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The Human Factor: Equipping Our 
Digital Workforce
Current and Future State Overview

It is crucial that we recognize the role of the manufacturing worker has had in building manufacturing capabilities, a 

cornerstone of US competitiveness. Investment in innovative, smart manufacturing processing methods, industrial cyber-

physical systems (ICPS), automation technologies, and information/operational technology (IT/OT) has advanced US 

manufacturing (across small, medium, and large manufacturing enterprises) connectivity, automation, and operational 

e!iciency (Reischauer, 2018, Kim et al., 2018, Lasi et al., 2014). 

As an enabler of smart manufacturing, industrial cyber-physical systems (ICPS) are critical to the success of manufacturing 

(Ahmed et al., 2021). In ICPS, the cyber, physical, and hybrid technologies integrate billions of objects with unique 

addressability, with or without human involvement. The volume of information generated in smart and connected factories 

is overwhelming, and worker roles must change as traditionally separate IT and OT domains converge (Gartner, 2014). 

Information technology covers “…[t]he entire spectrum of technologies for information processing, including software, 

hardware, communications technologies, and related services. IT does not include embedded technologies that do not 

generate data for enterprise use.” Operating technology  “[i]s hardware and software that detects or causes a change through 

the direct monitoring and/or control of physical devices, processes and events in the enterprise” (Gartner in Desai 2016). 

Most US manufacturers identify the primary cause of today’s worker shortage as a “shifting skill set due to the introduction of 

new advanced technology and automation.” (Gi!i et al., 2018) While more than half of manufacturers surveyed in Accenture 

(2015) have adopted collaborative robots (cobots), artificial intelligence (AI), and other smart manufacturing technologies, 

many manufacturers simply do not have a capable IT/OT workforce for implementing ICPS, which limits their ability to realize 

the benefits (e.g., improved cost, quality, productivity, and safety).

Even though smart manufacturing technologies and ICPS advance manufacturing worker productivity, these technologies 

can also be responsible for exacerbating the skill gaps (WEF, 2018). This is because ICPS shift worker skill sets, from low/

medium to high-skill jobs (WEF, 2018). Further, professional skills have a reported “half-life” of five years, compelling 

workers to change jobs every 4.5 years (WEF, 2017). This threat is magnified due to the loss of worker knowledge and expertise 

through retirements of the baby-boom generation (Gi!i et al., 2018). Manufacturing workers are experiencing a paradigm 

without precedent: a pace of skills obsolescence that requires continuous learning and career agility (WEF, 2019). 
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To respond to the aforementioned challenges, innovations that incorporate the expertise, flexibility, and adaptability of 

manufacturing workers are being investigated in industry and academia in order to reach new levels of e!iciency, productivity, 

and safety. Example innovations include collaborative robots, augmented reality, intelligent machine tools with embedded 

metrology, digital twinning, IoT sensors and sensor fusion, industrial AI/ML business intelligence, ultrafast 3D printing and 

hybrid manufacturing, smart projector interfaces, and voice directed actions (Kim et al., 2019, Wiedenmaier et al., 2003, Cahya 

& Giuliani, 2018, Mihelj et al., 2019, Gattullo et al., 2019, Chheda et al., 2013). 

Adapting manufacturing processes to better respond to the emerging and fundamentally di!erent manufacturing 

environment requires rapid interventions and continuous worker training. Modern learning technologies, when appropriately 

applied, can embed learning processes intrinsic to production routines. The new training and education systems should be 

more worker specific and promote knowledge transfer across manufacturing workers while reducing the mental resources. 

The dynamic character of future manufacturing jobs requires continuous learning and new and expanded skillsets (e.g., 

analytics and cybersecurity) that can balance business understanding, innovative thinking, and personal integrations. The 

current training paradigm for manufacturing does not equip workers for future manufacturing jobs or supporting ICPS 

environments. Future training paradigms for ICPS environment that includes collaborative robots, augmented reality, 

intelligent machine tools with embedded metrology, digital twinning, IoT sensors and sensor fusion, industrial AI/ML business 

intelligence, ultrafast 3D printing and hybrid manufacturing, smart projector interfaces, and voice directed actions, should be 

designed with a human worker centric approach (i.e., a human-in-the-loop focus). However, creating these training paradigms 

requires a fundamental understanding of how a manufacturing human worker fits within smart manufacturing or ICPS 

technology loop.

