
STAYSAFU
AUDIT
November 4TH, 2022

TokenBurnable
Pools & ERC20 Tokens

StaySAFU security assessment

TABLE OF CONTENTS

I. SUMMARY

II. OVERVIEW

III. FINDINGS from ERC20 tokens

A. [FIXED]BOOL-1: Returning bool always true

B. [FIXED]-DREW-1: No call limit to

distributeReward

C. [FIXED]-SUP-1: totalSupply cap on token

D. [FIXED]-SUP-2: totalSupply cap on shares

E. [FIXED]AIR-1: Airdrop funds can be sent to

address(0)

F. [FIXED]TRE-1: treasuryFund can be set to

address(0)

G. BLCK-1: Creating variable for

block.timestamp

H. [FIXED]REW-1: Address(0) removable in

claimRewards

IV. FINDINGS from Reward & Genesis Pool

A. [FIXED]INIT-1: Token can be initialized as

2

StaySAFU security assessment

address(0)

B. [FIXED]STT-1: startTime can be adjusted

unlimitedly

C. [FIXED]UNA-1: Unaccounted branch from

lastRewardTime setter

D. [FIXED]LREW-1: Unneeded logic in

lastRewardTime sub-branch

E. [FIXED]LREW-2: Ability to set lastRewardTime

to uncapped future date

F. [FIXED]ISST-1: isStarted bool always resolves

to tru

G. BLCK-2: Using an input for block.timestamp

H. [FIXED]POOL-1: Pool total rewards update

miscalculating

I. INIT-2: Initializing msg.sender as memory

variable

J. [FIXED]DIST-1: Insufficient reward distribution

possibility

K. [FIXED]LOOP-1: For loop initialized value

that is default

3

StaySAFU security assessment

L. [FIXED]OPE-1: operator can be set to

address(0)

V. GLOBAL SECURITY WARNINGS

VI. DISCLAIMER

4

StaySAFU security assessment

AUDIT SUMMARY

This report was written for ToeknBurnable in order to find flaws and

vulnerabilities in the ToeknBurnable project's source code, as well as any

contract dependencies that weren't part of an officially recognized

library.

A comprehensive examination has been performed, utilizing Static

Analysis, Manual Review, and ToeknBurnable Deployment techniques.

The auditing process pays special attention to the following

considerations:

❖ Testing the smart contracts against both common and uncommon

attack vectors

❖Assessing the codebase to ensure compliance with current best

practices and industry standards

❖ Ensuring contract logic meets the specifications and intentions of

the client

❖Cross referencing contract structure and implementation against

similar smart contracts produced by industry leaders

❖ Through line-by-line manual review of the entire codebase by

industry expert

5

StaySAFU security assessment

AUDIT OVERVIEW

PROJECT SUMMARY

Project name ToeknBurnable

Description Numbers betting game and a clone of
tombfork (bomb.money) farm, stake and
bond.

Platform TBD

Language Solidity

Codebase Pools and supporting ERC20 tokens

FINDINGS SUMMARY

Vulnerability Total

● Critical 1

● Major 4

● Medium 6

● Minor 9

● Informational 0

6

StaySAFU security assessment

EXECUTIVE SUMMARY

ToeknBurnable is building a series of incentivized pools, where users can

deposit tokens in exchange for rewards. The pools are initialized by the

operator and freely interacted with by users to deposit, withdraw, and

claim rewards through these actions. Each individual pool is limited to a

single token and the reward distribution is based on a combination of

per second reward rate and the proportion of total reward allocation

assigned to each pool.

The share and token contracts follow the ERC20 standard with additional

logic such as querying prices and distributing rewards.

There have been a series of major issues related to the codebase

highlighted through the audit. The major issues that were found include:

- Possible initialisation of zero addresses without setter to change

state variables.

- Double counting risks if pools are activated in a loop in the reward

calculation logic.

- Insufficient underlying token balance leading to rewards being

distributed to users incorrectly.

- No call limits on reward distribution of ERC20 token, which could

lead to key stakeholders being remunerated more than once.

