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ABSTRACT
In this paper, we propose a transpilation-based approach to opti-
mize data science pipelines that comprise database management
systems (DBMSes) and data science runtimes (e.g., Python). Our ap-
proach allows to identify DBMS-supported operations and translate
them into SQL to leverage DBMSes for accelerating data science
workloads. The optimization target is twofold: First, to improve data
loading, by reducing the amount of data to be transferred between
runtimes. Second, to exploit DBMS processing capabilities by “push-
ing down” certain pre-processing operations. Our optimizations
are based on an intermediate representation, which allows support-
ing different data science libraries and DBMSes as frontends and
backends respectively, making it suitable for different data science
pipelines. Our evaluation with real-world and synthetic datasets
shows that our approach can accelerate data science workloads by
up to an order of magnitude over state-of-the-art approaches.
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1 INTRODUCTION
Nowadays, the two most popular languages among data scientists
are Python and R. These languages offer a plethora of libraries,
packages, and tools that are specifically designed for data science
tasks including data manipulation, analysis, and model training.
While these languages offer convenient APIs, building efficient data
science pipelines (DSPs) for large datasets remains a challenge, as
processing and analyzing large datasets requires special expertise.

Database management systems (DBMSes) are important compo-
nents of DSPs, as they provide storage and querying capabilities
for large datasets. However, DBMSes are underutilized, as data
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scientists often use them only as storage backends and use a data
science runtime to carry out data science tasks. For example, con-
sider a DSP for predicting housing prices in Berlin using the popular
Python Pandas and sklearn libraries, with historical data stored in
a PostgreSQL DBMS. Listing 1 illustrates the DSP: First, we load
the real-estate data from PostgreSQL into Pandas dataframes (lines
3–6). Then, in lines 8–12 we perform data manipulation tasks in-
cluding filtering certain rows and columns and joining different
datasets. Finally, in lines 14–17 we train a linear regression model.

Even though the above example DSP seems straightforward from
a data scientist’s perspective, it underutilizes PostgreSQL leading
to suboptimal performance. This is because: 1) using a DBMS only
as a storage backend leads to high data movement cost, as raw data
is moved between different runtimes, and 2) data science runtimes
are less efficient for relational operations (e.g., filters, projections,
or joins), which are common during pre-processing tasks.

To achieve better performance, data scientists must implement
their DSPs with multiple programming abstractions and leverage
underlying DBMSes’ processing capabilities. In the above example,
this would require implementing the preprocessing tasks in SQL
and the remaining tasks in Python, as shown in Listing 2. This ap-
proach, however, has the drawback that data scientists get exposed
to multiple APIs. Furthermore, DSPs become less maintainable. To
avoid this, users tend to sacrifice efficiency for convenience.

A key challenge in optimizing DSPs is to offer convenient user
abstractions while at the same time optimizing the execution by
automatically offloading certain tasks to DBMSes. This is, however,
far from trivial as data science runtimes cannot holistically opti-
mize DSPs over DBMSes. Moreover, state-of-the-art approaches for
optimizing DSPs propose to either scale out the execution [14, 16],
or to expose alternative APIs [7, 10, 19, 22] that enable holistic op-
timizations. While both approaches improve runtime performance,
neither of them completely addresses the challenge of keeping
existing user interfaces and transparently optimizing the execution.

