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ABSTRACT
The large variety of specialized data processing plat-

forms and the increased complexity of data analytics

has led to the need for unifying data analytics within

a single framework. Such a framework should free

users from the burden of (i) choosing the right plat-

form(s) and (ii) gluing code between the different parts

of their pipelines. Apache Wayang (Incubating) is the

only open-source framework that provides a system-

atic solution to unified data analytics by integrating

multiple heterogeneous data processing platforms. It

achieves that by decoupling applications from the un-

derlying platforms and providing an optimizer so that

users do not have to specify the platforms on which

their pipeline should run. Wayang provides a unified

view and processing model, effectively integrating the

hodgepodge of heterogeneous platforms into a single

framework with increased usability without sacrificing

performance and total cost of ownership. In this paper,

we present the architecture of Wayang, describe its main

components, and give an outlook on future directions.

1. INTRODUCTION
The research and industry communities have de-

veloped a variety of data processing platforms (plat-
forms, for short) to enable users to e�ciently extract
value from their data. Each platform excels in dif-
ferent aspects of the design space. For instance,
PostgreSQL performs better than Vertica for OLTP
workloads, but Vertica performs better for OLAP
workloads. Apache Spark, on the other side, can
outperform both database systems for batch data
processing on big datasets.

Consequently, users face a zoo of specialized plat-
forms to perform data analytics. They typically run
their data analytics at a higher cost than necessary,
as selecting the right platform is daunting. Further-
more, modern applications often require to perform
data analytics that goes beyond the limits of a sin-
∗To the memory of Jorge: the originator of Wayang who
passed away unexpectedly in May 2023.

gle platform, making the selection of platforms even
more di�cult.

To ease the platform selection task, we require
unifying data analytics within a single framework,
i.e., applications should run over any set of plat-
forms seamlessly and e�ciently. The need for uni-
fied data analytics can stem from simple tasks, such
as k-means clustering, to very complex tasks, such
as a data science pipeline that includes data clean-
ing, preparation, feature extraction, and model
training. Unified data analytics is quickly becoming
essential as new applications emerge.

We distinguish between two general cases of uni-
fied data analytics: (i) an entire task is executed
on a single platform and, based on the circum-
stance, this platform can vary, and (ii) a task is
split into sub-tasks which are executed on multiple
platforms. In particular, we identify four situations
when unified data analytics is required [10]: Plat-
form Independence refers to the situation where one
needs to run an entire task on any arbitrary plat-
form. This requires re-implementing applications
when new platforms emerge or when the workload
changes. Opportunistic Cross-Platform refers to
the situation where performing a single task using
multiple platforms brings significant performance
reasons. Mandatory Cross-Platform refers to the
fact that modern applications need to go beyond the
functionalities o↵ered by a single platform. Poly-
store refers to the situation where applications need
to access and process data stored in di↵erent data
stores (data lakes). In all the above cases, devel-
opers typically must write ad-hoc programs to wire
multiple platforms together. However, integrating
platforms is tedious, repetitive, and error-prone.
Figure 1 illustrates these four cases with systems
that can handle each case.

Therefore, supporting unified data analytics is
crucial in many cases. Apache Wayang (Incubat-
ing)1, Wayang for short, is the first open-source

1https://wayang.apache.org/
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Figure 1: Taxonomy for unified data analytics.

framework that provides applications with uni-
fied data analytics capabilities. The main goal of
Wayang is to decouple applications from platforms
so that they can run analytics on one or more plat-
forms seamlessly and e�ciently. Developers can
provide their data analytics tasks programmatically
(using Java, Scala, or Python) or declaratively (via
the SQL and ML libraries). Wayang, in turn, takes
an input task and optimizes it to produce e�cient
execution plans, which might run over multiple plat-
forms. We refer to an e�cient execution plan as the
plan that allows Wayang to execute a given task
with a low cost. By default, it considers the cost to
be the execution time, but users can provide their
own cost function, such as monetary cost.

Wayang presents itself as a full-fledged and ef-
ficient cross-platform data processing system for
unified data analytics. As of today, it supports
a variety of platforms: Spark, Flink, PostgreSQL,
GraphX, Giraph, and its in-memory Java-based
executor2. Wayang originated from the Rheem
project [3, 13], is currently incubating in the Apache
Software Foundation, and is used by several compa-
nies. In particular, Databloom, an AI startup, has
been created around Wayang [2].