7

StaySAFU security assessment

AUDIT FINDINGS

Code Title Severity

BOOL-1 Returning bool always true
● Minor

DREW-1 No call limit to distributeReward
● Major

SUP-1 totalSupply cap on token
● Minor

SUP-2 totalSupply cap on shares
● Minor

AIR-1 Airdrop funds can be sent to

address(0) ● Medium

8

StaySAFU security assessment

TRE-1 treasuryFund can be set to address(0) ● Medium

BLCK-1 Creating variable for block.timestamp
● Minor

REW-1 Address(0) removable in claimRewards
● Minor

INIT-1 Token can be initialized as address(0)
● Critical

STT-1 startTime can be adjusted unlimitedly
● Minor

UNA-1 Unaccounted branch from

lastRewardTime setter ● Medium

LREW-1 Unneeded logic in lastRewardTime

sub-branch ● Medium

LREW-2 Ability to set lastRewardTime to

uncapped future date ● Medium

ISST-1 isStarted bool always resolves to true
● Medium

BLCK-2 Using an input for block.timestamp
● Minor

POOL-1 Pool total rewards update

miscalculating ● Major

INIT-2 Initializing msg.sender as memory

variable ● Minor

9

StaySAFU security assessment

DIST-1 Insufficient reward distribution

possibility ● Major

LOOP-1 For loop initialized value that is default
● Minor

OPE-1 Operator can be set to address(0)
● Major

10

StaySAFU security assessment

[FIXED] FINDINGS for Tokens

[FIXED] BOOL-1 | Returning bool always true

Description

The mint function returns a bool if the balanceAfter is more than before,

which should always be the case if the ERC20 implementation being

used follows standard practice. The logic to get the balances and then

return the bool is not required as a successful _mint call would always

result in the balance being more than before.

Recommendation

Remove the logic to get balances and return true if desired:

mint(recipient, amount_);
return true;

11

StaySAFU security assessment

[FIXED] DREW-1 | No call limit to distributeReward

Description
The distribute reward function does not check if rewardPoolDistributed is

true, which means it can be called multiple times to distribute the

defined reward pools to each party. This could drastically inflate the

supply of tokens and there should be a check in place to prevent it.

Recommendation
Add bool check when the function is called to ensure

rewardPoolDistributed is false.

require(!rewardPoolDistributed, “REWARDS_SENT”);

12

StaySAFU security assessment

[FIXED] SUP-1 | totalSupply cap on token contract

Description

There is no cap on the total supply being imposed by the mint function,

which may be the desired functionality. However, if there is a desire to

add a supply cap then the logic will need to be added to as a state

variable and to the mint function as a check before minting.

Recommendation

Add MAX_SUPPLY constant to state variables.

Uint256 public constant MAX_SUPPLY = <number>;

Add total supply check to the mint function

require(totalSupply() + amount_ < MAX_SUPPLY, “MAX_REACHED”);

13

StaySAFU security assessment

[FIXED] SUP-2 | totalSupply cap on shares

Description

There is no cap on the total supply being imposed by the mint function,

which may be the desired functionality. However, if there is a desire to

add a supply cap then the logic will need to be added to as a state

variable and to the mint function as a check before minting.

Recommendation

Add MAX_SUPPLY constant to state variables:

Uint256 public constant MAX_SUPPLY = <number>;

Add total supply check to the mint function:

require(totalSupply() + amount_ < MAX_SUPPLY, “MAX_REACHED”);

14

StaySAFU security assessment

[FIXED] AIR-1 | Airdrop funds can be sent to address(0)

Description

There are checks that the office and genesis pool are not zero addresses

in the distributeReward() function but there are no checks for airdrop.

This will mean that the airdrop tokens could be sent to the zero address

and would be unrecoverable.

Recommendation

Add address(0) check to distributeReward() function:

require(_air_drop != address(0), “!_airdrop”);

15

StaySAFU security assessment

[FIXED] TRE-1 | treasuryFund can be set to address(0)

Description

There are no checks to ensure the new address being used for the

treasuryFund in setTreasuryFund() is not a zero address. This means, the

treasuryFund could be set incorrectly via the setter, which is preventable.

