changing actions on the
smart contract if, during an attack, or a compromise, the contract is not paused.

Location: NFTLender.sol
			 addListing - L136
			 cancelListing - L184
			 fundListing - L195
			 withdrawBalance - L215
			 repayForListing - L221
			 claimCollateralAsFunder - L237
			 setListingPrice - L251
			 withdrawToSafe - L276

Impacts: Missing pausable modifier on sensitive functions may be abused in case a
malicious actor is able to compromise the contracts or its functions. There needs to be a
pausable modifier which can be used on sensitive functions to halt the contract flow.

 IN-DEPTH
VULNERABILITIES

fdasfasdfsda Issue: Missing Constant Attribute in Variables

Type: Gas Optimization

Level: Minor

Recommendation: A “constant” attribute should be added in
the parameters that never change to save the gas.

Alleviation: The Avasharks team opted to consider our
references and applied the recommendation.

 WEBSITE
MHAUDITS.IO

 TWITTER
@MHAUDITS

Description: State variables can be declared as constant or immutable. In both cases,
the variables cannot be modified after the contract has been constructed. For constant
variables, the value has to be fixed at compile time.

The compiler does not reserve a storage slot for these variables, and every occurrence
is replaced by the respective value.

Compared to regular state variables, the gas costs of constant and immutable
variables are much lower since no SLOAD is executed to retrieve constants from
storage because they’re interpolated directly into the bytecode.

Location: AtlantisGate.sol L17

PoC:

1/ Go to the contract “AtlantisGate.sol” and note the uint256 withdrawFee variable on L17.
This is not being modified anywhere throughout the code.

Impacts: Gas usage is increased if the variables that should be constants are not set
as constants.

 IN-DEPTH
VULNERABILITIES

fdasfasdfsda Issue: Redundant Statement

Type: Gas Optimization

Level: Minor

Recommendation: Remove the redundant require statement
on L70 since uint256 can never be negative.

Alleviation: The Avasharks team opted to consider our
references and applied the recommendation.

 WEBSITE
MHAUDITS.IO

 TWITTER
@MHAUDITS

Description: Solidity parameter type uint256 stores values from 0 to 2 **256 - 1. This
means that it can never store negative values. This means there’s no need to check if
the parameter _fees can store values greater than or equal to zero.

Location: require(_fee >= 0, "Winnings fee must be at least 0"); L70

PoC:

1/ In the contract AtlantisGate.sol, it can be seen on L68 that the function
changeWinningsFee accepts a uint256 parameter _fee.
2/ Since this will always take positive values, there’s no need for the require statement.

Impacts:

This creates dead and redundant code and also increases gas costs.

 IN-DEPTH
VULNERABILITIES

fdasfasdfsda Issue: Incorrect Placement Of require Statements

Type: Business Logic

Level: Minor

Recommendation: Change the placement of the require
statements and keep it above the parameter profitFromInterest.

Alleviation: The Avasharks team opted to consider our
recommendation and applied the recommendation.

 WEBSITE
MHAUDITS.IO

 TWITTER
@MHAUDITS

Description: The require statements on L200 and L203 in NFTLender.sol are not
correctly arranged. These validations should happen before calculating the value for
profitFromInterest.

Location: require(msg.sender != listing.owner, "caller must not be listing owner");
			 require(listing.status == ListingStatus.LISTED, "listing status must be LISTED");

Impacts: Incorrect placement of require statements will cause the contract to execute
unnecessary calculations for the parameter profitFromInterest. If the validations in the
require statement happen in the beginning, the function will fail if improper values are
supplied.

 SOURCE
CODE

 WEBSITE
MHAUDITS.IO

 TWITTER
@MHAUDITS

Private GitHub Repository

 REPORT
APPENDIX

 WEBSITE
MHAUDITS.IO

 TWITTER
@MHAUDITS

FINDING CATEGORIES

The assessment process will utilize a mixture of static analysis, dynamic analysis,
in-depth manual review and/or other security techniques.

This report has been prepared for AvaSharks project using the above techniques
to examine and discover vulnerabilities and safe coding practices in AvaSharks’
smart contract including the libraries used by the contract that are not officially
recognized.

A comprehensive static and dynamic analysis has been performed on the solidity
code in order to find vulnerabilities ranging from minor gas optimizations to major
vulnerabilities leading to the loss of funds.

Various common and uncommon attack vectors will be investigated to ensure
that the smart contracts are secure from malicious actors. The testing methods
find and flag issues related to gas optimizations that help in reducing the overall
gas cost It scans and evaluates the codebase against industry best practices
and standards to ensure compliance It makes sure that the officially recognized
libraries used in the code are secure and up to date.

AUDIT SCORES

MH Audits AuditScores is not a live dynamic score. It is a fixed value determined
at the time of the report issuance date.

MH Audits AuditScores are not, nor should be considered, an “endorsement”
or “disapproval” of any particular project or team. These reports and scores
are not, nor should be considered, an indication of the economics or value
of any “product” or “asset” created by any team or project that contracts MH
Audits to perform a security review.

 WEBSITE
MHAUDITS.IO

 TWITTER
@MHAUDITS

