
BRIDGING
THE GAP:
DEVOPS
TO SRE

2Bridging the Gap: DevOps to SRE |

Welcome to Bridging the Gap:
DevOps to SRE
DevOps and Site Reliability Engineering (SRE) are both practices dedicated
to improving the reliability and frequency of software releases. SRE was
implemented internally at Google in 2003 but didn’t gain widespread
attention until 2016 with the release of Google’s SRE Handbook. Before,
most orgs focused on DevOps. Liz Fong-Jones and Seth Vargo, prominent
leaders in the space, have made it clear that the practices aren’t mutually
exclusive. Organizations now have the opportunity to marry the two in
order to strengthen their systems, practices, and service reliability.

As software apps and services become a more ubiquitous part of daily
life, reliability becomes more important. It’s really your most necessary
feature — does it really matter how cutting-edge your service is if users
can’t access it? Implementing SRE is your best path to understanding and
improving reliability. Its benefits don’t end there, though. SRE is also about
boosting development velocity by informing strategic risks. The business
value of SRE shouldn’t be missed!

This eBook will guide you through implementing the principles of SRE
within your organization. We’ll break down the obstacles you might
encounter, especially as you begin to make sense of how SRE works
together with DevOps. You’ll also learn how the tools you already have in
place give you a head start. By the end, we’ll have established three solid
foundations of SRE: incident response, service level objectives (SLOs), and
team culture. Here we go!

https://sre.google/sre-book/table-of-contents/
https://twitter.com/lizthegrey
https://twitter.com/sethvargo
https://www.youtube.com/watch?v=uTEL8Ff1Zvk
https://www.blameless.com/sre/3-ways-sre-can-boost-your-business-value
https://www.blameless.com/sre/3-ways-sre-can-boost-your-business-value

3Bridging the Gap: DevOps to SRE |

Life with SRE

Incident Management
How to elevate your incident management with SRE
Your incident response toolbox

SLOs
What SLOs can do for you
What are SLOs
This sounds pretty tough
The road to mastering SLOs

Culture
What culture can do for you
Be blameless
Be holistic
Put reliability first
Embrace risk

Plot Your Maturity

Summary

Table of Contents

1

2

6

3

4

5

4Bridging the Gap: DevOps to SRE |

Liz Fong-Jones,
Principal Developer Advocate
for SRE at Honeycomb.io,
previously Google

Life with SRE
If you’re reading this eBook, it’s safe to assume that your organization
is set up with DevOps. You’ve done the work to break down silos
between teams and built a strong lifecycle that makes deploys faster.
Perhaps everything is going well, but you’re curious if anything could
be better. Site Reliability Engineering (SRE) has gained momentum
among leading engineering orgs. What exactly is this new approach?
And how is it different from DevOps?

Let’s put it this way. While the goal of DevOps is to create alignment
between developers and operators, the goal of SRE is to improve the
end user experience. This plays out in how SRE measures progress
and implements process. For example, SRE formalizes the idea that
not every incident requires immediate attention. In fact, the concept
of a service level objective (SLO) denotes a threshold for detecting
whether incidents have become a potential threat to user satisfaction.
If a system is not disrupting the threshold, then it’s better to invest time
progressing new initiatives for the next release.

To help you picture what this concept looks like in practice, imagine
a dashboard lined with performance graphs. You might have a
graph for availability, another on latency, etc. For the SRE, the most
important insights are ones that measure reliability. Reliability weighs
monitoring metrics based on how much they matter to users. Site
reliability engineers care about telemetry that explains how the user is
experiencing the production service at that moment in time.

SRE’s take a data-driven approach to incident management that
puts development and operations teams on the same page, agreeing
on shared goals. Teams feel more confident knowing how their
service performance affects the end user and how to improve over
time. Before we dive into the good stuff, be encouraged in knowing
that if you already practice DevOps, you’re well-equipped to start
implementing SRE practices today. The goal of this eBook is to walk
you through simple first steps that you can implement immediately.
Let’s get started!

