
STAYSAFU
AUDIT
FEBRUARY 20TH, 2023

ShibaZilla

StaySAFU security assessment

TABLE OF CONTENTS

I. SUMMARY

II. OVERVIEW

III. FINDINGS
A. TRSF-1 : transferFrom logic incorrectly implemented

B. AMNT-1: Amounts subtracted and added to balances in _transferStandard

exceed inputs

C. TRSF-2 : Underflow revert is always thrown by _transferStandard

D. BLC-1: balanceOf() returns 0 for large range of balances

E. ADDR-1: Changing dev address should use an acceptance approach

F. TRSF-3: Final logic branch of _transfer() does not do anything

G. SUPP-1:_getcurrentSupply returns the same value regardless of conditional

statement

H. RED-1: If redisFeeonBuy and redisFeeOnSell can never be more than zero

make constant and remove from setFee function

I. RED-2: Rewriting _redisFee and _taxFee is an expensive approach

J. TRSF-4: Use of _tokenTransfer sending to _transferStandard uses gas for no

purpose

K. ROUT-1: Router and Pair variables can be immutable

L. INT-1: Using smaller integers for fees will reduce flexibility of percentages

that can be applied

M. MATH-1: SafeMath does not need to be used after version 0.8.0

N. UINT-1: Uint256 will improve gas efficiency of lockTheSwap()

O. MSG-1: Use msg.sender instead of msgSender() unless expecting forwarders

IV. DISCLAIMER

2

StaySAFU security assessment

AUDIT SUMMARY

This report was written for ShibaZilla in order to find flaws and

vulnerabilities in the ShibaZilla project's source code, as well as any

contract dependencies that weren't part of an officially recognized

library.

A comprehensive examination has been performed, utilizing Static

Analysis, Manual Review, and ShibaZilla Deployment techniques. The

auditing process pays special attention to the following considerations:

❖ Testing the smart contracts against both common and uncommon

attack vectors

❖Assessing the codebase to ensure compliance with current best

practices and industry standards

❖ Ensuring contract logic meets the specifications and intentions of

the client

❖Cross referencing contract structure and implementation against

similar smart contracts produced by industry leaders

❖ Through line-by-line manual review of the entire codebase by

industry expert

3

StaySAFU security assessment

AUDIT OVERVIEW

PROJECT SUMMARY

Project name ShibaZilla

Description BZ EXCHANGE belongs to the US team,
creating crypto currency applications
including Exchange, NFT, payment and P2P
platforms.

Platform BNB Smart Chain

Language Solidity

Codebase https://bscscan.com/address/0x6b6689f4933
6bf8d2ce938c231ad022385c8aa54#code

FINDINGS SUMMARY

Vulnerability Total

● Critical 3

● Major 1

● Medium 0

● Minor 3

● Informational 8

4

StaySAFU security assessment

AUDIT FINDINGS

Code Title Severity

TRSF-1 transferFrom logic incorrectly
implemented ● Critical

AMNT-1 Amounts subtracted and added to
balances in _transferStandard
exceed inputs

● Critical

TRSF-2 Underflow revert is always thrown
by _transferStandard

● Critical

BLC-1 balanceOf() returns 0 for large
range of balances

● Major

ADDR-1 Changing dev address should use
an acceptance approach

● Minor

5

StaySAFU security assessment

TRSF-3 Final logic branch of _transfer()
does not do anything

● Minor

SUPP-1 _getcurrentSupply returns the
same value regardless of
conditional statement

● Minor

RED-1 If redisFeeonBuy and
redisFeeOnSell can never be
more than zero make constant
and remove from setFee
function

● Informational

RED-2 Rewriting _redisFee and _taxFee is
an expensive approach

● Informational

TRSF-4 Use of _tokenTransfer sending to
_transferStandard uses gas for
no purpose

● Informational

ROUT-1 Router and Pair variables can be
immutable

● Informational

INT-1 Using smaller integers for fees will
reduce flexibility of percentages
that can be applied

● Informational

MATH-1 SafeMath does not need to be
used after version 0.8.0

● Informational

UINT-1 Uint256 will improve gas efficiency
of lockTheSwap()