Executive Summary

The digital workforce of tomorrow fits within smart manufacturing and ICPS enterprises in a framework such as that shown 

in Figure 1. Certain industry sectors or scales (small, medium, or large manufacturers) may see slight or major changes in 

the organization or aspects of Figure 1 based on relevance to their unique systems. At the heart of the framework is the 

manufacturing worker. While the demands, requirements, and expectations of the worker have evolved due to past industrial 

revolutions, the worker has still retained a central role in manufacturing enterprises. Craftsmen level manufacturing, which 

eventually gave way to mass production and standardized work, targets the direct relationship between the worker and 

machines (machines are illustrated as Resistance Spot Welding, RSW, Fused Deposition Modelling – additive manufacturing, 

FDM, and machining), represented by the black sensory arrow that provides feedback to the worker and the black decision/

expertise arrow. Craftsmen level work emphasizes worker sensory observation of a machine operation in order to make 

decisions that optimize production and quality. Decisions are solely based on expertise learned by the worker and stored in 
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working or long-term memory. Mass production and standardized work still emphasized the worker and machine interactions 

but reduced the necessity of the black sensory feedback and worker decisions or expertise by creating repeatable work 

instructions that led to high quality, repeatable part production. Advancements in sensors, computing, and computerized 

numerically controlled machines enabled more advanced feedback to machines, indicated by the blue arrow from the 

analytics control to machines [OT] in Figure 1. Feedback is determined based on basic machine sensors, blue arrows exiting 

the machines [OT]. 

Figure 1. Human manufacturing worker incorporated into the smart manufacturing 
and ICPS technology loop.
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Next generation workforces in ICPS look towards integrating Artificial Intelligence (AI), machine learning, real-time feedback, 

and biometric worker sensors in order to enhance worker safety, worker mental load, productivity, and manufacturing 

capability. This paradigm is also illustrated in Figure 1, by expanding the scope to include all aspects of the cyber technologies 

(or layer), worker sensors – indicated as the blue arrow emitted from the worker, and the smart (AI based) worker feedback 

providing assistance to workers – indicated as the blue arrow from the visualization/learning/sensory output to the worker 

working and long-term memory. In this next generation ICPS, machine and worker biometric sensor data is collected, 

stored, and monitored. Artificial intelligence and machine learning executed in the analytics control step continuously 

learn from machine and manufacturing worker task execution to provide insights to the worker and control to machine to 

improve operations. Cyber technologies and the manufacturing worker are linked by augmented reality technologies such as 

projected visualizations (e.g. LightGuide Systems, LLC) and augmented reality glasses (e.g. Microsoft Hololens) that modify 

worker perceptions during work. Visualization design and sensory feedback selection are critical to conveying value-added 

information to the manufacturing worker, and not overwhelming the worker with unnecessary information or graphics. 

An important aspect of the digital workforce model in Figure 1 is that machine sensor data and worker sensor data (after 

filtered through data processing and management stages, passing through the analytics control step, and being delivered 

to the worker via augmented reality) ultimately influences manufacturing worker working and long-term memory. The direct 

impact of influencing worker memory (knowledge) is accelerated worker training (through customized feedback based on 

worker performance) and capturing expert worker knowledge.

Properly equipping workers within the ICPS human technology loop in Figure 1 necessitates a fundamental look into how 

sensor data and information move through the digital workforce. Figure 2 represents a starting point for this deep dive, which 

aims to give a clearer view of how the manufacturing worker receives sensory feedback, is being monitored by biometric 

sensors, and delivers their expertise to enhance machine performance and product quality.
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The most straightforward feedback loop in Figure 2 is the worker decision, which influences machine performance through 

worker expertise. Observations on worker expertise and machine performance are made through worker sensory feedback 

(e.g. visual, audio, etc.). Machine data and product data are used for direct machine parameter control and by workers to 

make real-time decisions. Typically, manufacturing machine or product data is communicated to workers through human 

machine interfaces (HMI) or control charts, eventually influencing worker decisions which then become a function of both 

worker sensory feedback and machine data monitoring. The cyber layer leverages machine learning and artificial intelligence 

to extract unseen insights from machine and product data, and to mitigate data overload to the worker. This is accomplished 

by intelligently processing incoming machine, product, and biometric sensor data streams, to provide AI-based feedback 

that complements worker sensory feedback, and accelerates worker learning, expertise, and decision making. Advanced 

monitoring capabilities also extend to the worker, illustrated by the cyber layer integrating worker biometric sensor data to 

monitor worker response to AI-based feedback delivered by augmented reality technologies or displays. 

Figure 2: Modeling the flow of sensor data and information that eqips workers with advanced insights in ICPS.
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The AI-based worker feedback, Figure 2, is the critical link in this loop because it closes the gap between the worker, machine, 

and cyber layer. The amount of information delivered to the worker and the e!ectiveness of technologies (e.g. projectors 

or augmented reality glasses) to communicate feedback to the worker is a significant unanswered question for the digital 

workforce in the future.

