
STAYSAFU
AUDIT
MARCH 12TH, 2022

THE TAVERN

StaySAFU security assessment

TABLE OF CONTENTS

I. SUMMARY

II. OVERVIEW

III. FINDINGS

A. MSG-1 : Unclear error message

B. MSG-3 : Error message too long

C. LOG-1 : Logic programming error

D. BLOC-1 : Use of block.timestamp

E. COMP-1 : Unfixed version of compiler

F. THRE2a : Missing threshold in major function

G. THRE2b : Missing threshold in major function

H. CENT-1 : Centralization of major privileges

I. EXT-1 : Dependence on an external protocol

IV. GLOBAL SECURITY WARNINGS

V. DISCLAIMER

2

StaySAFU security assessment

AUDIT SUMMARY

This report was written for The Tavern in order to find flaws and

vulnerabilities in the The Tavern project's source code, as well as any

contract dependencies that weren't part of an officially recognized

library.

A comprehensive examination has been performed, utilizing Static

Analysis, Manual Review, and The Tavern Deployment techniques. The

auditing process pays special attention to the following considerations:

❖ Testing the smart contracts against both common and uncommon

attack vectors

❖Assessing the codebase to ensure compliance with current best

practices and industry standards

❖ Ensuring contract logic meets the specifications and intentions of

the client

❖Cross referencing contract structure and implementation against

similar smart contracts produced by industry leaders

❖ Through line-by-line manual review of the entire codebase by

industry expert

3

StaySAFU security assessment

AUDIT OVERVIEW

PROJECT SUMMARY

Project name THE TAVERN

Description The Tavern is a passive income protocol that
improves upon current node projects, by
combining gamification, NFTs and a
treasury-backed token to reward participants
sustainably over the long term.

Platform Avalanche

Language Solidity

Codebase https://github.com/TavernInnkeeper/tavern-s
mart-contracts/tree/update/contracts

FINDINGS SUMMARY

Vulnerability Total

● Critical 0

● Major 0

● Medium 1

● Minor 4

● Informational 3

4

StaySAFU security assessment

EXECUTIVE SUMMARY

The Tavern is a passive income protocol based on gamification, NFTs

and passive income. The core token of the project is the Mead (MEAD)

(ERC20 token), which will be launched with a total supply of 2500000.

The initial supply will be divided as follows :

● 54% for rewards reserve (including 10% for LP Rewards)

● 10% for treasury reserve

● 16% for whitelist presale

● 20% for liquidity

The project is also powered by the Brewery (BREWERY) NFT. Holding

Brewery rewards you with a certain amount of Mead. Brewery is an

upgradeable NFT since you can change its name, gain experience with it

(which increases the number of Mead it earns via a tier system), and

trade it on the open market. When purchasing a BREWERY, the fees will

be split as follows :

● 70% goes to the rewards pool

● 30% goes to the treasury

When claiming Mead from Brewery, the holder will be taxed at a fixed

rate (between 12% and 18%) based on its reputation. Brewers reputation

is a type of experience system that rewards brewers for continued

beneficial participation in the protocol.

There have been no major or critical issues related to the codebase and

all findings listed here are informational, minor or medium security

issues. The major security problem is the centralization of privileges.

5

StaySAFU security assessment

AUDIT FINDINGS

Code Title Severity

CENT-1 Centralization of major privileges ● Medium

BLOC-1 Usage of block.timestamp ● Minor

THRE-2a Missing threshold for major
function

● Minor

THRE-2b Missing threshold for major
function

● Minor

COMP-1 Unfixed version of compiler ● Minor

LOG-1 Logical programming error ● Informational

MSG-3 Error message too long ● Informational

MSG-1 Unclear error message ● Informational

6

StaySAFU security assessment

MSG-1 | Unclear error message

Description

Some of the error messages in the smart contract are unclear or badly

formulated. In order to optimize error handling and project maintenance,

we recommend using the clearest possible error messages.

1 error of this type has been found in xMEAD.sol.

1 error of this type has been found in Mead.sol.

Recommendation

We recommend replacing these ambiguous messages with clearer ones :

//Edited code with clearer error messages in xMEAD.sol

//l71

require(account != address(0), "Cannot redeem from zero

address");

//Edited code with clearer error messages in Mead.sol

//l156 (we recommend splitting this require statement in

order to have clearer error handling)

require(!blacklist[from] , "Sender address blacklisted");

require(!blacklist[to] , "receiver address blacklisted");

7

StaySAFU security assessment

MSG-3 | Too long error message

Description

Audited smart contracts contain some error messages that are too

long. The industry standards specify error messages must have a

maximal length of 32 bytes. We recommend having the shortest

possible error messages to optimize gas costs (see

github.com/ethereum/solidity/issues/4588) and improve error handling.