Recommendation

Add check that the communityFund input is not a zero address

require(_communityFund != address(0), “!_communityFund”);

16

StaySAFU security assessment

BLCK-1 | Creating variable for block.timestamp

Description

In the unclaimedTreasuryFund() and unclaimedDevFund() functions the

_now memory variable is initialized and used to store block.timestamp.

This uses extra gas and is not required as block.timestamp can be used

in its place throughout the function.

Recommendation

Use block.timestamp for all inputs and remove the initialization of _now

require(_communityFund != address(0), “!_communityFund”);

17

StaySAFU security assessment

[FIXED] REW-1 | Address(0) removable in claimRewards

Description

The claimRewards() function checks if the communityFund and devFund

are set to address(0) before acting. This logic could be removed if the

address(0) checks are added to all setters for devFund and

communityFund, as each state variable will be initialized correctly in the

constructor and if they are changed in a setter the value could never be

set to a zero address.

Recommendation

Remove the zero address checks (if address(0) require checks are added

to the setters for community fund and dev fund)

if(pending > 0) {}

18

StaySAFU security assessment

[FIXED] FINDINGS for Reward & Genesis Pools

The code being used for reward and genesis pools resemble each other,
as the baseline functionality is the same. In order to reduce repetition,
the issues highlighted are prefaced with the comment that they can be
found in both contracts. Each of these cases also have two
recommendations referred to each contract.

[FIXED] INIT-1 | Token can be initialized as address(0)

Description

This issue is found in both contracts.

In the constructor in Rewards Pool, the LCS token state variable will be
initialized as a zero address if the address being input is a zero address -
as by default the lcs state variable is a zero address. This would make the
safeLCSTransfer function redundant as the lcs.safeTransfer call will be to
a zero address.

There are no address setters in the contract, meaning if the contract is

deployed with a zero address then user rewards will be blocked

safeLCSTransfer is unable to be used.

In the constructor in Genesis Pool, the LCK token state variable will be
initialized as a zero address due to the same reasons as above. The
safeLCKTransfer function will also experience the same error.

Recommendation

Add require check that _lcs is not zero address in Reward Pool
require(_lcs != address(0), “BAD_ADDR”);

19

StaySAFU security assessment

Add require check that _lck is not zero address in Genesis Pool
require(_lck != address(0), “BAD_ADDR”);

20

StaySAFU security assessment

[FIXED] STT-1 | startTime can be adjusted unlimitedly

before startTime has passed

Description

This issue is found in both contracts.

The setStartTime() function in Reward Pool does not check if the
startTime does not equal a zero value or if a bool such as startTimeSet.
This means that the startTime can be changed an unlimited amount of
times until the current time is more than its value.

This may be a feature that is desired by the team, to enable
customisation to startTime if it has been set and timings changes.
However, if it is not a desired feature then it should be edited.

In Genesis Pool, the startTime can be adjusted due to the same reasons
as above.

Recommendation

Add require check if poolStartTime equals 0 in Reward Pool
require(poolStartTime == 0, “ALREADY_SET”);

Add require check if poolStartTime equals 0 in Genesis Pool
require(poolStartTime == 0, “ALREADY_SET”);

21

StaySAFU security assessment

[FIXED] LREW-1 | Unneeded logic in lastRewardTime

sub-branch

Description

This issue is found in both contracts.

In Reward Pool, add() is called and the lastRewardTime is set based on
the relationship between block.timestamp and poolStartTime. The first if
statement checks whether the timestamp is less than poolStartTime and
provides two sub branches that both set lastRewardTime to
poolStartTime if true.

These branches are: (1) if lastRewardTime is zero then set to
poolStarttime, and (2) if lastRewardTime is less than poolStartTime then
set to poolStartTime.

As this logic is repeated, we can remove the sub-branches and set the
lastRewardTime to poolStartTime if block.timestamp is less than
poolStartTime.