Our contributions in this paper are as follows.
We introduce Apache Wayang (Incubating), which
comes with a novel system architecture allowing the
integration of di↵erent platforms (Section 2). Then,
we present the core components of Wayang, includ-
ing a cross-platform query optimizer that alleviates
users from any platform decisions (Section 3). Fur-
thermore, we introduce Wayang’s approach to run-
ning data analytics on any platform (Section 4).
We additionally present the new Polyglot module,
which will allow developers to add support for UDFs
in any desired programming language by imple-
menting only two core abstractions. Finally, we
briefly discuss Wayang’s adoption (Section 5), re-
lated work (Section 6), and our current e↵orts to-
wards Wayang 2.0 (Section 7).

2. OVERVIEW
Wayang’s main goal is to unify data analytics by

2GraphChi is outdated and is going to be removed in
our next release.
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Figure 2: Wayang’s software stack.

decoupling applications from the underlying plat-
forms and to provide cross-platform data process-
ing. Figure 2 shows the software stack of Wayang.

In the bottom layers, there are the di↵erent data
storage mediums and the supported data processing
platforms. On top of these, Wayang’s core consists
of the following main components: the optimizer,
the executor, the monitor, and platform-specific
drivers. Wayang currently supports two main APIs:
the Java one and the Scala one. A Python API is
currently under development. Besides using any of
the supported languages, users can directly input
SQL queries via the SQL library, which transforms
them into a Wayang plan. Wayang also comes with
an ML library for running ML tasks. Users can
directly utilize the provided algorithms or can im-
plement their own algorithm using a simple ML ab-
straction [11]. To enable support for more program-
ming languages in an e�cient way, Wayang will
soon come with a Polyglot library (see Section 4.3).

Wayang relies on data quanta, the smallest pro-
cessing units of the input datasets. A data quan-
tum can express a large spectrum of data formats,
such as database tuples, edges in a graph, or data
points required by machine learning. Wayang’s
main building block is a Wayang plan: a directed
dataflow graph whose vertices are platform-agnostic
operators and whose edges represent data flowing
among the operators. An example Wayang plan for
the Wordcount task is depicted in Figure 3(a). A
user or application can specify a Wayang plan by
using any of the three supported languages (Java,
Scala, and Python). Importantly, one does not have
to specify the platform on which each plan’s opera-
tor will be executed. Given a Wayang plan, the op-
timizer is responsible for determining the platform
on which each operator has to be executed, thereby
composing a platform-specific execution plan. The
executor is then responsible for assigning the op-
erators of the execution plan to the corresponding
drivers and coordinating the execution. The moni-
tor checks whether the estimations used during the
optimization are correct, and if not, requests a new
execution plan from the optimizer.
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Figure 3: Wayang’s optimization phase by example.

3. THE CORE OF WAYANG
Wayang’s core comprises a query optimizer and

an executor. The former determines which un-
derlying platform each (sub)query has to be exe-
cuted on to achieve the best performance. The lat-
ter is responsible for scheduling and submitting the
(sub)queries for execution. The main building block
of Wayang is a Wayang plan, a graph where each
node is a Wayang (platform-agnostic) operator of
the following types: unary, binary, loop, source, or
sink. In addition, a Wayang operator can be either
atomic (e.g., map) or composite (e.g., pagerank),
i.e., composed of many atomic operators.

Query Optimization. The optimizer receives as
input a Wayang plan and outputs an execution
(platform-specific) plan with the goal of minimiz-
ing the total execution cost. To achieve this, the
optimizer first “inflates” the plan (Figure 3): For
each node that corresponds to a Wayang opera-
tor, it adds all the corresponding execution oper-
ators. This is done via flexible graph-based map-
pings that map one or more Wayang operator(s)
to one or more platform-specific execution oper-
ator(s). A composite Wayang operator, such as
pagerank, is mapped either to a platform-specific
composite operator (e.g., MLlib’s pagerank) or to
a graph of platform-specific operators that perform
the required functionality.

Once the inflated plan is created, the optimizer
attaches not only the operator’s costs but also the
costs for moving intermediate data from one plat-
form to another (omitted in the figure for simplicity
reasons). Currently, Wayang uses linear cost for-
mulas to estimate these costs. The system admin-
istrator needs to fine-tune the coe�cients of these
formulas. Although Wayang comes with profiling
tools to facilitate this tuning e↵ort, our near plans
include the ability to easily port machine learning
models for estimating the costs, as discussed in [12].

