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The Dawn of Artificial Intelligence in Public Life

Health Care

Telecommunication/

Speech RecognitionSelf-Driving Cars

Legal Issues



Artificial Intelligence = Alchemy?
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Major Challenge:

Derive a profound theoretical understanding!
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Key Parameters of SPP 2298

Important Dates:

▶ December 1, 2023: Deadline for Submission

▶ Mai 2+3, 2024: Review

▶ Summer/Fall 2024: Start of Projects

Team:

▶ Martin Burger (DESY): Mathematics

▶ Matthias Hein (U Tübingen): Computer Science

▶ Gitta Kutyniok (LMU Munich): Mathematics

▶ Sebastian Pokutta (ZIB): Mathematics

▶ Ingo Steinwart (U Stuttgart): Statistics



What are the Key Goals of this SPP?



Definition of a Deep Neural Network

Definition:

Assume the following notions:

▶ d ∈ N: Dimension of input layer.

▶ L: Number of layers.

▶ ρ : R → R: (Non-linear) function called activation function.

▶ Tℓ : R
Nℓ−1 → R

Nℓ , ℓ = 1, . . . , L, where Tℓx = W
(ℓ)
x + b

(ℓ)

Then Φ : Rd → R
NL given by

Φ(x) = TLρ(TL−1ρ(. . . ρ(T1(x))), x ∈ R
d ,

is called (deep) neural network (DNN).
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min
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m∑
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L(Φ(W (ℓ),b(ℓ))ℓ
(xi ), f (xi ))

yielding the network Φ(W (ℓ),b(ℓ))ℓ
: Rd → R

NL ,

Φ(W (ℓ),b(ℓ))ℓ
(x) = TLρ(TL−1ρ(. . . ρ(T1(x))).

This is often done by stochastic gradient descent.

Goal: Φ(W (ℓ),b(ℓ))ℓ
(xi ) ≈ f (xi ) for the test data!



Main Research Directions, I

▶ Expressivity:
▶ Which aspects of a neural network architecture affect the performance

of deep learning?

; Applied Harmonic Analysis, Approximation Theory, ...



Main Research Directions, I

▶ Expressivity:
▶ Which aspects of a neural network architecture affect the performance

of deep learning?

; Applied Harmonic Analysis, Approximation Theory, ...

▶ Learning:
▶ Why does stochastic gradient descent converge to good local minima

despite the non-convexity of the problem?

; Algebraic/Differential Geometry, Optimal Control, Optimization, ...



Main Research Directions, I

▶ Expressivity:
▶ Which aspects of a neural network architecture affect the performance

of deep learning?

; Applied Harmonic Analysis, Approximation Theory, ...

▶ Learning:
▶ Why does stochastic gradient descent converge to good local minima

despite the non-convexity of the problem?

; Algebraic/Differential Geometry, Optimal Control, Optimization, ...

▶ Generalization:
▶ Can we derive overall success guarantees (on the test data set)?

; Learning Theory, Probability Theory, Statistics, ...



Main Research Directions, I

▶ Expressivity:
▶ Which aspects of a neural network architecture affect the performance

of deep learning?

; Applied Harmonic Analysis, Approximation Theory, ...

▶ Learning:
▶ Why does stochastic gradient descent converge to good local minima

despite the non-convexity of the problem?

; Algebraic/Differential Geometry, Optimal Control, Optimization, ...

▶ Generalization:
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▶ Safety, Robustness, Interpretability, and Fairness:
▶ How can adversarial attacks be prevented?
▶ How does a trained deep neural network reach a certain decision?
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▶ Inverse Problems:
▶ How do we optimally combine AI-based with model-based approaches?
▶ Is artificial intelligence capable of replacing highly specialized

numerical algorithms in natural sciences?

; Imaging Science, Inverse Problems, Microlocal Analysis, ...

▶ Partial Differential Equations:
▶ Why do AI-based approaches perform well in very high-dimensional

environments?

; Numerical Mathematics, Partial Differential Equations, ...
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Summary

Key Research Areas:

▶ The statistical point of view:

▶ Regarding neural network training as a statistical learning problem.
▶ Studying expressivity, learning, optimization, and generalization.

▶ The applications point of view:

▶ Focusing on safety, robustness, interpretability, and fairness.

▶ The mathematical methodologies point of view:

▶ developing and theoretically analyzing novel deep learning-based
approaches to solve

▶ inverse problems and
▶ partial differential equations.
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Five Key Interconnections:

▶ Computational Efficiency.

▶ How to improve optimization, reduction of overparametrization,...?

▶ Deep Learning with Expert/Physical Knowledge.

▶ How to optimally combine physics with deep learning?

▶ Identification of Limitations of Deep Neural Networks.

▶ Critical assessment for which tasks deep learning is beneficial.

▶ Curse of Dimensionality.

▶ Under which conditions can the curse of dimensionality be overcome by
deep neural networks?

▶ Uncertainty Quantification.

▶ What is the uncertainty of outcome of a deep learning algorithm?
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The research questions to be addressed within this Priority Programme are of a
truly interdisciplinary nature and can only be solved by a joint effort of computer
science, mathematics, and statistics!
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THANK YOU!