Challenges & Opportunities

Fully integrating the human factor into equipping the next generation digital workforce is a di!icult task given the complex 

interaction between multiple complex systems (i.e., manufacturing machine, manufacturing worker decision making, and 

artificial intelligence and machine learning models). However, success is predicted to add such value to manufacturing 

operations that a significant competitive advantage is achieved. Critical challenges that exist within this thrust include, but are 

not limited to:

1. Validating visualization technologies and approaches that e!ectively communicate insight derived from artificial 

intelligence and machine learning models to the worker. This is required in order to ensure that AI-based feedback 

enhances the digital workforce without detracting from worker tasks. An example is designing augmented reality (AR 

glass) visual feedback cues that improve worker actions or learning rather than distracting from the task at hand.

2. Broadening the acceptance of augmented reality and XR (extended reality) technologies among manufacturing workers 

at multiple levels (e.g., operators, manufacturing engineering, maintenance engineers, etc.).

3. Optimizing AI-based feedback for individual worker needs and expertise levels. Automating and adapting worker 

feedback needs using biometric sensor data and artificial intelligence methods has the potential to remove variability 

across worker performance and accelerate worker training.

4. Expanding the current library of case studies that demonstrate the factory level benefits of equipping a digital workforce 

through the return on investment of ICPS, augmented reality technologies, and AI-based methods.

5. Keeping pace with advancements in augmented reality technologies, artificial intelligence, machine learning methods, and 

industrial internet of things systems to ensure the digital workforce is operating at the cutting edge of manufacturing technologies. 

Investing in the human factor of the digital workforce has shown to be an opportunity for manufacturing companies to be 

successful. McKinsey and the World Economic Forum’s Global Lighthouse Network determined that manufacturing leaders 

in this network not only implemented smart technologies but also made critical investments in their people (Ellingrud 

et al., 2020). Successful companies were also shown to deliver training that fits the specific needs of individuals in their 

organizations, which is an aspect the system described Figures 1 and 2 aims enhance based on biometric sensor data and 

artificial intelligence, and deliver in real-time, during task completion.
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Case Study

Wayne State University teams are tackling these challenges at Wayne State’s Smart Manufacturing Demonstration Center 

(SMDC), Figure 3. The SMDC was initiated in late 2017 through a partnership with Cisco Systems’ State Digital Acceleration 

(SDA) initiative. Michigan was the first state to join Cisco’s program, which aims to advance the digital manufacturing 

agenda, bolster financial growth, attract new investment, and increase innovation potential. The 25,000-square-feet high 

bay area of the Wayne State’s College of Engineering Manufacturing Engineering Building is home to the SMDC. The SMDC 

contains three cells that demonstrate smart manufacturing and ICPS principles on a variety of manufacturing equipment 

and for multiple manufacturing scenarios. The SMDC acts as a hub focused on developing the next generation of digital 

manufacturing professionals and leaders in automation and robotics. It houses a variety of equipment and software, 

connected with Cisco’s secured systems infrastructure, that enables research and education on processes and machines 

such as collaborative robots, additive manufacturing, computed tomography (CT) scanning, automated laser line scanning, 

and resistance spot welding. SMDC capabilities also enable researchers to explore aspects of the ICPS, Internet of Things 

(IoT), and Industry 4.0 (e.g., manufacturing data management, storage, infrastructure, and security). 

Figure 3: The Smart Manufacturing Demonstration Center (SMDC) located in the Manufacturing 
Engineering Building at Wayne State University, Detroit, Michigan
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The digital workforce and manufacturing workers in the ICPS technology loop are specific thrust areas that the SMDC is 

addressing. Currently, researchers at Wayne State are advancing circular economy disassembly systems by studying the 

application of collaborative robotics in disassembly operations. This research has applications to automotive remanufacturing 

and recycling networks, and to scaling up critical material (e.g. neodymium magnets for next generation energy technologies) 

recovery in order to secure a reliable critical material supply base in the face of international competition. Two specific 

collaborative robotic disassembly case studies are being pursued at the SMDC; 1) Evaluating manufacturing worker 

engagement during collaborative robotic assisted disassembly and 2) Rapid reprogramming high volume disassembly 

systems based on information extracted from worker-collaborative robotic disassembly.