● Informational

MSG-1 Use msg.sender instead of
msgSender() unless expecting
forwarders

● Informational

6

StaySAFU security assessment

TRSF-1 | transferFrom logic incorrectly implemented

Description

The best practice approach for transferFrom is to check the allowance is

more than the amount being spent, subtract the amount being spent

from the allowance, and then transfer the tokens. However, as the

contract transfers the amount before subtracting from the allowance, the

contract would be open to a re-entrancy attack where transfer can be

called indefinitely draining the balance of an account with an allowance

of more than 1 unit.

Recommendation

Call the _approve() function first and then call _transfer to protect against

re-entrancy attacks.

7

StaySAFU security assessment

AMNT-1 | Amounts subtracted and added to balances in
_transferStandard exceed inputs

Description
The logic used in _transferStandard will always lead to a scenario where

the amount being subtracted from the sender is vastly larger than the

amount being sent. In addition, the amount being added to the receiver

account would be vastly larger than the amount being sent.

This stems from the number returned from _getRate() which would be

the 1678146220830669498892333116067940693525651951 using the

values initialized in the construction of the contract. This error is not

triggered due to an underflow risk discussed next but the logic is faulty

and would need to be revised.

For example: if the amount being transferring was 100 (or 100 / 10 ** 9)

then the following outputs would be returned from _getValues dues to

_getRates:

- rAmount = 100 * 1678146220830669498892333116067940693525651951 =

167814622083066949889233311606794069352565195100

- rTransferAmount = 167814622083066949889233311606794069352565195100 -

3356292441661338997784666232135881387051303902 - 0 =

164438319681435600911478745385438257795553851198

Recommendation
Revise the calculation used to add and subtract to balances in

_transferStandard(). The value returned from _getRate() is the cause of

8

StaySAFU security assessment

this critical issue and the following critical issues. To resolve this along

with a series of other issues, the purpose of the calculation will need to

be revisited and the logic will need to be changed to prevent such a

large value being returned that leads to inflated values and rounding

errors (covered in a later point).

9

StaySAFU security assessment

TRSF-2 | Underflow revert is always thrown by

_transferStandard

Description

Due to the large value being returned from _getRate(), the amount that

would be subtracted from the sender in _transferStandard will always

overflow. Taking the example above, the sender would being sending an

amount of 0.000000001 but the amount being subtracted from their

balance would be

167814622083066949889233311606794069352.565195100. This would

mean that there is no way to successfully complete the _transferStandard

function.

Recommendation

Review the logic used in _getRate() to prevent the number that is being

returned from creating an underflow revert.

<code>

10

StaySAFU security assessment

BLC-1 | balanceOf() returns 0 for large range of balances

Description

Another knock-on effect from the faulty _getRate() return value is the

return that would be received when balanceOf() is called. For example if

the balance of the caller is 10,000,000,000.000000 or 10,000,000,000 *

10 **9 then balanceOf would return a value of 0. This is due to the large

value returned from _getRate() leading to a rounding down error, as

there are no floating point numbers in Solidity this means when the

number exceeds the balance in such a large way the value returned will

simply return 0.

Recommendation

Review logic in _getRate().

11

StaySAFU security assessment

ADDR-1 | Changing dev address should use an acceptance
approach

Description

If the transferOwnership transfer uses the wrong address or a zero

address then the owner role would be lost forever for the contract. The

transfer ownership function should check that the input address is not a

zero address and the process should be two steps. The first step would

be nominating an address to take ownership and the second would

allow the nominated accounts to call the acceptOwnership() function for

the transfer to be a success. This will ensure that the account is active

and valid that is accepting ownership of the contract.

Recommendation

Change the setNewDevAddress() function into a two step process with a

transfer function and a separate accept function.

12

StaySAFU security assessment

TRSF-3 | Final logic branch of _transfer() does not do anything

Description

The logic used in the final branch of the _transfer() function rewrites the

redisFee and the taxFee to 0 but as they are set to 0 in the beginning of

the function this logic is only needed if the values are expected to be

non-zero by this point. However, the values are rewritten if from =

uniswapV2Pair and to != address(uniswapRouter) or from =

address(uniswapRouter) and to!= uniswapV2Pair.

