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Introduction

Earth observation (EO) is a prime instrument for monitoring land and ocean processes, studying

the dynamics at work, and taking the pulse of our planet. A large variety of sensor data (active /

passive / of many resolutions) are nowadays accessible to researchers, agencies, and the general public.

However, a final barrier remains: the need for technology that can convert the enormous quantities of

raw EO data being generated daily into the valuable information necessary for making decisions and for

taking concrete action. The ability to extract meaningful information from raw EO data is an essential

prerequisite to achieving significant impact: be it in terms of monitoring or documenting (e.g. progress

towards the United Nation’s sustainable development goals), predicting and issuing timely warnings

(e.g. related to future natural disasters [132] and need for emergency evacuations), or projecting the

effects of human actions and natural processes on nature and society [68,131,212].

From the beginning of EO research, computer science and signal processing techniques have been of key

importance for extracting meaningful information from raw data. However, we have observed rapid

technological advances in these fields over the last few years, particularly owing to the increasing use

of artificial intelligence (AI) methods – and in particular, techniques from machine learning (ML) in

the context Earth observation. Notably, the use of deep learning (DL) and other ML techniques has

had broad and major impact on EO and remote sensing [138,222], where they are used across entire

processing chains, from data compression and transmission to image recognition and predictions of

environmental variables (land cover, land use, biomass, etc.). Similarly, ML techniques are increasingly

widely used in many areas of environmental science [32].

However, while classical processing tasks, such as land cover classification, seem to have reached a

certain degree of maturity, partially due to the better integration of EO and ML methods, substantial

work remains to be done to render these approaches truly useful for users and society. In a recent

article, an agenda for future technical achievements required in this context has been proposed [192],

which triggered this effort from AI4EO scholars and the European Space Agency Φ-Lab. Accordingly,

with this overview article, we aim to explore and discuss in more detail the development and use of AI

methods in the field of EO, with an emphasis on ML techniques, and to thus inspire the EO community

to realise the transformative advances made possible by these techniques.

More specifically, this article gives a bird’s eye view of the essential scientific tools and approaches

informing and supporting the transition from raw EO data to usable EO-based information. The

promises, as well as the current challenges of these developments, are highlighted under dedicated

sections. Specifically, we cover the impact of (i) Computer vision; (ii) Machine learning; (iii) Advanced

processing and computing; (iv) Knowledge-based AI; (v) Explainable AI and causal inference; (vi)

Physics-aware models; (vii) User-centric approaches; and (viii) the much-needed discussion of ethical

and societal issues related to the massive use of ML technologies in EO. Figure 1 summarises the content

and organisation of this perspective paper.
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Figure 1. Conceptual overview of this perspective paper: (a) different levels of algorithms emerge

from the areas of machine learning (ML) and interact with computer vision (CV), computer science,

and statistics to learn patterns and associations from observational data. The models must integrate

domain knowledge and biogeophysical constraints to advance in the modelling and understanding the

Earth’s processes. The ultimate goal is to provide intelligent, interoperable, actionable, trustworthy,

robust systems whose decisions should be accountable. (b) The field of AI– and specifically, the area

of ML within it – interacts (and is embedded into) several systems to realise such ambitious goal;

from high-performance computing platforms in digital twins to Earth system’s model simulations and

products, a wide range of Earth observation data, the characterisation and quantification of uncertainty,

as well as the (active) role of the users. (c) The processing chain in AI goes from simple modelling

(e.g. classification, detection, parameter retrieval) with ML, CV and high performance computing

techniques that answer ‘what questions’, to the more ambitious goals of explainable AI, causal relations

and ontologies that answer ‘what if’ questions, and finally to communicate decisions, which involves

ethical issues, trust and interaction with the user.
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Part I

Modelling — Machine learning, computer

vision and processing

1 Computer vision for Earth observation

A significant portion of EO data has the form of images, i.e. measurements that are distributed densely

and regularly over the Earth’s surface. This includes optical imagery (panchromatic, multi-spectral,

hyper-spectral), thermal imagery, but also other surface scanning techniques like synthetic aperture

radar (SAR), as well as image-like raster layers derived from raw observations (e.g. elevation models).

Computer vision (CV), the discipline concerned with computational methods to extract information

from image data, is a natural tool for EO. Indeed, the two fields have many fundamental tasks in

common: visual recognition and detection of objects, segmentation and semantic labelling of image

regions, change detection and time series analysis based on image sequences, spatially explicit regression

(retrieval) of continuous surface variables including counting and density estimation, geometric 3D

reconstruction, etc. Some of the earliest examples of computer vision algorithms were developed for

EO [20,64,65].

CV has been an early adopter of machine learning and AI methods, which has benefited Earth

observation, e.g. by developing deep neural network architectures that are particularly well-suited for

image analysis, and are now in wide use for EO. Also, the quest for high-level, human-like perception

inspires new research directions in EO, like monocular 3D perception or visual question answering.

On the other hand, particular challenges specific to EO do not typically arise in generic CV studies and

call for more targeted research efforts.