In this paper, we propose P2D, which is a source-to-source tran-
spiler for optimizing DSPs. P2D allows data scientists to express
their tasks in their favorite data science language and automatically
translates user source code to an optimized version. For exam-
ple, P2D can automatically translate the Python code in Listing 1
to the code shown in Listing 2. P2D depends on system-specific
mappings that allow for translating DSPs to our intermediate rep-
resentation (IR), which captures the semantics of the data science
operations. Such an IR allows us to reason holistically about and op-
timize DSPs through static code analysis techniques. P2D achieves
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1 # Sk ipp ing impor t s t a t emen t s f o r b r e v i t y
2 # Connect to d a t a b a s e
3 eng ine = c r e a t e _ e n g i n e ( ' p o s t g r e s q l : / / u s e r : password@host : po r t / dbname ' )
4 # Load da t a from the da t a b a s e
5 h_df = pd . r e a d _ s q l ( ' SELECT ∗ FROM hous ing ' , eng ine )
6 s _d f = pd . r e a d _ s q l ( ' SELECT ∗ FROM schoo l s ' , eng ine )
7 # P r e p r o c e s s i n g
8 h_df = h_df [ [ ' num_bedrooms ' , 'median_income ' , ' p r i c e ' ] ]
9 h_df [ ' p r i c e ' ] = h_df [ ' p r i c e ' ] . app ly ( lambda x : x ∗ 1 . 0 7 )
10 h_df = h_df [ h_df [ ' num_bedrooms ' ] > 3 && h_df [ ' c i t y ' ] == ' B e r l i n ' ]
11 num_schools = s _d f . groupby ( ' z i p code ' ) [ ' s c h o o l _ i d ' ] . nunique ( )
12 da t a = h_df . merge ( num_schools . rename ( ' num_schools ' ) , on= ' z i p code ' )
13 # F i t l i n e a r r e g r e s s i o n model
14 X = da t a . drop ( ' p r i c e ' , a x i s =1 )
15 y = da t a [ ' p r i c e ' ]
16 model = L i n e a rR e g r e s s i o n ( )
17 model . f i t (X , y )

Listing 1: Unoptimized Python script

1 # Sk ipp ing impor t s t a t emen t s f o r b r e v i t y
2 # Connect to the d a t a b a s e
3 eng ine = c r e a t e _ e n g i n e ( ' p o s t g r e s q l : / / username : password@host : po r t / dbname ' )
4 # Load da t a from the da t a b a s e with pre − p r o c e s s i n g i n c l u d e d
5 query = " " " SELECT h . num_bedrooms , h . median_income ,
6 COUNT( s . s c h o o l _ i d ) AS num_schools , h . p r i c e
7 FROM hous ing h , s c h oo l s s
8 WHERE h . z i p code = s . z i p code AND h . num_bedrooms > 3 AND
9 h . c i t y = ' B e r l i n '
10 GROUP BY h . num_bedrooms , h . median_income , h . p r i c e " " "
11 da t a = pd . r e a d _ s q l ( query , eng ine )
12 da t a [ ' p r i c e ' ] = da t a [ ' p r i c e ' ] . app ly ( lambda x : x ∗ 1 . 0 7 )
13 # F i t l i n e a r r e g r e s s i o n model
14 X = da t a . drop ( ' p r i c e ' , a x i s =1 )
15 y = da t a [ ' p r i c e ' ]
16 model = L i n e a rR e g r e s s i o n ( )
17 model . f i t (X , y )

Listing 2: Optimized Python script

this optimization by re-ordering operations and translating the IR
(using the system-specific mappings) to an optimized DSP.

Our evaluation of P2D using real-world and synthetic datasets
showed that DSPs produced by P2D outperform state-of-the-art
approaches [16, 21] by up to an order of magnitude. Furthermore,
we conducted a case study where we analyzed over 45, 000 publicly
available Python DSPs. We found that 85% of Pandas functions can
be translated to SQL, which demonstrates P2D’s potential impact.

2 P2D: DATA SCIENCE PIPELINE TRANSPILER
In this section, we describe P2D, a transpiler framework to bridge
the gap between expressive data science APIs (e.g., Pandas) and
performant query processors (e.g., DBMSes). P2D takes DSP source
code as input (e.g., Listing 1) and translates it into an optimized rep-
resentation, which is again DSP source code (e.g., Listing 2). Figure 1
shows the framework overview, comprising three main modules.
First, the Code Preprocessor translates the DSP code into an ab-
stract syntax tree (AST). Then, the Statement Aggregator trans-
forms the AST into an intermediate representation (IR), which the
Optimizer and Code Generator transform to optimized DSP code.

2.1 Code Preprocessor
The key idea behind our approach is to use static code analysis
to identify DSP operations that DBMS backends can support. To
conveniently reason about supported operations on a canonical
representation of the user code, we transform the code into the
Administrative Normal Form (ANF). During this transformation we
do several steps to simplify our representation, such as removing
redundant syntactic sugar and constructs (e.g., spaces, braces, new-
lines, and indentations), type inference, and “normalizing” function
calls with default parameters to identify function calls that “look”
different but are the same. For example, in Pandas a projection

Figure 1: P2D Overview

on a dataframe can be expressed both as df[df[’col’]] and as
df.loc[df[’col’]]. The output of our preprocessing phase is an
AST for the Statement Aggregator.