In Genesis Pool, the same repeated logic issue exists.

Recommendation

Remove the sub-branch logic from the first if statement in Reward Pool
if(block.timestamp < poolStartTime) {

_lastRewardTime = poolStartTime;
}

Remove the sub-branch logic from the first if statement in Genesis Pool

if(block.timestamp < poolStartTime) {
_lastRewardTime = poolStartTime;

}

22

StaySAFU security assessment

[FIXED] UNA-1 | Unaccounted branch from

lastRewardTime setter

Description

This issue is found in both contracts.

In the add function, the logic that sets the lastRewardTime does not
account for a scenario. If the current time is less than poolStartTime and
the lastRewardTime is more than poolStartTime then the value used for
lastRewardTime will remain unchanged.

This means when the isStarted bool check occurs, isStarted will be set to
true even though the poolStartTime is less than the block.timestamp. By
condensing the logic, as suggested in X-4 we are able to prevent this
from happening. As if the block.timestamp is less than poolStartTime,
the lastRewardTime will always be set to poolStartTime.

In Genesis Pool, the same unaccounted branch exists.

Recommendation

Remove the sub-branch logic from the first if statement in Reward Pool
as suggested above:
if(lastRewardTime < poolStartTime) {

lastRewardTime = poolStartTime;
}

Remove the sub-branch logic from the first if statement in Genesis Pool

as suggested above:
23

StaySAFU security assessment

if(block.timestamp < poolStartTime) {
_lastRewardTime = poolStartTime;

}

24

StaySAFU security assessment

[FIXED] LREW-2 | Ability to set lastRewardTime to

uncapped future date

Description

This issue is found in both contracts.

In the else branch of add(), where block.timestamp does not equal
poolStartTime we set lastRewardTime. We check if lastRewardTime
equals 0 or if it is less than block.timestamp and if either case is true
then lastRewardTime is set to block.timestamp.

However, if lastRewardTime is more than block.timestamp then it will not
be changed. This means it could be set to an unrestricted future time
that is beyond the endTime for the raffle.

This may be purposeful design, however, it’s unclear why it would be the
case. If lastRewardTime is set to a time after the endTime then the logic
for updates will not work as fromTime would always be more than
block.timestamp within the timeframe up to poolEndTime.

In Genesis Pool, the same ability to bypass both trees of logic exists.

Recommendation

If block.timestamp is more than poolStartTime then set lastRewardTime
to the block.timestamp in RewardPool
else {

_lastRewardTime = block.timestamp
}

If block.timestamp is more than poolStartTime then set lastRewardTime
to the block.timestamp in RewardPool

25

StaySAFU security assessment

else {
_lastRewardTime = block.timestamp

}

26

StaySAFU security assessment

[FIXED] ISST-1 | isStarted bool always resolves to

true

Description

This issue is found in both contracts.

When add() is called, the isStarted time bool is set based on whether the
lastRewardTime is less or equal to poolStartTime or the lastRewardTime
is less than block.timestamp.

The if statements before this setter either set lastRewardTime to
block.timestamp or to poolStartTime meaning the check always results in
true. This is only bypassed in the case highlighted above where the
lastRewardTime can be set to an uncapped future date.

If the desired outcome is to always set isStarted to true then this should
be done rather than using additional logic. However if isStarted should
be set to true or false in different cases then the logic must be changed.

In Genesis Pool, isStarted also always results in being true.

Recommendation

Set bool to true without checks if desired or adjust the isStarted logic to
result in different outcomes in Reward Pool.

Set bool to true without checks if desired or adjust the isStarted logic to
result in different outcomes in Genesis Pool.

27

StaySAFU security assessment

BLCK-2 | Using an input for block.timestamp

Description

This issue is found in both contracts.

The variable of _toTime is passed into getGeneratedRewards() function
and in all of the cases where this function is called block.timestamp is
used. This is understandable if the purpose is to make the code more
readable, however, if using less gas is an important factor then using
block.timestamp and removing the additional input variable from the
function is suggested.

