
STAYSAFU
AUDIT
JANUARY 12TH, 2023

BOMB Money



StaySAFU security assessment

TABLE OF CONTENTS

I. SUMMARY

II. OVERVIEW

III. FINDINGS

IV. DISCLAIMER

2



StaySAFU security assessment

AUDIT SUMMARY

This report was written for BOMB Money in order to find flaws and

vulnerabilities in the BOMB Money project's source code, as well as any

contract dependencies that weren't part of an officially recognized

library.

A comprehensive examination has been performed, utilizing Static

Analysis, Manual Review, and BOMB Money Deployment techniques.

The auditing process pays special attention to the following

considerations:

❖ Testing the smart contracts against both common and uncommon

attack vectors

❖Assessing the codebase to ensure compliance with current best

practices and industry standards

❖ Ensuring contract logic meets the specifications and intentions of

the client

❖Cross referencing contract structure and implementation against

similar smart contracts produced by industry leaders

❖ Through line-by-line manual review of the entire codebase by

industry expert

3



StaySAFU security assessment

AUDIT OVERVIEW

PROJECT SUMMARY

Project name BOMB Money

Description BOMB Money is on a mission to become the
largest & safest crypto staking platform in the
world. We already have an established DeFi
ecosystem and are preparing for the launch of
our mobile app that will break down the barriers
to DeFi.

Platform …

Language Solidity

Codebase https://github.com/bombchain/bluechip-stak
ing-contracts/

FINDINGS SUMMARY

Vulnerability Total

● Critical 0

● Major 0

● Medium 0

● Minor 5

● Informational 13

4



StaySAFU security assessment

EXECUTIVE SUMMARY

There have been no major or critical issues related to the codebase and

all findings listed here are minor or informational. The major issues that

have been found are centralization of major privileges and dependance

on external protocols.

5



StaySAFU security assessment

AUDIT FINDINGS

Code Title Severity

CON-1 Constructor
● Informational

CLAIM-1 claimAndCompoundMulti
● Informational

GET-1 getTotalEarnedAmount
● Informational

GET-2 getTotalValueAtMaturity
● Informational

GET-3 getTotalYieldAtMaturity
● Informational

GOV-1 governanceRecoverUnsupported
● Informational

DEP-1 deployStake
● Informational

DEPO-1 _deposit
● Informational

WITD-1 _withdraw
● Informational

6



StaySAFU security assessment

ASSET-1 _registerAsset
● Informational

DEP-2 deployFunds
● Informational

RET-1 returnDeployedFunds
● Informational

APPR-1 _approveTokenIfNeeded
● Informational

STAKE-1 stake, _stake
● Minor

WITHD-1 withdraw
● Minor

WITHD-2 withdrawMulti
● Minor

CLAIM-1 claimAndCompound
● Minor

GOV-2 governanceRecoverUnsupported
● Minor

7



StaySAFU security assessment

Contract | Operator.sol
The contract itself is like an Owner.sol which actually inherits
OpenZeppelin’s Ownable.sol. The contract establishes an additional
role, known as the “operator,”, and It can be changed by the owner. The
contract adds new modifiers;

1. onlyOperator
2. onlyOwnerOrOperator

With new functions;

1. operator()
2. isOperator()
3. transferOperator(address newOperator_) (only owner can use.)

Also, this contract adds a new event called “OperatorTransferred” which
gets triggered in the function `transferOperator`. The contract is coded
in a very secure way, and the events are using the “indexed” keyword to
help filter events.

8



StaySAFU security assessment

Contract | StakingPositions.sol
The contract did not show any major vulnerabilities during the audit, and
it was coded according to good practice with the correct variable types,
such as “uint16” for the “PERCENT_DENOMENATOR” variable.
Almost every action is emitted as an event which is good practice.

CON-1 | constructor

Description

Constructs the contract and sets the vault’s owner as operator. There are

7 parameters, I would recommend using a struct that has those

parameters for cleaner code.

9



StaySAFU security assessment

STAKE-1 | stake, _stake

Description
You can set the amounts of tokens you want to stake with “uint256
_amountStaked”. If the “_amountStaked” is “0”, the contract sets it to
your token balance.

If the “_transferStakeToken” variable is set; the staked tokens are
transferred to the vault contract.

After that, the contract mints the sender an NFT token that holds the
staking information of the sender. Then an event called “CreateStake”
gets emitted.

Some of the variables like “totalYieldAtMaturity” and “_yieldAtMaturity”
are calculated without an overflow check. SafeMath for variables like this
is recommended.

There are 6 parameters, I would recommend using a struct for cleaner
code.

The “msg.sender” can set variables like “_transferStakeToken” and
“_allowWithdrawEarly” that can change the staking process. There are
no checks for those variables. The “_fromCompound” variable is
unnecessary and only used to emit an event.

10



StaySAFU security assessment

WITHD-1 | withdraw

Description

The “_user” variable is set by “msg.sender”, that means if the

transaction is coming from a relayer like a proxy contract, the “_user”

variable will be equal to the proxy contract’s address instead of the real

sender. I would recommend using “_msgSender” from OpenZeppelin.

There are no checks for “_isEarlyWithdraw”. The sender can easily

change the parameter and bypass the "Must acknowledge the early

withdraw due to loss of tokens" error.

There are no checks for “allowWithdrawEarly” variable when the “Stake”

struct gets created in the function “_stake”. The sender can easily

bypass the “This position is not eligible for early withdraw” error when

opening a staking position.