At the last step of query optimization, an enu-
meration algorithm considers available options to
output the optimal execution plan w.r.t. a defined

cost. The metric for the optimization cost can be
anything, from runtime to monetary cost or energy
consumption. As the search space is exponential
(a plan with n Wayang operators, each having k

execution operators, leads to k
n possible execution

plans), pruning is crucial. Wayang’s enumeration
algorithm is based on an algebra consisting of two
main operations: Join for concatenating subplans
and Prune for pruning subplans that lead to in-
ferior execution plans. Importantly, the pruning
strategy is lossless. It is based on the notion of
boundary operators which are the start and end op-
erators of a subplan and is guaranteed to not prune
a subplan that is part of the optimal execution plan.

Note that users can control the optimizer by spec-
ifying in their code where an operator has to be ex-
ecuted via the withTargetPlatform(plat) call on
the desired operator. Then, the optimizer takes into
consideration the decisions of the user and outputs
an execution plan by navigating a reduced search
space during the plan enumeration.

Data movement. We now detail how Wayang com-
putes the costs incurred when moving data from one
platform to another during the query optimization
process. As there may be multiple ways to move
data from platform A to platform B, Wayang rep-
resents the space of di↵erent communication ways
as a channel conversion graph. This graph con-
tains the di↵erent data types (channels) as vertices
(e.g., RDD or Relation). Two channels are con-
nected with a direct edge denoting that the source
channel can be converted to the destination channel
via one or more conversion operators. Conversion
operators can be the standard source and sink op-
erators of the underlying platforms. During query
optimization, Wayang finds the optimal communi-
cation path from one channel to another by formu-
lating the problem as a minimum conversion tree
problem (proved to be NP-hard [14]). The inter-
ested reader is referred to [13] for more details.

Execution. Given an execution plan output by the
query optimizer, the executor of Wayang is respon-
sible for scheduling its execution. First, it divides
the plan into stages so that each stage forms a sub-
plan where all its execution operators are of the
same platform. Stages are connected by data flow
dependencies. The executor dispatches a stage to
the relevant platform driver, which in turn submits
the sequence of operators as a job to the underlying
platform. If there are stages with no dependencies,
the executor dispatches them in parallel. In any
other case, it dispatches a stage once its input de-
pendencies are satisfied. After each stage, the plat-
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form gives back the control to the executor so that
it either initiates the next stage or it materializes
the output in the case of the final stage. The ex-
ecutor may also create more than one stage for a
sequence of execution operators of the same plat-
form in cases where the executor needs the control
(e.g., when the executor needs to evaluate the loop
condition in an iterative operator).

Re-optimization. It is well-known that poor car-
dinality and cost estimates can negatively impact
the e↵ectiveness of an optimizer. This is even
worse in our setting where the semantics of UDFs
and data distributions are usually unknown be-
cause of the little control over the underlying plat-
forms. For this reason, Wayang’s optimizer allows
for re-optimizing a plan whenever observed cardi-
nalities greatly mismatch the estimated ones. Sim-
ilar to [15], it achieves this by adding optimization
checkpoints between stages in the execution plan
whenever the cardinality estimates have low confi-
dence or the data is at rest (e.g., file). When the
executor encounters a checkpoint between stages,
it pauses the plan execution and gives the control
to the optimizer to consider a re-optimization of the
plan beyond the checkpoint. The optimizer uses the
observed cardinalities and recomputes the most e�-
cient plan since the last optimization checkpoint. It
then gives the new execution plan to the executor,
which resumes execution considering the new plan.

4. ANY ANALYTICS ANYWHERE
We now describe the libraries that Wayang cur-

rently supports (SQL and ML) and one that is un-
der development (Polyglot). These libraries are
built atop the native Java API of Wayang. Note
that Wayang also provides a Scala API and a
Python API is currently under development. In
the following, we first describe its SQL and ML li-
braries. We, then, detail the Polyglot library, which
is the Wayang’s approach to support UDFs coded
in di↵erent programming languages.

4.1 SQL analytics anywhere
A feature of Wayang is its unified SQL interface

for cross-platform data processing. The SQL
library allows users to embed SQL queries in
their applications via the SqlContext object,
which holds the configurations about di↵erent data
sources. The following snippet shows how users
can specify SQL queries using its Java API.