In the Genesis Pool, the same is true for getGeneratedReward() inputs.

Recommendation

Remove input from function parameters and change all instances
_toTime is used to block.timestamp in Reward Pool:
Function getGeneratedReward(uint256 _fromTime) public view returns (uint256) {}

Remove input from function parameters and change all instances
_toTime is used to block.timestamp in Genesis Pool:
Function getGeneratedReward(uint256 _fromTime) public view returns (uint256) {}

28

StaySAFU security assessment

[FIXED] POOL-1 | Pool total rewards update

miscalculating

Description

This issue is found in both contracts.

When updatePool() is called it will check if the pool has been started and
if it has not the pool’s allocPoint value will be added to totalAllocPoint.
In the scenario where updatePool() is being called for the first time
where block.timestamp is more than poolStartTime, the allocPoint total
for the first pool being iterated on will be added to totalAllocPoint.

This will then repeat as each consecutive pool is iterated on and the
totalAllocPoint value will increase. However, the calculation for rewards
will always result in an incorrect value being returned.

For example: the first pool has an allocPoint of 1 and pool 2 has an
allocPoint of 9. As we iterated on the first pool, the totalAllocPoint will
change from 0 to 1 and the following if statement checking if
totalAllocPoint > 0 will be true.

The _lcsReward calculation will take rewards per second up to the
block.timestamp, multiply them by the pool’s allocPoint, and divide the
result by totalAllocPoint. At this stage, only pool’s allocPoint has been
added to totalAllocPoint meaning the full rewards for the period passed
will be allocated to pool 1.

This error will repeatedly occur until the final pool’s allocPoint value is
added to totalAllocPoint. This means the wrong amount of rewards will
be allocated to each pool each time and a double counting issue will
occur. As the first pool receives all rewards for T1 and the second pool

29

StaySAFU security assessment

may receive 9/10 of rewards for T1 (i.e. 1.9x rewards has been paid at
this stage). This could be prevented if the totalAllocPoint was added to
when pools are created in the add() function.

In the Genesis Pool, the same issue exits.

Recommendation

Add to the totalAllocPoint state variable when each pool is added in
add(). Do this by removing the if (_isStarted) {} check Reward and
Genesis Pool:
totalAllocPoint = totalAllocPoint.add(_allocPoint);

Remove the totalAllocPoint addition logic in the !pool.isStarted branch
of the updatePool function in Reward and Genesis Pool:
if(!pool.isStarted) {

pool.isStarted = true;
}

As block.timestamp will only be less than the lastRewardTime if we have
not passed startTime or if an update has just happened, we can assume
that the rest of the logic should be executed. Meaning, we remove the if
statement and execute the reward logic in Reward and Genesis Pool.

30

StaySAFU security assessment

INIT-2 | Initializing msg.sender as memory variable

Description

This issue is found in both contracts.

In the deposit() and withdraw() functions the msg.sender is set to a
memory variable and used to pass into mappings and functions. This will
make the function more costly in gas terms and the msg.sender can be
used in place of the newly initialized memory variable name sender.

In Genesis Pool, the same use of a memory variable occurs.

Recommendation

Use msg.sender instead of the initialized variable sender in deposit() and
withdraw() in Reward Pool.

Use msg.sender instead of the initialized variable sender in deposit() and
withdraw() in Genesis Pool.

31

StaySAFU security assessment

[FIXED] DIST-1 | Insufficient reward distribution

possibility

Description

This issue is found in both contracts.

The lcsTransfer logic checks if the balance of lcs is more than zero and if
the amount being requested is more than lcs balance, the balance is
transferred instead. As this function is called to distribute pending
rewards on deposits and withdrawals, the user may have 100 rewards
pending but if the balance of lcs is 10 then this amount would be sent.
As there are no checks, the user has been sent the incorrect amount but
the contract believes the transaction was successful.

In Genesis Pool, the same issue occurs in safelckTransfer.