If you think
about DevOps as
a philosophy, SRE
is a prescriptive way
of accomplishing
that philosophy.

https://www.blameless.com/devops/devops-lifecycle
https://www.blameless.com/sre/availability-maintainability-reliability-whats-the-difference

5Bridging the Gap: DevOps to SRE |

Incident Management

How to elevate your incident management with SRE
Let’s get a clear look at how levelling up incident management will change your organization. If you are
functioning as a DevOps team today, you are certainly responding to and managing incidents as they
occur but it’s likely not a standardized approach across all teams with an end-to-end playbook used to
streamline who responds. Closing out an incident with clear follow-up actions and learnings carried
forward is critical and, unfortunately, often missed.

Non-standardized incident
management Incident management with SRE

Incident response is typically executed “on-the-fly”
without established processes.

A library of runbooks gives you a head start whenever
something goes wrong.

Tasks are likely repeated due to role ambiguity, which
causes frustration.

Role-based checklists and shared communication channels
keep everyone on the same page.

Important steps get skipped, losing the opportunity
to collect data and make improvements.

Incident retrospectives with followup items carry the
lessons of each incident forward.

On-call teams suffer alert-fatigue and burn out. Balanced schedules and focused alerts keep on-call teams
at their best.

6Bridging the Gap: DevOps to SRE |

Runbooks, retrospectives, and SLOs function best when everyone contributes. How do you encourage
people to participate? Make it more appealing:

•	 It provides a safe space to share ideas and opinions.
•	 If everyone is there, you can all get on the same page.
•	 Prepping the team for adaptation to uncertainty is best done in collaboration.

Runbooks

Purpose Runbooks guide engineers through incident response. They’re a series of steps and checks
curated for different types of incidents.

How it’s
used in SRE

•	 Keep track of the steps you take each time you resolve an incident.

•	 Break down the details and explain the desired outcome.

•	 Prioritize runbooks for your most common incident types.

Challenges
•	 It’s easy to forget note-taking during high-pressure situations. Keep focused!

•	 Following a structured guide can feel forced. Stay flexible and follow intuition!

•	 Remember to update runbooks as time continues. Improvement is important.

How to
bridge
the gap

•	 Review any data you have from previous incidents and spot where there are process
redundancies. Edit those areas and leverage automation if appropriate.

•	 Ask the team to share their routines; codify their mental runbooks.

•	 Program runbooks into your systems so they report steps to responders.

Your incident response toolbox
Incident response isn’t a singular action or step. It’s a collection of
tools you have at the ready for each time an incident occurs. Three
important tools that are used by both DevOps and SRE teams are:

•	 Runbooks
•	 Classifications
•	 Retrospectives

Let’s examine the incident response toolbox, remind ourselves why
they are helpful, and introduce SRE’s approach to leveraging them.

QUICK TIP

https://www.blameless.com/incident-response/how-we-built-and-use-runbook-documentation-at-blameless
https://www.blameless.com/incident-response/runbook-automation-best-practices

7Bridging the Gap: DevOps to SRE |

Classification and role-based responses

Purpose Categorize incidents according to significant features that set them apart. Assign specific roles
and responsibilities based on the type of incident.

How it’s
used in SRE

•	 Use simple methods to categorize incidents like distinguishing between a slowdown vs.
an outage.

•	 Determine who should be alerted at each stage and assign specific roles.

•	 Automate role assignments using tools.

Challenges

•	 It can be tricky to define categories, like deciding what’s Sev0 vs. Sev1.

•	 Teams will take time to learn new role assignments.

•	 People naturally resist change, even when the current setup isn’t working. Get team members
involved in deciding the new process so they have buy-in.

How to
bridge
the gap

•	 Evaluate your current on-call setup and collect feedback from
your engineers.

•	 Identify a few of the most impactful incidents your team has experienced. Use these
examples to set a standard for the highest incident severity level.

•	 Consider all the steps of incident management and key role players.

Configure your alerting system to auto-assign roles based on an incident’s classification and trigger
pre-assigned task checklists. Pre-assigning roles and tasks can:

•	 Eliminate redundant work.
•	 Ensure everything that needs to be done gets done.
•	 Reduce time wasted during an incident.

QUICK TIP

https://www.blameless.com/incident-response/incident-classification
https://www.blameless.com/incident-response/what-is-incident-response

8Bridging the Gap: DevOps to SRE |

Incident Retrospective

Purpose Summarize the incident and jot down what can be learned. Suggest improvements in process,
tools, and practices in order to manage incidents better in the future.