With those variables set, the sender can withdraw half of his staked

tokens. I recommend checking or setting the variables in the contract.

Any stake position can be unstaked with this.

“UnstakeTokens” event gets emitted after the process, and the token

that holds the staking info gets burned with “_burn”.

11



StaySAFU security assessment

WITHD-2 | withdrawMulti

Description

Same as “withdraw”, “isWithdrawEarly” parameter is also not checked.

“_tokenIds” are an array but “isWithdrawEarly” is not. There could be

two staking positions with one withdrawn early and one withdrawn after

the stake time has passed but since “isWithdrawEarly” is not an array

they would have the same outcome no matter if one of them is not

withdrawn earlier.

12



StaySAFU security assessment

CLAIM-1 | claimAndCompound

Description

There are no checks for the sender to be equal to the “_user”. Someone

that can predict the stake position’s owner can call this function.

13



StaySAFU security assessment

CLAIM-2 | claimAndCompoundMulti

Description

It’s a helper function to multicall “claimAndCompound” and like the

“withdrawMulti”, not all parameters are arrays.

14



StaySAFU security assessment

GET-1 | getTotalEarnedAmount

GET-2 | getTotalYieldAtMaturity

GET-3 | getTotalValueAtMaturity

Description

The math on those functions has no overflow checks. Calculating

variables with libraries like “SafeMath” are recommended.

15



StaySAFU security assessment

GOV-1 | governanceRecoverUnsupported

Description

The owner or the vault can access to contract’s token balances. They can

withdraw any token anywhere they want.

16



StaySAFU security assessment

Contract | StakingVault.sol

This is the contract that holds the staked tokens. It’s also
“ReentrancyGuard” contract which is good point, and instead of normal
`msg.sender` the contract uses `_msgSender` which allows proxies to
send transactions too.

DEP-1 | deployStake

Description

The parameters are too long. Using a struct for parameters is

recommended for cleaner code.

The variables “_endTime”, “_capacity” and “_stakeToken” should be

checked for invalidness. For example; “_endTime” should be more than

“block.number” and “_stakeToken” shouldn’t be zero address or dead

address.

This function deploys a new “StakingPosition” contract and transfers the

owner.

17



StaySAFU security assessment

DEPO-1 | _deposit

Description

“_stakeAsset.stakedAmount += _amount;” line should be overflow

checked. SafeMath is recommended. “Deposit” event should be

emitted after the tokens are transferred.

Underscores are for private variables or functions but “_deposit”

function is external. It should be renamed as something else.

18



StaySAFU security assessment

WITD-1 | _withdraw

Description

Just like “_deposit”, the calculations should be checked for overflow and

the “Withdraw” event should be emitted after the tokens are

transferred.

19



StaySAFU security assessment

ASSET-1 | _registerAsset

Description

It’s just a helper function to register new assets. The only thing that

might cause a problem is the “active” property of the “StakeAsset”

struct. It’s always true, that if an asset is created with this function It’s

gonna be forced to be active.

20



StaySAFU security assessment

DEP-2 | deployFunds

Description

The event is emitted after the process, that is ok but the calculations still

need an overflow check. SafeMath is recommended.

21



StaySAFU security assessment

RET-1 | returnDeployedFunds

Description

“require(stakeAssets[_stakeId].created > 0, "Stake does not exist");” is

used at the start of so many functions. Converting that to a modifier is

recommended for cleaner code.

“stakePosition.deployedAmount -= _amount;” should be checked for

overflow. SafeMath is recommended.

22



StaySAFU security assessment

APPR-1 | _approveTokenIfNeeded

Description

This function has never been used anywhere and can be removed.

23



StaySAFU security assessment

GOV-2 | governanceRecoverUnsupported

Description

Owner can access to vault contract’s token balance. That means the

owner can withdraw any token in the vault.

24



StaySAFU security assessment

DISCLAIMER

This report is subject to the terms and conditions (including

without limitation, description of services, confidentiality,

disclaimer and limitation of liability) set forth in the Services

Agreement, or the scope of services, and terms and

conditions provided to the Company in connection with

the Agreement.

This report provided in connection with the Services set

forth in the Agreement shall be used by the Company only

to the extent permitted under the terms and conditions set

forth in the Agreement.

This report may not be transmitted, disclosed, referred to

or relied upon by any person for any purposes without

StaySAFU's prior written consent.This report is not, nor

should be considered, an “endorsement” or “disapproval”

of any particular project or team. This report is not, nor

should be considered, an indication of the economics or

value of any “product” or “asset” created by any team or

project that contracts StaySAFU to perform a security

assessment.

This report does not provide any warranty or guarantee

regarding the absolute bug-free nature of the technology

analyzed, nor do they provide any indication of the

25



StaySAFU security assessment

technologies proprietors, business, business model or

legal compliance. This report should not be used in any way

to make decisions around investment or involvement with

any particular project.

This report in no way provides investment advice, nor

should be leveraged as investment advice of any sort. This

report represents an extensive assessing process intending

to help our customers increase the quality of their code

while reducing the high level of risk presented by

cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a

high level of ongoing risk.

StaySAFU's position is that each company and individual

are responsible for their own due diligence and continuous

security. StaySAFU's goal is to help reduce the attack

vectors and the high level of variance associated with

utilizing new and consistently changing technologies, and

in no way claims any guarantee of security or fun.

26