Recommendation

Add require statement that the _lcsBal is more than _amount and
remove the checks in Reward Pool:
require(lcs.balanceOf(address(this)) > _amount, “NO_BALANCE”);
lcs.safeTransfer(_to, _amount)

Add require statement that the _lcsBal is more than _amount and
remove the checks in Genesis Pool:
require(lck.balanceOf(address(this)) > _amount, “NO_BALANCE”);
lck.safeTransfer(_to, _amount)

32

StaySAFU security assessment

[FIXED] LOOP-1 | For loop initialized value that is

default

Description

This issue is found in both contracts.

The value for PID is initialized to equal 0 in a series of for loops.This logic
is not required as the default value for a newly initialized uint is 0, which
means it can be removed.

In Genesis Pool, the same issue occurs.

Recommendation

Remove the initialization of PID equals 0 in Reward and Genesis Pool:
for(uint256 pid; pid < length; ++pid) {}

33

StaySAFU security assessment

[FIXED] OPE-1 | Operator can be set to address(0)

Description

In Genesis Pool, the setOperator function does not check if the
_operator input is a zero address. This means that the operator could be
set to a zero address and all functions that require operator status would
no longer be accessible. To prevent this, a require statement is needed
to check the input before the new value is set.

Recommendation

Add require check that the _operator input is not a zero add
require(_operator != address(0), “INVALID_ADDR”);

34

StaySAFU security assessment

Global security warnings

These are safety issues for the whole project. They are not necessarily
critical problems but they are inherent in the structure of the project
itself. Potential attack vectors for these security problems should be
monitored.

DISCLAIMER

This report is subject to the terms and conditions (including

without limitation, description of services, confidentiality,

disclaimer and limitation of liability) set forth in the Services

Agreement, or the scope of services, and terms and

conditions provided to the Company in connection with

the Agreement.

This report provided in connection with the Services set

forth in the Agreement shall be used by the Company only

to the extent permitted under the terms and conditions set

forth in the Agreement.

This report may not be transmitted, disclosed, referred to

or relied upon by any person for any purposes without

StaySAFU's prior written consent.This report is not, nor

should be considered, an “endorsement” or “disapproval”

of any particular project or team. This report is not, nor

should be considered, an indication of the economics or

value of any “product” or “asset” created by any team or

project that contracts StaySAFU to perform a security

assessment.

35

StaySAFU security assessment

This report does not provide any warranty or guarantee

regarding the absolute bug-free nature of the technology

analyzed, nor do they provide any indication of the

technologies proprietors, business, business model or

legal compliance. This report should not be used in any way

to make decisions around investment or involvement with

any particular project.

This report in no way provides investment advice, nor

should be leveraged as investment advice of any sort. This

report represents an extensive assessing process intending

to help our customers increase the quality of their code

while reducing the high level of risk presented by

cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a

high level of ongoing risk.

StaySAFU's position is that each company and individual

are responsible for their own due diligence and continuous

security. StaySAFU's goal is to help reduce the attack

vectors and the high level of variance associated with

utilizing new and consistently changing technologies, and

in no way claims any guarantee of security or fun.

36

STAYSAFU
AUDIT
November 4TH, 2022

TokenBurnable Manager &
Raffle

StaySAFU security assessment

TABLE OF CONTENTS

I. SUMMARY

II. OVERVIEW

III. FINDINGS

A. GET-1: getPrice in IManager interface is a
function that is not used

B. RAF-1: raffleTotal is iterating on completed
raffles rather than raffles created

C. SET-1: setState function unused and only
callable by the deployer contract

D. DUP-1: Duplicate check in claimRewards
E. WRG-1: Possible wrong address being used

for transfer
F. ITEM-1: Unused itemID logic for

randomness
G. ID-1: ID limit check imposed but multiple

transactions are not prevented
IV. GLOBAL SECURITY WARNINGS

V. DISCLAIMER

2

StaySAFU security assessment

AUDIT SUMMARY

This report was written for ToeknBurnable in order to find flaws and

vulnerabilities in the ToeknBurnable project's source code, as well as any

contract dependencies that weren't part of an officially recognized

library.