How it’s
used in SRE

•	 Create a retrospective for every incident. Yes, every single one. Fall back on the basic
elements of a retrospective so that key information is retained.

•	 Make sure to include feedback from all relevant stakeholders.

•	 Always identify key learnings and areas for improvement.

•	 Post-incident meetings focus on systems thinking to support a
blameless culture.

Challenges
•	 It will take time for people to understand the value of retrospectives.

•	 Finding solutions and areas for improvement can require some creativity.

How to
bridge
the gap

•	 Write down any immediate improvements you know need to
be implemented.

•	 Add data from monitoring and observability tools into the retrospective.

•	 Leverage existing communication channels between dev, ops, and other teams to study and
contribute to retrospectives together.

•	 Use a tool to automate the process of creating retrospectives.

Coming from the world of DevOps, you’re well prepared to adopt these techniques. Your teams have
already bought into the goal of improving speed and reliability. Ask them, “Are we prepared to adapt
if something goes wrong here that we’ve missed?” Getting prepared to respond well to incidents is an
investment in speed and reliability that you can’t afford not to make.

https://www.blameless.com/incident-response/incident-retrospective-postmortem-template
https://www.blameless.com/incident-response/incident-retrospective-postmortem-template

9Bridging the Gap: DevOps to SRE |

SLOs

What SLOs can do for you
SLOs can revolutionize how you understand your production services. The purpose of setting service
level objectives (SLOs) is to define what “success” means from the user’s perspective. Engineering teams
ask, “What’s the most important part of our service offering to this customer group, and what should we
strive to provide consistently each month?” By narrowing in on the most important metrics, you prioritize
team workload, avoiding swirl and, ultimately, burnout. Let’s examine how life is different before vs. after
they’re implemented.

Before SLOs After SLOs

So many metrics are collected with monitoring tools
without clear prioritization.

Fewer and focused metrics are reported to actually reflect
user satisfaction.

Teams overreact and underreact to incidents. Teams understand the business impact of incidents and
respond accordingly.

Engineers are afraid to take risks in development. Engineers accelerate new development work when error
budgets are above SLO thresholds.

Crisis situations make it difficult to coordinate code
freezes or new release timings.

Established SLO policies align to an agreed error budget and
allow for fast responses.

What are SLOs
Before explaining service level objectives, it’s easier to take a step back and first define SLIs - Service
Level Indicators. These are metrics that measure system health, but they don’t simply report on factors
like uptime or latency. Instead, they’re built on top of those metrics to represent how users interact with
your service.

Create an SLI that represents how users make purchases on your site, for example. The SLI might
combine data such as:

•	 How long it takes for the selected product to be added to the cart
•	 How data refresh performs for the current stock of each product
•	 What percentage of checkout attempts complete without error

10Bridging the Gap: DevOps to SRE |

And so on. More specifically, here’s what the SLI for this example could look like (in very simplified, very
pseudo code):

(ProdAdd < 5ms / ProdAdd) * 4 +
(StockUpdate < 30s / StockUpdate) * 2 +
(CheckOut = success / CheckOut) * 8

This represents:

•	 Ratio of times the product was added to the cart within 5ms vs all times products were added,
multiplied by 4,

•	 plus ratio of times product data was updated less than 30s ago vs all product stock data
multiplied by 2,

•	 plus ratio of successful checkout attempts vs all checkout attempts multiplied by 8.

This essentially tells the story of what the user cares about most. In this example, users value how
quickly an item gets added to their cart more so than the accuracy of stock listings, so it’s weighed
twice as heavily. They also care even more about a successful checkout, so that’s weighed twice as
much again.

These are the metrics that give shape and meaning to service
reliability. How we set goals for reliability is where we begin the
discussion of agreeing on stated SLOs. The SLO is a written
statement describing what the entire team commits to in order to
achieve that particular objective. The SLA (which we won’t dive into
here) is an agreement between you, the vendor, and the customer
in terms of what is an acceptable level of service.

Enough theory, what’s an example? An SLO for a B2B project
management tool provider, let’s say, could be 99.99% of requests
to see a Kanban board displaying an up-to-date version within
5ms over the year. In this situation, an example SLA could be that
99.00% of requests meet this standard over the year. The SLO
provides a buffer to ensure that the SLA isn’t breached.

The SLO is a
written statement
describing what
the entire team
commits to in
order to achieve
a particular
objective.