As the final branch checks that the from and to do not equal

uniswapV2Pair, this will mean that there are no instances where the

redisFee and taxFee would be any value other than zero in this branch of

the logic. In effect, the logic that is used to rewrite these values would

always be rewriting values that are zero.

Recommendation

Remove the final branch of logic rewriting the values for redisFee and

taxFee.

13

StaySAFU security assessment

SUPP-1 | _getcurrentSupply returns the same value regardless
of conditional statement

Description

The logic in _getCurrentSupply() returns the same values regardless of

the condition statement that is checked. The combinations of returns

are:

(rSupply, tSupply)

(_rTotal, _tTotal)

As rSupply equals _rTotal and tSupply equals _tTotal, there is no need to

use the condition statement as it does not do anything.

Recommendation

Remove the condition if statement and return _rTotal and _tTotal.

Function _getCurrentSupply() private view returns (uint256, uint256) {

return (_rTotal, _tTotal)

}

14

StaySAFU security assessment

RED-1 | If redisFeeonBuy and redisFeeOnSell can never be

more than zero make constant and remove from setFee
function

Description

In the setFee() function there are two checks in place to ensure that the

values for redisFeeOnBuy and redisFeeOnSell are less than 0. If these

values are always expected to be set to zero then there is no need to

pass them into the function or run the check, as it will use gas that is not

needed.

In addition, if these values will always be set to zero then the state

variables can be set to constants.

Recommendation

Remove redisFeeonBuy and redisFeeonSell inputs from setFee(), remove

the require statements, and set the state variables to constants.

Function setFee(

uint256 taxFeeOnBuy,

uint256 taxFeeOnSell

) public onlyDev {

require(taxFeeOnBuy < 4, “string”);

require(taxFeeOnSell < 4, “string”);

_taxFeeOnBuy = taxFeeOnBuy;

_taxFeeOnSell = taxFeeOnSell; }

15

StaySAFU security assessment

RED-2 | Rewriting _redisFee and _taxFee is an expensive
approach

Description

The logic in _transfer() rewrites the state variables of _redisFee and

_taxFee so that they can be used later in the function when _getValues is

called. Although this allows both variables to be used later in the flow

without passing them between the functions, it is a much more

expensive approach as storage will be written to multiple times rather

than initializing a memory variable.

Instead of using the current approach, it would be recommended to

remove _redisFee and _taxFee from state variables and to initialize two

memory variables of the same name in the _transfer() function. These

variables can then be passed down into the following functions to be

used as expected.

Recommendation

Remove _redisFee and _taxFee from state variables. Initialized both

variables as memory in the _transfer() function and pass the variables

down into the following functions.

16

StaySAFU security assessment

uint256 redisFee;

uint256 taxFee;

// Following the branch logic in _transfer()

_tokenTransfer(from, to, amount, redisFee, taxFee);

// _tokenTransfer function

_transferStandard(sender, recipient, amount);

17

StaySAFU security assessment

TRSF-4 | Use of _tokenTransfer sending to _transferStandard
uses gas for no purpose

Description

The logic in _tokenTransfer sends directly to _transferStandard and as

_tokenTransfer() is only called in the _transfer function; there is no need

for two functions to be used. Instead, the _transfer() function can call

_transferStandard directly rather than adding an additional function call

and this will save some gas in the process.

Recommendation

Remove the _tokenTransfer() function and directly call _transferStandard()

to save the unused step and gas.

18

StaySAFU security assessment

ROUT-1 | Router and Pair variables can be immutable

Description

If the values set in the Router and Pair have no logic to be overwritten

they can be saved as immutable values to reduce the gas when they are

used in functions.

Recommendation

Store the Router and Pair values as immutable variables to save gas in

the contract.

