
STAYSAFU
AUDIT
SECURITY ASSESMENT: JANUARY 22ND, 2022SECURITY ASSESMENT: JANUARY 22ND, 2022

ROSS INUROSS INU

TABLE OF
CONTENTS

I)SUMMARY

II)OVERVIEW

III) FINDINGS

IV) DISCLAIMER

SUMMARY
This report has been prepared for Ross Inu to discover issues
and vulnerabilities in the source code of the Ross Inu project as
well as any contract dependencies that were not part of an
officially recognized library.

The audit is based on the code of the following BSC
smartcontract:

0x4645C1991Ca64D3f5C45050EaAF9894AeEF24e21

A comprehensive examination has been performed, utilizing
Static Analysis, Manual Review, and Ross Inu Deployment
techniques. The auditing process pays special attention to the
following considerations:

 Testing the smart contracts against both
common and uncommon attack vectors

 Assessing the codebase to ensure compliance with
current best practices and industry standards

 Ensuring contract logic meets the specifications
and intentions of the client

 Cross referencing contract structure and
implementation against similar smart contracts
produced by industry leaders

 Thorough line-by-line manual review of the entire
codebase by industry experts

OVERVIEW

VULNERABILITY
SUMMARY

UNDERSTANDING
 The Ross Inu Protocol is a decentralized finance
(DeFi) token deployed on the Binance smart
chain (BSC).

Ross Inu mainly employs three features in its
protocol: A LP (liquidity pool) acquisition mechanism,
an auto-burn process and a marketing/development
fee.

Each Ross Inu buy transaction is taxed 12% and
each sell is taxed 15%. 6-8% (6% for buys and 8%
for sales) are accumulated internally until a sufficient
amount of capital has been amassed to perform an
LP acquisition. When this number is reached, the
total tokens accumulated are split with half being
converted to BNB and the total being supplied to the
PANCAKESWAP contract as liquidity. 5% (for both
buys and sales) are used for marketing/development
and 1-2% (1% for buys et 2% for sales) are burnt.

The contract contains the following privileged
functions that are restricted by the onlyOwner
modifier.
They are used to modify the contract
configurations and address attributes. We
grouped these functions below:

OWNERSHIP MANAGEMENT

-transferOwner

-renounceOwnership

ACCOUNTS MANAGEMENT

-setExcludedFromFees

-setBlacklistenabled

-includeInFee

-setStartingProtections

-setProtectionSettings

PRIVILEGED
FUNCTIONS

TAXES MANAGEMENT

-setTaxes

-setMaxtxPercent

-setBonusTaxTime

TRADING MANAGEMENT

-setNewRouter

-setLpPair

-setRatios

-setMaxWalletSize

-setSwapSettings

-enableTrading

-setGasPriceLimit

-setWallets

-setSwapAndLiquifyEnabled

-buybackAndBurn

OWNERSHIP
Here is a non-exhaustive list of what the smart-
contract owner can and cannot do.

Feature Able to modify /
to do

Details

Transaction
fees

Partially Fees are
under 20% of
transaction

 Max
transaction

Partially Max
transaction is
above 0,1% of
total supply

Blacklist Partially Owner can
enable/disable
blacklist

Whitelist No

Mint No

Renounce Yes

Ownership Yes

FINDINGS
Unlocked compiler version

Severity: Minor

Ross Inu’s contract does not have locked
compiler versions, meaning a range of compiler
versions can be used. This can lead to differing
bytecodes being produced depending on the
compiler version, which can create confusion
when debugging as bugs may be specific to a
specific compiler version(s).

To rectify this, we recommend setting the
compiler to a single version, the lowest version
tested to be compatible with the code, an
example of this change can be seen below.

Before After

pragma solidity
>=0.6.0<0.6.0;

pragma solidity
0.6.0;

Declaration of unused variables

Severity: Minor

Ross Inu’s contract contains instances where a
variable is declared but never used. Two of these
instances have been identified: _decimalsMul,
and tFeeTotal. There are no functions present in
Ross Inu’s contract code which references either
of these variables, making them redundant.