11Bridging the Gap: DevOps to SRE |

Hopefully now you have a basic understanding of SLIs and SLOs.
SLIs should be created based on metrics that indicate a reliable user
experience. How do SREs pick SLO values? SLOs draw a line on what
is acceptable or a threshold to stay at or above, consistently each
month. It’s the point of reliability that, if crossed, causes the end user
to notice some type of system failure and likely translates to a negative
experience. It’s the acceptable level of reliability that you should always
try to stay above.

Of course, the best way to make sure you don’t fall below an SLO
threshold is to aim beyond it. Another way to achieve this, especially
when starting out, is don’t aim for the moon or set the bar so high
that you will likely fall below. Don’t set it for 99.99% if you agree that
99.8% is acceptable. 99.99% uptime translates into about 5 minutes of
unavailability per month, whereas 99.8% is about an hour and a half.
Is an hour and a half spread over a month acceptable to users? Is it
worth reducing further than that?

SLOs can also accelerate you. The error budget is a way to tell the
team how they are doing as the month progresses. With charts, you
can clearly see any degradation on that stated SLO. Therefore, it tells
you how fast you can work in development by having the foresight to
plan ahead. For example, you can trigger an alert if the system hits
80% of the error budget, telling you to prioritize fixes. SLOs are both
your safety net and your gas pedal.

SLOs are both
your safety
net and your
gas pedal.

12Bridging the Gap: DevOps to SRE |

The Holistic Side of SRE
Being familiar with DevOps, you see the value in cross-team collaboration. Those relationships
empower SRE too! SLOs should take into account learnings from all stakeholders. When
appropriate, invite other teams to collaborate on retrospectives and runbook updates.
 Promote the reliability mindset across the entire org!

This sounds pretty tough
It can be. To guide you through, here’s a list of the considerations you’ll want to plan for as you begin
tackling SLOs.

	 Getting the right metrics and event data you need. You’ll likely need to configure your monitoring/
APM or Observability tools in order to feed all the necessary data into your SLI.

	 Figuring out user journeys. Identify which metrics reflect what’s important to users as you pick
SLIs. This can be a project itself; you’ll need to monitor, profile, and maybe survey. It’ll likely be a
collaborative effort between Engineering, Product, Customer Success, and others.

	 Agreeing on policies. You’ll want to align with Engineering about when it’s right to reprioritize.
Engineers want services to perform reliably for the end user too, so agreeing on an error budget
from the get-go will hopefully mean smoother sailing through a set error budget.

	 Selling everyone on the time investment. Building SLOs will take some time, and it will require
revisions as you go on. Hopefully you can get everyone to agree that time spent planning equals
time (and costs) saved in the long-run.

	 Reviewing and revising. SLOs aren’t just “set it and forget it”. They’ll always need to be adjusted
as circumstances change. Start somewhere and iterate. By working on the SLO, you’re essentially
defining success and therefore helping to prioritize all future work.

13Bridging the Gap: DevOps to SRE |

The road to mastering SLOs
We just went over a long list of action items. Don’t fret. On this page, we
separated out what basic vs. advanced SLOs look like. That way, it’s easy
if you’re just getting started. Even a basic SLO setup can supercharge your
reliability and development velocity. Here’s a guide to getting started.

Basic
1 	 Set up the data you want to monitor. You likely have this in place already. Make

sure your SLO tool receives all of the necessary data from your Observability and APM tools.

2 	 Build SLIs based on fundamental metrics. The four golden signals: latency, errors, traffic, and
saturation capture a lot of what you need to know about your service.

3 	 Set policies. Decide what steps should be taken when the service falls short of an SLO. You can
also set policies on how to approach process improvements over time.

4 	 Initiate review cycles. Set a cadence for reviewing your SLOs. Periodically check to identify
anything that is causing user pain. Maybe the SLOs are too stringent. Striking the right balance
takes a bit of time at first, but finding the right SLO will save even more time in the long run.

Advanced
1 	 Build user journeys. Research how customers use your service. Outline important details for the

average use case. Allow this information to inform your SLIs (and respective SLOs).

2 	 Weigh steps based on impact. Study which features are used more commonly and how critical
they are to the overall user experience. Weigh them into your SLIs.