SqlContext sqlContext = new SqlContext(conf);

Collection<Record> result = sqlContext.

executeSql("SELECT ... FROM ...");

The sqlContext provides methods that return

Figure 4: SQL query preparation in Wayang.
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the result of the SELECT statement as a collection of
Records, which can be converted to a data quanta
or used in subsequent SQL queries. This allows
Wayang to seamlessly integrate SQL queries into
applications and holistically optimize them.

Wayang’s SQL library utilizes Apache Calcite [4]
to support the SQL standard. Yet, to execute
an SQL query, we first have to translate it into a
Wayang plan, as shown in Figure 4.

Wayang comes with a Calcite-based SQL parser
and optimizer. The SQL query is first translated
into a Calcite logical plan from its AST, which is
then optimized and subsequently converted into a
Wayang plan. Our Calcite integration facilitates
database optimizations, such as operator pushdown,
reordering, and elimination.

Converting a Calcite plan into a Wayang plan is
done on a per-operator basis. Figure 5 shows an
example translation. Common translations include:
tableScan operators to Wayang source operators;
project, filter, join, and aggregation opera-
tors to Wayang’s Map, Filter, Join, and ReduceBy
operators, respectively. During the plan conversion
step, a SQL operator is translated into Java func-
tions, which are then wrapped by a single UDF.

Wayang currently o↵ers support for developing
applications with the SQL interface in Java. Our
future work will include bindings for Scala as well
as for Python. Moreover, the SQL language sup-
port in Wayang only includes support for SELECT
statements as the core focus of the Apache Wayang
project is to enable cross-platform data analytics
(rather than data management). In future, we also
plan to include a JDBC client in Wayang. This will
enable Wayang’s compatibility with other external
BI tools, such as Tableau.

4.2 Machine learning anywhere
Wayang also comes with a machine learning

(ML) library, which allows users to create ML
pipelines using Wayang’s operators and/or write
their ML algorithms using a predefined small set of
primitives [11]. This set of primitives is su�cient
for implementing a wide variety of iterative ML
algorithms, such as any gradient descent algorithm,
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k-means clustering, or expectation-maximization
algorithms. After analyzing such ML algorithms,
we found that they all can be split into three
di↵erent phases: preparation, processing, and
convergence. Wayang’s ML library, thus, provides
the following seven operators:

(1) Transform receives a data point to transform
(e.g., normalize it) and outputs a new data point.

(2) Stage initializes all the required global param-
eters (e.g., centroids for the k-means algorithm).

(3) Compute performs user-defined computations
on the input data point and returns a new data
point. For example, it can compute the nearest cen-
troid for each input data point.

(4) Update updates the global parameters based on
a user-defined formula. For example, it can update
the new centroids based on the output computed by
the Compute operator.

(5) Sample takes as input the size of the desired
sample and the data points to sample from and re-
turns a reduced set of sampled data points.

(6) Converge specifies a function that outputs
a convergence dataset required for determining
whether the iterations should continue or stop.

(7) Loop specifies the stopping condition on the
convergence dataset.

All the above operators serve as UDFs. While
we provide reference implementations for common
algorithms, users can easily customize or override
them. The first two operators are used in the prepa-
ration phase, while Compute, Update, and Sample
are used iteratively in the processing phase. The
interested reader can find more details in [11].

Once these operators are defined, the ML library
transforms them into a Wayang plan. The plan is
then passed to the optimizer to determine the right
platform. Thus, data scientists can use Wayang to
develop new algorithms and test them with small
datasets, which will be run locally. The same code
can seamlessly be used on deployment for larger
datasets potentially running in a big data platform.
However, the data scientist does not have to worry
about the underlying deployment of a plan.

4.3 UDFs coded anywhere
Besides its Java, Scala, and Python APIs, which

are dedicated interfaces for programming languages,
Wayang provides a library to support UDFs coded
in di↵erent programming languages, such as Go.
Continuing with its search for platform interoper-
ability, Wayang goes one step forward when it comes
to supporting UDFs. It o↵ers the Polyglot library to
support the execution of UDFs in any programming
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language and in an e�cient way. The execution of
UDFs in other programming languages is crucial for
exposing Wayang to other programming languages
besides Java, Scala, and Python.