5 issues of this type have been found in Mead.sol.

3 issues of this type have been found in Brewery.sol.

1 issue of this type has been found in TavernSettings.sol.

Recommendation

We recommend shortening these error messages :

//Edited code containing missing error message in

Mead.sol

//l262

require(currentAllowance >= subtractedValue, "ERC20:

allowance under zero");

//l283

require(account != address(0), "ERC20: burn from the 0

address");

//l288

require(accountBalance >= amount, "ERC20: burn amount

over balance");

//l304

8

StaySAFU security assessment

require(owner != address(0), "ERC20: approve from 0

address");

//l305

require(spender != address(0), "ERC20: approve to 0

address");

//Edited code containing missing error message in

Brewery.sol

//l150

require(breweryCount > 0, "Not enough pending MEAD");

//l170

require(totalRewards >= cost, "Not enough pending MEAD");

//l372

require(getApproved(_tokenId) == address(0), "BREWERY is

approved for spend/list");

//Edited code containing missing error message in

TavernSettings.sol

//l81

require(_classTaxes.length == classCount, "Class tax

array length != count");

9

StaySAFU security assessment

LOG-1 | Logic programming error

Description

Some parts of the audited code contain logical errors. This is not a

security problem but we still would like to inform you and bring you an

explanation and a solution.

1 error of this type has been found in Brewery.sol.

Recommandation

We recommend updating this part of the smart contract to fit the

function’s logic :

//Edited code containing corrected logic from Brewery.sol

//l496

function editTier(uint256 _tier, uint256 _xp, uint256

_yield) external onlyRole(DEFAULT_ADMIN_ROLE) {

require(tiers.length > _tier, "Tier doesnt

exist");

//Let's imagine here you set the 'require' condition as

//<tiers.length >= _tier>. Here is an example of what

//this bad condition can cause :

//If the 'tiers' array has a length of 1, the _tier

//argument can be set at 1. But calling tiers[1] is not

//valid, since tiers array has a length of 1.

tiers[_tier] = _xp;

yields[_tier] = _yield;

}

10

StaySAFU security assessment

BLOC-1 | Using block.timestamp

Description

The use of block.timestamp can be problematic. The timestamp can be

partially manipulated by the miner (see https://cryptomarketpool.com/

block-timestamp-manipulation-attack/). In this smart contract this is not

critical as in the worst case an attacker could force the automatic liquify

to run faster.

1 error of this type has been found in Brewery.sol.

Recommendation

We fully understand the smart contract’s logic of the BREWERY NFT. The

use of block.timestamp is required to power the reward mechanism

and we cannot replace it. Nevertheless, it is still useful to point out this

kind of potential security problem.

11

StaySAFU security assessment

COMP-1 | Unfixed version of compiler

Description

Audited contracts do not have locked compiler versions, meaning a

range of compiler versions can be used. This can lead to differing

bytecodes being produced depending on the compiler version, which

can create confusion when debugging as bugs may be specific to a

specific compiler version(s).

To rectify this, we recommend setting the compiler to a single version,

the lowest version tested to be compatible with the code, an example of

this change can be seen below.

Recommendation

We recommend fixing the compiler version to the most recent one :

//Edited code containing fixed compiler version (usable

for every audited smart contract)

pragma solidity 0.8.4;

12

StaySAFU security assessment

THRE-2a | Missing threshold in minting function

Description

Minting function (mint from Mead.sol) does not implement any

threshold. The owner can then mint a potentially infinite amount of

tokens to the treasury address.

1 error of this type has been found in Mead.sol.

Recommendation

We recommend adding a threshold (as example : set a maximum

minting threshold of 1% of the total supply) to the function to avoid this

problem. You can also implement a cooldown to fight this problem :

//Edited code containing threshold for minting function

//l131

function mint(uint256 _amount) public onlyOwner {

require(_amount > _totalSupply/100, "cannot mint that

much");

//1% is only an example, we recommend you find the right

//threshold to fit the project's logic

_mint(msg.sender, _amount * 10**DECIMALS);

}

13

StaySAFU security assessment

THRE-2b | Missing threshold in burning function

Description

Burning function (burn from Mead.sol) does not implement any

threshold. The owner can then mint a potentially infinite amount of

tokens to the treasury address.