2.2 Statement Aggregator
After bringing the code to a canonical representation, the Statement
Aggregator builds a program in our IR. Having an IR next to our (in
our example Python) AST, helps to i) easily support new frontends
and backends, and ii) to apply optimizations, e.g., by reordering
operations. We base our IR on relational algebra, since preprocess-
ing tasks in DSPs often consist of filtering rows and columns, and
joining and aggregating tables. In particular, our IR is a directed
acyclic graph (DAG) where nodes are processing operations and
edges are dependencies between operations. We further distinguish
processing operations as either supported or unsupported. Supported
operations refer to those that can be executed by the underlying
DBMS, while unsupported operations cannot be performed by it.

Supported operations are operations that library developers de-
fine through frontend mappings. The Statement Aggregator tra-
verses the AST and tries to match frontend mappings to create
the corresponding operation in our IR. Our approach is extensible
in that library developers can provide mappings of library func-
tions and their arguments to our IR. For example, Listing 3 shows
an example of mapping a projection from the Python Pandas li-
brary to our IR. In this case, we map pandas.DataFrame’s method
__getitem__ with its key (attributes) to a PROJECTION primitive.

1 " req " : {
2 " __comment " : " d f [ [ ' co l1 ' , ' co l2 ' ] ] " ,
3 " p a r en t t yp e " : " pandas . DataFrame " ,
4 " a t t rname " : " __ge t i t em__ " ,
5 " kwarg_types " : { " key " : " l i s t " }
6 } ,
7 " maps " : {
8 " i r " : " PROJECTION ( { key } , { _ _ i n s t a n c e } ) " ,
9 " type " : " pandas . DataFrame " ,
10 " s t a t e " : [ ]
11 }

Listing 3: Frontend mapping for Pandas projection

All operations not having a specified frontend mapping are trans-
lated to unsupported operations in the IR. Essentially, unsupported
operations are treated as black boxes where we only keep track of
their properties and dependencies. The final output of the Statement
Aggregator is a program in our IR, subject to optimizations.

2.3 Optimizer and Code Generator
Having a program in our IR allows us to reorder operations and
generate the optimized DSP source code, as we are aware of its
semantics. The benefit of having a relational algebra based IR is that
we can reuse its rules for rewrites and equivalence. Our Optimizer’s
goal is to push down as many supported operations below the
unsupported ones, such that we get a DSP like in Listing 2. To
ensure safe reorderings with unsupported black-box operations,
we rely on existing approaches employing static code analysis [9].
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We note that our optimizations target reordering supported and
unsupported operations and not blocks of relational operations.

After optimizing our IR program, the Code Generator trans-
forms it back to an AST, to then generate the optimized DSP source
code. For that, the Code Generator transforms the statements cor-
responding to supported operations into DBMS-specific statements.
For this, we rely on developer-specified backend mappings. Like
their frontend counterparts, backend mappings map IR operations
to DBMS-specific instructions. For example, Listing 4 shows an
example for mapping the projection and selection operators from
our IR to SQL statements.
1 de f PROJECTION ( c o l s : l i s t , s ou r c e : s t r ) :
2 r e t u r n f " SELECT { ' , ' . j o i n ( c o l s ) } FROM { _wrapas ( s ou r c e ) } "
3
4 de f SELECTION ( column , ope ra to r , operand , c o n d i t i o n : s t r , s ou r c e : s t r ) :
5 r e t u r n f " " " SELECT ∗ FROM { _wrapas ( s ou r c e ) }
6 WHERE { column } { o p e r a t o r } { operand } " " "

Listing 4: Backend mapping for projection to SQL

After our transformations, the generated source code includes
all offloaded DBMS operations within the data loading part. In this
case, we output the supported operations in the language of the
DBMS backend, in this case, SQL (Listing 2: lines 5–10, unnested for
simplicity). Executing this DSP will “push down” all supported oper-
ations to the DBMS and execute only the remaining ones in Python.
This leads to performance improvements, as we both reduce data
transfer (in most cases) and at the same time leverage efficient com-
pute kernels, indexes, and other optimizations available in DBMSes.