The execution flow with Polyglot is shown in Fig-
ure 6. To support UDFs in a particular program-
ming language, Wayang developers must implement
a FunctionWrapper and a WorkerManager. While
the former allows Wayang users3 to provide their
UDFs in any supported programming language
(e.g., Go), the latter allows Wayang to launch the
required runtime (e.g., the Go runtime). As a re-
sult, Wayang can invoke the programming language
runtime (e.g., the Go runtime via a GoWorkerMan-
ager implementation) with the UDF (e.g., the Go
UDF via a GoFunctionWrapper). For performance
reasons, Wayang does so by encapsulating opera-
tors that belong to the same stage (i.e., pipelined
operators) into a MapPartition operator. This re-
sults in a single call to the programming language
runtime for the entire data quanta of the MapPar-
tition instead of having a runtime call per input
data quantum.

5. ADOPTION
Wayang is increasingly gaining traction in both

industry and academia. In academia, Wayang has
fostered several database research projects in query
optimization, data integration, and polyglot data
management. In industrial settings where multi-
platform infrastructures are routine, Wayang has
provided a cost-e↵ective alternative to run com-
plex analytics without having to develop platform-
specific solutions. Wayang is being used, among
others, in machine learning, data cleaning, and data
analytics applications. For instance, an airline com-
pany is assessing Wayang to carry out large-scale
data analysis for optimizing air cargo revenues [16].

3We distinguish between developers and users in the
way they interact with Wayang: while the developers
write code to extend or fine-tune Wayang, the users only
use it via its libraries and APIs.
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Nadeef [5], a commodity data cleaning system,
uses Wayang to boost its performance through plat-
form independence. Wayang has also led to the cre-
ation of Databloom [2], an AI startup that aims at
providing an easy-to-use, cost-e�cient, and data-
compliant solution to companies having distributed
and heterogeneous data infrastructures.

6. RELATED WORK
Open source. To our knowledge, Wayang is
the only open source system that not only decou-
ples applications from the underlying platforms but
also provides a way for automatically determining
on which platform(s) a given task should be exe-
cuted. Perhaps, most related to Wayang is Apache
Beam [1], which focuses on providing a unified
model for batch and streaming data processing and
being portable to any data processing platforms.
The latter means that a user’s pipeline is entirely
executed on one data platform (runner), which users
need to specify. In contrast, Wayang users are free
to either not specify at all where their pipelines are
executed or create hybrid pipelines integrating mul-
tiple data processing platforms.

Academic. There have been early e↵orts to unify
data analytics in a systematic way [9, 7]. However,
[7] requires expertise from users for deciding when
to use a data processing platform and the design
of [9] is not flexible enough to allow for continu-
ous extensions with new platforms, i.e., develop-
ers have to modify the source code. IReS [6] on
the other hand, provides a flexible and automatic
way to choose data processing platforms. However,
in contrast to Wayang, it focuses more on coarse-
grained operators (e.g., k-means instead of filter,
map) and provides 1-to-1 mappings from abstract to
execution operators, which may lead to suboptimal
execution plans. For instance, for a simple stochas-
tic gradient descent algorithm that could be viewed
as an operator by itself, Wayang can provide signif-
icant performance benefits by splitting it into more
fine-grained operators [3].

7. TOWARDS WAYANG 2.0
Apache Wayang (Incubating) facilitates auto-

matic cross-platform data processing. Its extensible
framework integrates various data processing plat-
forms, decoupling applications from specific plat-
forms. Wayang provides a unified framework for
analytics and aims to support fully decentralized
applications through a delegation phase and direct
communication channels.

Task Delegation. The goal is to decentralize exe-

cution by o✏oading processing and communication
tasks to underlying platforms, avoiding a central-
ized Executor. This involves introducing delegation
tasks (akin to [8]) that combine data manipulation
and movement instructions. Task delegation will
reduce the need for resource-intensive execution co-
ordination and platform communication.

Direct Communication Channels. To enable task
delegation, we will prioritize direct communication
between platforms and develop new abstractions
within the Wayang operator model. These abstrac-
tions will enhance platform interoperability and
eliminate the need for generic conversion channels
where communication operators require intermedi-
ate mediums (e.g., CSV files or Java collections).
Wayang can then also optimize data movement on
a platform level by implementing techniques such
as data layouts and compression.
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