19

StaySAFU security assessment

INT-1 | Using smaller integers for fees will reduce flexibility of
percentages that can be applied

Description

The fee logic throughout the contract is denominated in 10s i.e. to

calculate a fee of 20% the value of 2 is used along with multiplying by 10

to get the right outcome. To improve the flexibility of fees in the

contract, we would encourage the use of 100s or 1000s depending on

preference to calculate fees.

For example: by using 100s the fee could be set to 21% or 22% and this

could not be achieved with the current methodology that can only move

in steps of 10%. Using 1000s would increase the accuracy by another

decimal place and depending on preference could be adopted.

Recommendation

Use 100s or 1000s for the fee calculation logic to improve the flexibility

in the range of fees that can be charged. If this is implemented then fee

checks throughout the contract would also need to be scaled up

accordingly i.e. setFee() would need to check if the taxFeeOnBy < 40 if

100s were used or < 400 if 1000s were used.

20

StaySAFU security assessment

MATH-1 | SafeMath does not need to be used after version
0.8.0

Description

The use of SafeMath for calculations on integers is no longer required in

Solidity after version 0.8.0 as underflow and overflow checks are now

completed by default. This means calculates can be done without the

use of this library and it can be removed from imports.

Recommendation

Remove SafeMath from imports and calculate equations without the use

of SafeMath.

21

StaySAFU security assessment

UINT-1 | Uint256 will improve gas efficiency of lockTheSwap()

Description

The logic used in the modifier lockTheSwap() changes the state variables

for inSwap from false to true. However, as the value being changed is a

bool there will be extra gas costs to pad the value to the 32 bytes slot.

To improve the gas efficiency of this function, change inSwap to a

uint256 and toggle the value from a starting point of 1 to 2 - the starting

point of 1 is more gas efficient as it costs significantly less in Solidity to

change a value from a non-zero to non-zero value than from a zero value

to non-zero

Recommendation

Change inSwap to a uint256 to save gas in the modifier and set the

starting point for inSwap to 1:

uint256 private inSwap = 1;

Modifier lockTheSwap() {

inSwap = 2;

_;

inSwap = 1

};

22

StaySAFU security assessment

MSG-1 | Use msg.sender instead of msgSender() unless
expecting forwarders

Description

The msgSender() approach from Context should only be used if the

msg.sender is expected to be a forwarder account and the real

msg.sender has to be retrieved through other means. If this is not

expected to be the case then the simple approach of using msg.sender

should be adopted throughout the contract.

Recommendation

Replace the use of msgSender() with msg.sender throughout the

contract unless the sender is expected to be a forwarder account,

23

StaySAFU security assessment

DISCLAIMER

This report is subject to the terms and conditions (including

without limitation, description of services, confidentiality,

disclaimer and limitation of liability) set forth in the Services

Agreement, or the scope of services, and terms and

conditions provided to the Company in connection with

the Agreement.

This report provided in connection with the Services set

forth in the Agreement shall be used by the Company only

to the extent permitted under the terms and conditions set

forth in the Agreement.

This report may not be transmitted, disclosed, referred to

or relied upon by any person for any purposes without

StaySAFU's prior written consent.This report is not, nor

should be considered, an “endorsement” or “disapproval”

of any particular project or team. This report is not, nor

should be considered, an indication of the economics or

value of any “product” or “asset” created by any team or

project that contracts StaySAFU to perform a security

assessment.

This report does not provide any warranty or guarantee

regarding the absolute bug-free nature of the technology

analyzed, nor do they provide any indication of the

technologies proprietors, business, business model or

legal compliance. This report should not be used in any way

24

StaySAFU security assessment

to make decisions around investment or involvement with

any particular project.

This report in no way provides investment advice, nor

should be leveraged as investment advice of any sort. This

report represents an extensive assessing process intending

to help our customers increase the quality of their code

while reducing the high level of risk presented by

cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a

high level of ongoing risk.

StaySAFU's position is that each company and individual

are responsible for their own due diligence and continuous

security. StaySAFU's goal is to help reduce the attack

vectors and the high level of variance associated with

utilizing new and consistently changing technologies, and

in no way claims any guarantee of security or fun.

25