3 PRELIMINARY EXPERIMENTS
We have conducted preliminary experiments to evaluate the perfor-
mance benefits of our P2D transpiler in the context of exploratory
data analysis and DSPs with pre-processing and model training.
Hardware & Software Setup:We have used a machine running
Ubuntu 22.04, with an Intel i7-8550U CPU and 32GB of memory. We
have implemented our prototype in Python, and provided frontend
mappings for 11 Pandas operations, and backend mappings for pro-
jection, selection, join, and aggregates in SQL (for PostgreSQL 13).
Baselines:Wehave considered native Pandas (v1.5.2) andModin [16]
(v0.18 on Ray v2.3), a “drop-in replacement for Pandas”. Its multi-
threaded engine with the provided re-implementation of Pandas op-
erators, let Modin scale out the loading and execution. Furthermore,
we have considered ConnectorX [23] (v0.3.1), a library that opti-
mizes data movement between Pandas and DBMSes by parallelizing
operations and reducing data copies. Moreover, we have considered
SCIRPy [21], an approach that “pushes down” projections on Pan-
das dataframes to loading methods to improve performance. In our
experiments, we simulate SCIRPy by queries with pre-defined pro-
jections to the DBMS through ConnectorX, to even optimize further.
Exploration and Decision Support: We first considered DSPs
based on TPC-H queries (scale factor 1), as it resembles data ware-
housing and exploration scenarios. Here, our goal was to see the
“maximum” we can accelerate by pushing everything to a DBMS.
Therefore, we have re-implemented queries 1-10 on the Pandas
API. We show the results in Figure 2; here P2D pushes down all
operations to the underlying DBMS. This leads to up to one order of
magnitude performance improvements, compared to the native pan-
das implementation. Modin and ConnectorX drastically improve
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Figure 2: Runtime Performance for TPC-H Queries

(a) Runtime Performance (b) Memory consumption
Figure 3: Kaggle Module 4 Pipeline

loading by employing parallelism and avoiding redundant data
copies, however, do not match P2D’s performance, as operations in
the Python runtime are not as efficient as in PostgreSQL. While for
some queries, e.g., Q1 and Q6, our baselines spent almost the same
amount of execution time as the DBMS backend, other queries, e.g.
Q7–Q10 show that PostgreSQL is more efficient for the execution.
Overall, these experiments suggest that leveraging a DBMS for
supported operations is indeed beneficial and can accelerate DSPs,
both because of reduced data movement and efficient execution.
Preprocessing with Model Training:We have also considered
a real-world DSP from a Kaggle competition [17] (c.f. Section 4),
which uses Twitter hashtags, sentiment scores, andmusic streaming
session data (total 3GB) from a music streaming application. The
DSP first loads, preprocesses, and joins the three datasets before
building a linear regression model that predicts the next song.

We show the results in Figure 3. Here, we measured three dif-
ferent phases: Data loading (Data Trans.), preprocessing in Python,
and finally executing the model training (ML). We observe that P2D
reduces both the preprocessing in Python and the data transfer
times. This results in a performance improvement of 2.5×. We have
also measured the memory utilization: While native Pandas leads
to a consumption of more than 20GB, P2D reduces it more than 2×.

4 CASE STUDY
To further understand the potential impact of our transpilation-
based approach, we have analyzed the source code of 45, 147 Python
DSPs on Kaggle. Our case study (cf. Table 1) showed that more than
98% of the DSPs use Pandas, a library for manipulating tabular data,
closely followed by Numpy (84.5%), a library for linear algebra.