A comprehensive examination has been performed, utilizing Static

Analysis, Manual Review, and ToeknBurnable Deployment techniques.

The auditing process pays special attention to the following

considerations:

❖ Testing the smart contracts against both common and uncommon

attack vectors

❖Assessing the codebase to ensure compliance with current best

practices and industry standards

❖ Ensuring contract logic meets the specifications and intentions of

the client

❖Cross referencing contract structure and implementation against

similar smart contracts produced by industry leaders

❖ Through line-by-line manual review of the entire codebase by

industry expert

3

StaySAFU security assessment

AUDIT OVERVIEW

PROJECT SUMMARY

Project name ToeknBurnable

Description Numbers betting game and a clone of
tombfork (bomb.money) farm, stake and
bond.

Platform TBD

Language Solidity

Codebase Raffle and Manager contracts

FINDINGS SUMMARY

Vulnerability Total

● Critical 0

● Major 0

● Medium 1

● Minor 5

● Informational 1

4

StaySAFU security assessment

EXECUTIVE SUMMARY

ToeknBurnable Raffle & Manager are two interoperating smart contracts

used to launch and manage a series of raffles. The Manager contract

acts as the deployer, manager, and admin for all Raffle contracts

deployed. Whilst the Raffle contract manages tickets purchased, winner

outcomes, and reward distribution to the randomized winners.

The source of randomness used for each raffle is Chainlink, which is

queried via the Manager contract, and the returned value is used to

update Raffle. Raffle’s are closed in the random number query process,

and the value received is used to choose the winner by finding the link

between the tokenID and address.

There have been no major or critical issues related to the codebase, and

all findings listed here are medium or minor. The medium issue

highlighted is a possible misuse of address based on the developer

notes whilst the minor issues related to unused functions and, in some

cases, require further clarification to confirm they need to be resolved.

5

StaySAFU security assessment

AUDIT FINDINGS

Code Title Severity

GET-1 getPrice in IManager interface is a

function that is not used

● Minor

RAF-1 RaffleTotal is iterating on completed

raffles rather than raffles created

● Minor

SET-1 setState function unused and only callable

by the deployer contract

● Minor

DUP-1 Duplicate check in claimRewards ● Minor

WRG-1 Possible wrong address being used for

transfer ● Medium

6

StaySAFU security assessment

ITEM-1 Unused itemID logic for randomness ● Info

ID-1 Id limit check imposed but multiple

transactions are not prevented

● Minor

7

StaySAFU security assessment

GET-1 | getPrice in IManager interface is a function

that is not used

Description

The IManager interface contains the logic for a getPrice function,
however, it is not used in the logic of Raffle or Manager. If this function is
not used throughout the contracts then it is possible to remove it.

Recommendation

Remove the getPrice logic from the interface

8

StaySAFU security assessment

RAF-1 | RaffleTotal is iterating on completed raffles

rather than raffles created

Description

The raffleTotal state variable is iterated when a raffle is completed, which

may be the desired functionality. However, if the total is supposed to

track raffles created rather than those that are successfully completed

then it should be iterated on in createRaffle rather than resultRandom.

Recommendation

Move the iteration logic to createRaffle if the desire is to track created

raffles rather than completed raffles.

9

StaySAFU security assessment

SET-1 | setState function unused and only callable by

the deployer contract

Description

The setState function in Raffle is only callable by the deployer contract,

as it has a modifier restricting use to only the manager address.

However, the Manager contract does not hold any logic that calls

setState, which means the function can be removed.

Recommendation

If there is no intent to use setState then remove the setState function

10

StaySAFU security assessment

DUP-1 | Duplicate check in claimRewards

Description

The msg.sender is compared with the winner in the claimRewards

function to ensure the caller is eligible to receive rewards. However, the

state of closed is also checked.

In the case that there is a winner, the winner state variable will change

from address(0) to a valid address and closed will be true. In the case

there is no winner, the winner variable will be a zero address as it’s

initialized to its default value and closed will be true.