1 error of this type has been found in Mead.sol.

Recommendation

We recommend adding a threshold (as example : set a maximum

burning threshold of 1% of the total supply) to the function to avoid this

problem. You can also implement a cooldown to fight this problem :

//Edited code containing threshold for minting function

//l131

function burn(uint256 _amount) public onlyOwner {

require(_amount > _totalSupply/100, "cannot burn that

much");

//1% is only an example, we recommend you find the right

//threshold to fit the project's logic

_mint(msg.sender, _amount * 10**DECIMALS);

}

14

StaySAFU security assessment

CENT-1 | Centralization of major privileges

Description

The onlyOwner modifier of the Mead.sol smart contract gives major

privileges over it (owner can handle the white/blacklist, burn without

limit or withdraw tokens)*. This can be a problem, in the case of a hack,

an attacker who has taken possession of these privileged accounts could

damage the project and the investors.

*This list is not exhaustive but presents the most sensitive points.

The Admin modifier of the Brewery.sol smart contract gives major

privileges over it (Admin can change parameters for every single NFT)*.

This can be a problem, in the case of a hack, an attacker who has taken

possession of these privileged accounts could damage the project and

the investors.

*This list is not exhaustive but presents the most sensitive points.

The DEFAULT_ADMIN_ROLE modifier of the ClassManager.sol smart

contract gives major privileges over it (Admin can notably clear class

threshold)*. This can be a problem, in the case of a hack, an attacker

who has taken possession of these privileged accounts could damage

the project and the investors.

*This list is not exhaustive but presents the most sensitive point

The onlyOwner modifier of the TavernSettings.sol smart contract gives

major privileges over it (owner can notably change other Tavern’s project

smart contracts’ addresses)*. This can be a problem, in the case of a

15

StaySAFU security assessment

hack, an attacker who has taken possession of these privileged accounts

could damage the project and the investors.

*This list is not exhaustive but presents the most sensitive points.

Recommendation

We recommend at least to use a multi-sig wallet for admin/

owner/manager address, and at best to establish a community

governance protocol to avoid such centralization. For more information,

see https://solidity-by-example.org /app/multi-sig-wallet/

16

https://solidity-by-example.org/app/multi-sig-wallet/

StaySAFU security assessment

Global security warnings

These are safety issues for the whole project. They are not necessarily
critical problems but they are inherent in the structure of the project
itself. Potential attack vectors for these security problems should be
monitored.

CENT-1 | Global SPOF (Single Point Of Failure)

The project's smart contracts often have a problem of centralized
privileges. The owner and Admin system in particular can be subject to
attack. To address this security issue we recommend using a multi-sig
wallet, establishing secure project administration protocols and
strengthening the security of project administrators.

17

StaySAFU security assessment

DISCLAIMER

This report is subject to the terms and conditions (including

without limitation, description of services, confidentiality,

disclaimer and limitation of liability) set forth in the Services

Agreement, or the scope of services, and terms and

conditions provided to the Company in connection with

the Agreement.

This report provided in connection with the Services set

forth in the Agreement shall be used by the Company only

to the extent permitted under the terms and conditions set

forth in the Agreement.

This report may not be transmitted, disclosed, referred to

or relied upon by any person for any purposes without

StaySAFU's prior written consent.This report is not, nor

should be considered, an “endorsement” or “disapproval”

of any particular project or team. This report is not, nor

should be considered, an indication of the economics or

value of any “product” or “asset” created by any team or

project that contracts StaySAFU to perform a security

assessment.

This report does not provide any warranty or guarantee

regarding the absolute bug-free nature of the technology

analyzed, nor do they provide any indication of the

technologies proprietors, business, business model or

legal compliance. This report should not be used in any way

18

StaySAFU security assessment

to make decisions around investment or involvement with

any particular project.

This report in no way provides investment advice, nor

should be leveraged as investment advice of any sort. This

report represents an extensive assessing process intending

to help our customers increase the quality of their code

while reducing the high level of risk presented by

cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a

high level of ongoing risk.

StaySAFU's position is that each company and individual

are responsible for their own due diligence and continuous

security. StaySAFU's goal is to help reduce the attack

vectors and the high level of variance associated with

utilizing new and consistently changing technologies, and

in no way claims any guarantee of security or fun.

19