Furthermore, we have analyzed the occurrence of function calls
in the aforementioned kernels and compiled a table of the names
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Table 1: Libraries

Library Used Perc.
pandas 98.54%
numpy 84.55%

matplotlib 67.13%
sklearn 53.79%
seaborn 39.83%

mpl_toolkits 16.30%
learntools 11.40%
plotly 9.34%
scipy 7.98%

tensorflow 6.38%

Table 2: Function Calls

Function #
__getitem__ 1534k

head 104k
len 96k

read_csv 78k
range 67k
sum 59k

append 57k
groupby 52k

fit 50k
value_counts 49k

predict 43k
drop 39k

DataFrame 39k
mean 37k

sort_values 34k
format 34k

reset_index 32k

Function #
join 30k

dropna 29k
apply 28k
astype 26k
nunique 24k
fillna 23k
corr 23k

replace 22k
max 22k

round 20k
unique 20k
isnull 19k
min 19k
add 18k
int 18k

array 18k
fit_transform 16k

Function #
set 16k

describe 15k
split 15k
map 15k
copy 15k

train_test_split 15k
zip 15k

arange 14k
walk 14k
concat 14k
reshape 13k
info 13k
count 13k

to_datetime 13k
merge 11k
rename 11k

of the 50 most commonly used ones (cf. Table 2). The Table con-
tains 17 function names that overlap between Pandas and other
popular Python classes, marked with yellow. 21 of the names are
sufficiently unique to classify a function as originating from the
Pandas library, marked with green. A cursory examination of the
Pandas documentation reveals that a significant proportion (85%)
of the green-colored functions can be translated to SQL. This fur-
ther substantiates our conjecture that the data preprocessing APIs
of high-level procedural programming languages are mappable to
traditional declarative data query languages. Our findings are on
par with a case study [10], which arrived at a similar conclusion
but through a different dataset.

5 RELATEDWORK
There have been proposed several lines of work to improve the
performance of DSPs. We identify three main related lines of work.
Data Science APIs: Several approaches expose new APIs (in the
form of DSLs) backed by their intermediate representations. For
example, Lara [12], based on Emma [3] allows to interleave col-
lection processing and machine learning operations. Its holistic
view enables optimizing the order and choice of physical operators.
SystemML [6] employs cost-based optimizations to generate effi-
cient in-memory single-node and large-scale distributed operations,
e.g. on Apache Spark. Approaches such as Magpie [10], Ibis [1],
MLearn [20], and AFrame [22] propose APIs inspired by dataframes,
and offload the computation to scalable execution backends. While
these approaches offer convenient user APIs and great optimization
potential, they can not optimize DSPs in existing APIs, e.g., Pandas.
In-Database Machine Learning: Another line of work suggests
in-DBMS machine learning, where ML operators are implemented
within the DBMS [8, 11, 15]. This allows to move computations
closer to data and to optimize holistically over ML and DBMS oper-
ators, by enhancing existing optimization techniques in DBMSes.

The aforementioned approaches improve runtime performance,
however, they all force users to new APIs, require DBMSes exten-
sions, and can not be used to optimize existing DSPs, as they have
to be reimplemented in the respective APIs. In contrast, P2D’s goal
is optimizing existing DBMS-backed DSPs transparently, i.e., by
not being intrusive to users nor to DBMSes.
Optimizing existing DSPs: Weld [14], Modin [16], Ray [13], and
Koalas [2] accelerate performance by scaling out the execution of
DSPs expressed in existing APIs. While these approaches can be
used to optimize existing DSPs they do not exploit DBMSes as com-
putation backends and treat them as black-box storage backends.

6 CONCLUSIONS
Data scientists tend to sacrifice performance for simplicity, as they
implement DSPs on DBMSes in dataframe-like APIs. This leads to
underutilized DBMSes and increased data movement between run-
times, as DBMSes are treated as simple storage backends. In this pa-
per, we have proposed the P2D transpiler that aims to find the sweet
spot between usability and performance. P2D optimizes DSPs by
offloading preprocessing operations to DBMSes. We employ static
code analysis and rely on developer-provided mappings for its IR to
transpile DSPs. Our preliminary evaluation has shown that P2D can
achieve up to 10× performance improvements over state-of-the-art.
FutureWork:Our roadmap includes plans to developmappings for
more frontends (e.g., Numpy and sklearn), to enable optimizations
across multiple frontends, and to formalize techniques to guarantee
correctness for the IR transformations. We also plan to extend P2D’s
heuristic optimizer with cost-based methods. Finally, we plan to
extend P2D to optimize DSPs with data on multiple DBMSes [5],
and to integrate it with the Dorian [18] and PolyDB [4] projects.
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