Checking if the winner equals msg.sender should prevent exploits, as

the winner will either be the correct address or address(0). Meaning the

check of closed will always be true when the msg.sender is the winner

and it will never be checked if the msg.sender is not the winner. In effect,

the logic does not have any cases where it will revert and can be

removed.

Recommendation

Remove the require check for the closed variable in claimReward().

11

StaySAFU security assessment

WRG-1 | Possible wrong address being used for

transfer

Description

The notes in the Raffle contract suggest that the transferFrom call in the

tokenTransfer function is supposed to transfer the fee and the total

amount to the office. If this is the case, address(this) is being used in the

second transfer call and it should be changed to office instead.

Recommendation

Change address(this) to _office in tokenTransfer().

require(IERC20(token).transferFrom(msg.sender, _office, total.sub(fee)), “error”);

12

StaySAFU security assessment

ITEM-1 | Unused itemID logic for randomness

Description

The winner is selected based on a random number received from

chainlink. Whilst the user has the option to choose numbers for their

raffle tickets (itemID) which I assume are inferred to be used in the

selection process of the winner.

However, the random number received from Chainlink is actually used to

select a winner from an NFT token ID that links to a user rather than a

raffle ticket number (itemID).

In practice, the probability the user will have to win will remain the same

regardless of the numbers they have chosen and from a UI perspective

this would also not cause any issues. From an implementation

perspective, buying 10 tickets as a user using a randomized list of

numbers would lead to 10 consecutively numbered NFTs being minted

rather than having a distributed number of tickets as expected from a

raffle.

13

StaySAFU security assessment

ID-1 | ID limit check imposed but multiple transactions

are not prevented

Description

There is a limit that is imposed on the number of IDs being input on the

mint function. However, if the limit that checks ids.length is less than 6 is

supposed to be used to prevent the user from having more than 5

tickets in total for a raffle then it will need to be adjusted.

This is because a user can call the function multiple times in different

blocks to accumulate more than 5 tickets. There is currently no

totalTickets count being linked to the sender to restrict access otherwise.

Recommendation

If a ticket limit is desired then query the balanceOf the sender and

require it is less than 6 plus the amount being minted

require(balanceOf(msg.sender) + ids.length < 6, “MAX_NUM”);

14

StaySAFU security assessment

Global security warnings

These are safety issues for the whole project. They are not necessarily
critical problems but they are inherent in the structure of the project
itself. Potential attack vectors for these security problems should be
monitored.

15

StaySAFU security assessment

DISCLAIMER

This report is subject to the terms and conditions (including

without limitation, description of services, confidentiality,

disclaimer and limitation of liability) set forth in the Services

Agreement, or the scope of services, and terms and

conditions provided to the Company in connection with

the Agreement.

This report provided in connection with the Services set

forth in the Agreement shall be used by the Company only

to the extent permitted under the terms and conditions set

forth in the Agreement.

This report may not be transmitted, disclosed, referred to

or relied upon by any person for any purposes without

StaySAFU's prior written consent.This report is not, nor

should be considered, an “endorsement” or “disapproval”

of any particular project or team. This report is not, nor

should be considered, an indication of the economics or

value of any “product” or “asset” created by any team or

project that contracts StaySAFU to perform a security

assessment.

This report does not provide any warranty or guarantee

regarding the absolute bug-free nature of the technology

analyzed, nor do they provide any indication of the

technologies proprietors, business, business model or

legal compliance. This report should not be used in any way

16

StaySAFU security assessment

to make decisions around investment or involvement with

any particular project.

This report in no way provides investment advice, nor

should be leveraged as investment advice of any sort. This

report represents an extensive assessing process intending

to help our customers increase the quality of their code

while reducing the high level of risk presented by

cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a

high level of ongoing risk.

StaySAFU's position is that each company and individual

are responsible for their own due diligence and continuous

security. StaySAFU's goal is to help reduce the attack

vectors and the high level of variance associated with

utilizing new and consistently changing technologies, and

in no way claims any guarantee of security or fun.

17