Case 1. Manufacturing worker engagement during collaborative robotic disassembly

Since worker and collaborative robot interaction is the critical aspect of collaborative automation, it is essential that worker 

intent and engagement be monitored along with collaborative robot position, productivity, and task completion. Worker 

engagement is defined in this case study as the worker’s level of focus (conversely, worker distraction) on a given task or 

set of tasks (Figure 4). Artificial intelligence and machine learning models are very powerful in a collaborative robot-worker 

station, as they can monitor and predict how engaged, or symbiotic, a worker is with an associated collaborative robot. Worker 

engagement data provides a quantitative assessment of where worker focus is directed during a task, while collaborative 

robot positional sensors, machine code, and action execution provide data on how well a task was performed. For this study, an 

engagement prediction technology developed by the CNU Artificial Intelligence Convergence Research Institute is employed.
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Wayne State’s SMDC is studying manufacturing worker engagement while undertaking disassembly activities, Figure 4. A 

variety of disassembly operations, such as the rotational movement for screw removal and vector movements to remove 

component housings, are executed based on a pre-determined set of disassembly instructions. Data collected is intended 

to evaluate Future Manufacturing job skills (Ellingrud et al., 2020; Luce, 2019; Gray, 2016) such as visualization, programming, 

and user experience of the collaborative robotic disassembly station design. Once pre-determined disassembly instructions 

are complete, disassembly tasks and requirements are varied in order to evaluate worker cognitive flexibility, visualization, and 

equipment maintenance, repair, and control. Interpretation of worker engagement data and collaborative robot programming 

and position data gives insights into if the disassembly task is executed correctly or if the worker adapted the collaborative 

robot su!iciently to compensate for a new disassembly operation. 

Figure 4: Measuring worker engagement by recognizing facial features during collaborative robotic (bottom right corner)
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Case 2. Collaborative robotic rapid reprogramming of high volume disassembly system

This case study places the manufacturing worker at the beginning of a digital process to learn disassembly operations from 

a collaborative robot-human station and disseminate to stations within a high-volume disassembly system. High-volume 

disassembly requires achieving a high level of automation that is di!icult due to the variety of product types and designs that 

are acquired for disassembly. This case study has two main components, 

illustrated in Figure 5 (Prioli and Rickli, 2020). First, is a learning and training station composed of a collaborative robot and 

human worker that captures the disassembly operations of a new, incoming end-of-use product (bottom left of Figure 5). 

Disassembly learning and training require the knowledge of the worker and the tracking of the collaborative robot to learn 

operations required to disassembly the product and distribute it to a cloud-based data management system. Second, 

disassembly planning methods retrieve disassembly information stored in the cloud and disseminate it to the preferred 

disassembly stations or automated guided vehicles (AGVs). 
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The manufacturing worker is responsible for manipulating the collaborative robot to direct the product disassembly learning 

process. Disassembly data is then merged, encoded into the digital industrial network protocol, and stored in a retrievable 

database. Once disassembly information is developed and managed, it is the responsibility of enterprise systems to compute 

optimal machine schedules and deliver required disassembly operation information, such as fastener coordinates, fastener 

type, and disassembly direction, from network data storage to individual stations at the right time, depending on the current 

disassembly demands and jobs.

Figure 5. High volume disassembly system composed of AGVs, collaborative robots, and 
traditional 6 degrees of freedom robots all reprogrammed based on information learned from 
robotic disassembly (separate station in the bottom left.)
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Wayne State has constructed a disassembly learning and training testbed and developed methods to translate collaborative 

robotic trajectory programs into disassembly information blocks that can be delivered to stations in high volume disassembly 

systems. To capture worker input, the worker creates placeholders or marks during collaborative robot manipulation. The 

marks are assigned as worker variables in the collaborative robot program. Worker variables identify disassembly tools, 

disassembled components, and the complete of a set of disassembly operations, while collaborative robot position and 

program variables capture component locations and disassembly directions. Overall, integrating industrial automation with 

the manufacturing worker through collaborative robotics and information systems had provided unique capabilities to capture 

disassembly information at a rapid pace.

Action Items

• Pursue public-private partnerships via industry and academic collaboration to adapt ICPS tools to enhance expertise,   

 flexibility, and adaptability of manufacturing workers.

• Invest in new training and education systems that are specific to individual worker needs, and promote knowledge transfer  

 across manufacturing workers.

• Promote synergistic technology (connecting IT and OT aspects) training and education to better prepare workers to shift   

 skill sets to IT/OT based skills.

• Lay the groundwork for implementing biometric worker sensors that capture worker safety, worker mental load, and   

 manufacturing capability. 

• Develop visualization mechanisms for AR and XR technologies to optimally display value-added AI-based analytics   

 results. This requires a balance between information delivered and worker information overload. 

• Design symbiotic and AR enabled working environments in early manufacturing process, station, and line design phases.  
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