Take your time with these, and learn as you go. Every organization should have a unique set of SLOs and
processes because teams vary, as do products and services.

14Bridging the Gap: DevOps to SRE |

Culture

What culture can do for you
While setting up a strong process is fundamental to implementing SRE, the culture built around SRE will
make even more profound reliability improvements. If teams are resilient, they can better withstand any
unexpected events that come at them, especially if it’s 3am and they’re on-call. An important source of
resilience comes from a place of trust and clear expectation setting. Ultimately all teams strive for the
same end-goal with shared outcomes. How you get there is the question. Let’s examine what life looks
like before vs. after teams adopt an SRE culture.

Before SRE After SRE

Time is wasted pointing blame. Work starts on resolving incidents right away.

People are blamed for incidents, and real causes are
not addressed.

Systemic causes are identified and addressed, leading to
enduring solutions.

Teams are paralyzed and risk-averse, wanting to
avoid blame.

Teams feel psychologically safe to experiment and make
mistakes, leading to greater agency and velocity.

Failure disappoints and creates resentment. Failure is embraced as an opportunity to learn and grow.

Learning is siloed, causing redundant work
and friction.

Teams share lessons freely and people are brought in to
develop their understanding.

Reliability is an afterthought in development, causing
a domino effect in operations.

Reliability is treated as critical from the beginning of all
development work.

SRE culture can’t be built overnight. It takes time to pull all teams in the same direction, especially if
you’re a large, distributed org. Culture takes shape as your org continues to follow established SRE
procedures. They also take shape as your org cycles through the flow of tracking reliability insights,
managing incidents, sharing retrospectives, and iterating on SLOs. SRE is equal parts process, systems,
tools, and people, so getting everything and everyone aligned is no easy feat. If management supports
the effort from top-down, it can speed things up. Let’s look at how SRE practices support a
resilient culture.

15Bridging the Gap: DevOps to SRE |

This one is obviously a big deal to Blameless, the
company. When incidents occur — and they will
— instead of trying to find a scapegoat, employ
systems thinking and investigate potential
contributing factors. Work together as a team to
examine the system and its processes. There is
always something to be learned and an area of
the system to be improved.

Plant the seed. Do what you can to discourage
others from assigning blame. This includes
individuals blaming themselves for an issue.
One way to avoid ruffling feathers as you start
to build culture is to suggest that evaluating the
system as a whole is more effective in helping
the organization handle incidents even better in
the future.

Watch it grow. Thorough retrospectives that
offer suggestions for improving the system,
processes, and tools in place help effect positive
change. Once people see how helpful it is to
identify underlying issues and roadblocks,
pointing fingers begins to look like an excuse.

Harvest fruits. By establishing a blameless
culture, people will start to feel confident that
they won’t be sanctioned for mistakes. It’s
important for teams to feel psychologically
safe enough to raise issues, take risks, and be
empowered in their choices.

Throughout the SRE lifecycle, it’s helpful to lean
on skills, ideas, and information from multiple
sources. For example, during a post-incident
review meeting, mature SRE teams invite a
diverse group of stakeholders to contribute.
Doing this, you’ll come across great insights and
even make interesting discoveries. When looking
to improve your system, the possibilities should
be kept wide open.

Plant the seed. For the next post-incident review
meeting, invite stakeholders outside the usual
group. Even when revising SLOs and adjusting
SLIs, collaborate with teams like Product,
Customer Success, and others.

Watch it grow. As insights from other teams feed
into SLOs, the software development lifecycle
(SDLC) becomes contextualized in more ways.
This leads to more feedback and growth!

Harvest fruits. Working together across the
organization promotes efficiency because
everyone is working toward shared goals. People
understand the responsibilities and challenges of
those on other teams and start to identify where
collaboration and support is needed.

Be blameless Be holistic

16Bridging the Gap: DevOps to SRE |

Reliability should be your number one feature.
After all, it doesn’t matter how new or cutting
edge your service is if no one can use it!
Reliability ought to be top of mind throughout
the SDLC.

Plant the seed. Start gathering reliability insights
for your services. Identify what’s going well
right now vs. what needs improvement. Draft
requirements for what reliable code should
look like.

Watch it grow. Investing in reliability yields
greater and greater payoff as time goes on.
Eventually, you’ll see your org shift from a place
of reactive incident management to proactive
SRE. The results will speak for themselves.