It is best practice to only declare variables which
will be used in the code, so we recommend
removing any unused variables, as alongside
their redundancy, they could create confusion in
those reading the contract code. Where these
unused declared variables have been identified
are listed below.

Code Line

tFeeTotal 291

_decimalsMul 289

Use of block.timestamp for comparison

Severity: Minor

The value of block.timestamp can be manipulated by
the block’s miner. This is a security problem since
block.timestamp is used when exchanging token for
LP acquisition. Moreover, conditions with strict
equality are difficult to achieve. This problem can be
avoided by not using block.timestamp.

Third-party dependencies

Severity : Minor

The contract is serving as the underlying entity to
interact with third party PancakeSwap protocols.
The scope of the audit would treat those third
party entities as black boxes and assume they
are fully functionnal. However in the real world,
third parties may be compromised that led to
assets lost or stolen.

We understand that the business logic of the Ross
Inu Protocol requires the interaction
PancakeSwap protocol for adding liquidity to
ROSS/BNB pool and swap tokens. We encourage
the team to constantly monitor the statuses of
those third parties to mitigate the side effects
when unexpected activities are observed.

Centralization of major privileges

Severity: Medium

The owner of the smart-contract has major
privileges over it (they can modify fees, change
marketing wallet and recover funds from the
contract). This can be a problem, and we
recommend at least to use a multi-sig wallet for
the owner address, and at best to establish a
community governance protocol to avoid such
centralization. Overall, this problem is common
and Ross Inu presents a satisfactory level of
centralization.

Conclusion

No major issue has been found in the Ross Inu
smart- contract. The findings we reported are
low severity issues, and are common to the
majority of rewards smart- contracts. The
overall security of the smart-contract is very
good, the only points that should be improved is
the centralization of privileges, and the contract
code’s abidance to best practices.

DISCLAIMER

This report is subject to the terms and
conditions (including without limitation,
description of services, confidentiality, disclaimer
and limitation of liability) set forth in the Services
Agreement, or the scope of services, and terms
and conditions provided to the Company in
connection with the Agreement.

This report provided in connection with the
Services set forth in the Agreement shall be
used by the Company only to the extent
permitted under the terms and conditions set
forth in the Agreement.

This report may not be transmitted, disclosed,
referred to or relied upon by any person for any
purposes without StaySAFU's prior written
consent. This report is not, nor should be
considered, an “endorsement” or “disapproval”
of any particular project or team. This report is
not, nor should be considered, an indication of
the economics or value of any “product” or
“asset” created by any team or project that
contracts StaySAFU to perform a security
assessment.

This report does not provide any warranty or
guarantee regarding the absolute bug-free
nature of the technology analyzed, nor do they
provide any indication of the technologies
proprietors, business, business model or legal
compliance. This report should not be used in
any way to make decisions around investment
or involvement with any particular project.

This report in no way provides investment
advice, nor should be leveraged as investment
advice of any sort. This report represents an
extensive assessing process intending to help
our customers increase the quality of their code
while reducing the high level of risk presented
by cryptographic tokens and blockchain
technology.
Blockchain technology and cryptographic assets
present a
high level of ongoing risk.

StaySAFU's position is that each company and
individual are responsible for their own due
diligence and continuous security. StaySAFU's
goal is to help reduce the attack vectors and the
high level of variance associated with utilizing
new and consistently changing technologies,
and in no way claims any guarantee of security or
functionality of the technology we agree to
analyze.

	TABLE OF CONTENTS
	VULNERABILITY SUMMARY
	OWNERSHIP MANAGEMENT
	ACCOUNTS MANAGEMENT
	TAXES MANAGEMENT
	TRADING MANAGEMENT
	OWNERSHIP
	FINDINGS
	Unlocked compiler version
	Severity: Minor

	Declaration of unused variables
	Severity: Minor

	Use of block.timestamp for comparison
	Severity: Minor
	The value of block.timestamp can be manipulated by the block’s miner. This is a security problem since block.timestamp is used when exchanging token for LP acquisition. Moreover, conditions with strict equality are difficult to achieve. This problem can be avoided by not using block.timestamp.

	Third-party dependencies
	Severity : Minor
	Centralization of major privileges
	Severity: Medium

	DISCLAIMER