Harvest fruits. Shifting from reactive to
proactive, SRE teams might even begin to build
runbooks during the development stage. Hope
for the best, but prepare for the worst. When
reliability becomes a shared responsibility, every
stage in the SDLC works toward it.

Incidents are bound to happen, even to the most
advanced and well-established orgs. Pushing
for 100% availability isn’t plausible. Besides,
customers likely can’t tell the difference between
99.99% and 100% of requests returned at the
expected speed. Why spend time, energy, and
money where it won’t be noticed? Instead,
build out an error budget that encourages
development teams to take risks.

Plant the seed. Establish SLOs to denote how
reliable your service should be at a minimum.
Build a plan for how you can accelerate
development when it’s safe to do so.

Watch it grow. The team will understand how
risk can be measured against an error budget,
and they won’t be sanctioned (or blamed) for
mistakes. Engineers will feel empowered
to innovate.

Harvest fruits. Suddenly, taking risks doesn’t
exactly feel like taking risks, because you
understand how updates impact system
reliability. Engineers can make calculated
decisions about the potential payoffs of
new development.

Put reliability first Embrace risk

17Bridging the Gap: DevOps to SRE |

Plot Your Maturity

SRE is both something you can see real benefits from on day one, and something that you’ll grow into
for years to come. Let’s look at that journey in one picture.

Starter SRE Advanced SRE Expert SRE

Team
Engineers take on SRE
functions as they’re
able to.

Dedicated SREs focus
entirely on SRE practices.

An established SRE
team builds new
practices together.

SLOs
Basic SLIs represent
fundamental metrics
tracking.

SLOs are built around
specific user journeys on
specific parts of the service.

Complex SLOs reflect
user happiness
service-wide.

Error budgets Code freezes occur when
SLOs exceed thresholds.

Development accelerates
when the error budget is
right on target.

Review cycles continually
adjust SLOs and
respective error budgets.

Runbooks
Teams record a collection
of steps to use for
common incidents.

Teams use documented
processes that help tackle
more complex issues.

Teams leverage
automated runbooks
that work through steps
quickly and reliably.

Retrospectives
Teams do their best to
document what they can
as they resolve incidents.

Teams set up a system of
writing retrospectives that
include learnings.

Teams use a tool to
automate the process
of building retros and
making improvements.

Culture
A blameless culture is
achieved when resolving
incidents.

People feel safe to make
mistakes and take risks.

Failure is celebrated as
an opportunity to grow,
and everyone learns.

18Bridging the Gap: DevOps to SRE |

Summary

Following the steps in this eBook should help you feel comfortable talking about SRE and how it can
benefit your org. If your team already follows the DevOps approach, then all it takes to get started is to
repurpose existing systems, processes, and tools to give laser focus on reliability. Systems are never
perfect, and neither are humans that build them. There’s room for patience and grace, but there’s
also room for improvement, always. Remember to place end users at the forefront, make data-driven
decisions, and promote systemic growth. Good luck!

Blameless drives reliability across the entire software lifecycle by operationalizing Site Reliability Engineering (SRE) practices.
Teams share a unified context during incident response, efficiently communicate, and resolve faster. Detailed Retrospectives
give teams a data-driven approach to learn and Service Level Objectives (SLOs) inform teams where to prioritize work and
innovate at velocity. Customers include brands such as Procore, Under Armour, Citrix, Mercari, Fox, and Home Depot who
embrace a blameless culture, team resilience, and greater reliability to protect their customers.

Blameless is a 2021 Gartner Cool Vendor recipient and is backed by Accel, Lightspeed, Decibel and Third Point Ventures.
More info: www.blameless.com or LinkedIn, Twitter.

SRE and DevOps terminology can be confusing. Check out this glossary for clear definitions.

http://www.blameless.com/
https://www.linkedin.com/company/blameless/
https://twitter.com/blamelesshq
http://www.blameless.com/glossary

	Life with SRE
	Incident Management
	How to elevate your incident management with SRE
	Your incident response toolbox

	SLOs
	What SLOs can do for you
	What are SLOs
	This sounds pretty tough
	The road to mastering SLOs

	Culture
	What culture can do for you
	Be blameless
	Be holistic
	Put reliability first
	Embrace risk

	Plot Your Maturity
	Summary