1.1 Specific challenges of Earth observation

In remote sensing, one routinely needs to process data from multiple sources to solve a problem jointly,

sometimes referred to as “data fusion” [163]. Obvious examples include, e.g. (i) pan-sharpening to

combine high spatial resolution images (obtained by integrating over a wide spectral range) with

multiband, high spectral resolution images (obtained at the cost of coarser spatial sampling), (ii) the

fusion of optical and radar data to mitigate their weaknesses like occlusion by clouds, respectively radar

shadows, or (iii) joint processing of imagery and elevation data to implicitly or explicitly address the

impact of the surface topography. From the AI perspective, this is an interesting case of representation

learning, where a joint latent representation (or encoding) shall be derived for data from different sources.

Different strategies are conceptually related to the classical notions of early or late fusion and intermediate

variants [159]. Still, it remains a largely open question how to optimally combine measurements from
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different, possibly varying sensors and modalities into a generic representation [162,186,188]. While at

the same time, we are faced with an increasingly broad, diverse, and ever-changing range of EO data,

including not only satellite and aerial imagery, but also opportunistic data sources such as ground-based

images [23, 104, 205] or social media posts [92]. Arguably, an ideal remote sensing system promptly

delivers downstream users the required geospatial information using any sensor data pertinent to the

task. This view suggests that user-centric abstractions, tailored to specific information extraction tasks

but which can be derived in an invariant manner from a range of different inputs, could significantly

extend the impact and quality of EO services (see Section 7).

Another challenge is the synthesis between the purely statistical, data-driven modern AI paradigm

and the rich physical domain knowledge about the phenomena we aim to observe in the Earth system,

leading to hybrid modelling approaches [30]. Informally speaking, physical models excel at efficiently

and coherently describing well-understood relations so that one can quantify them in a (largely) unbiased

manner with explicit, low-dimensional equations. Such models exist for many phenomena of interest

in Earth observation, such as atmospheric physics, hydrology, vegetation dynamics, etc. Whereas the

strength of (statistical) AI is to construct good predictive models for phenomena where the mechanistic

relations are either poorly understood or intractable by fitting generic, high-dimensional (appropriately

regularised) functions to large volumes of data. One particular class of tasks where AI models presently

shine are perception tasks like computational vision (but also the processing of sound signals and written

text). In EO, physical models exist for the processes we aim to observe, but extracting them from the

sensor data is a perception task. Given the complementary nature of the two paradigms, it can be

expected that a hybrid approach should be beneficial. Not only would the results be consistent and

explainable in terms of the underlying, known physical/chemical/biological processes. One would also

need a lot less training data and, at the same time, be more immune to overfitting if the model exploits

relations and constraints that are known a priori and focuses on learning patterns that are not known

yet (see Section 6).

A specific challenge in EO is the type of reference data (i.e. the ground truth, in the form of class

labels or prediction targets) available for training. Modern machine learning approaches rely on large

volumes of labelled training data that one might not be able to collect for EO, for instance if fieldwork is

required to acquire them. In the case of spatially explicit computer vision tasks, it is often also assumed

that the prediction target comes in the form of dense 2D maps and hence includes detailed information

about spatial context and layout. Moreover, in various standard computer vision benchmarks, the

datasets are often reasonably balanced. On the contrary, EO reference data is often less ready to

be used in AI-based systems. First, reference data used for the ground truth on a given location

can be associated with various acquisition procedures and instruments, with multiple angles of view

and resolutions, resulting in misalignment among data. Also, the reference data may have semantics

unrelated to what can be seen in the image data, e.g. parcels or cartography information. Second,

ground truth may come as sparse, point-wise observations without surrounding context, making it hard

to learn spatial patterns [80,101]. Third, often the data distributions are extremely unbalanced with
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long tails [201], and the problem is exacerbated by the fact that the rare, under-represented extreme

cases may be significant (e.g. extremely high vegetation, rare high-value crops, local artificial changes in

the uninhabited wilderness, etc.). Finally, the output spaces in remote sensing may contain additional

structure, like crops or vegetation types in a taxonomic hierarchy [193], or in general, correlations

between different output variables.

1.2 General computer vision challenges relevant for Earth observation

Besides the open problems listed so far, several unsolved computer vision questions are essential for the

endeavour of visual EO. Several of them are open problems of AI and machine learning as a whole that

frequently emerge in the context of computer vision (also see Section 2).

Arguably one of the main frontiers of present-day AI is the step from supervised to unsupervised learning

and self-supervised learning (SSL). In SSL, we use part of the data properties as source of supervision:

for example, one can rotate the image and predict the rotation applied [70] or predict wheter a series of

images has been takes in the same season [118]. This topic is further discussed in Section 2. The success

of learning-based computer vision, and the current generation of computer vision systems, is primarily

due to supervised learning from large volumes of labelled training data, for which the desired outputs

are known. Biological vision [61], as well as information-theoretic considerations [75], suggest that

visual perception can be learned with a lot fewer annotations by discovering inherent structure in the

(unlabeled) data and abstracting it into a representation. Some progress towards (partly) unsupervised

learning has been made over the past years, especially in text processing and language models [25].

Still, unlabeled data, which is available in virtually unlimited quantities, at this point plays at most

an auxiliary role [13,118] in computer vision and EO, and the supervision does the heavy lifting with

known training labels.

Alternatively, rather than ambitiously start with unsupervised learning and then pragmatically include

some supervision as required, one can start from the well-established supervised schemes and search for

ways to reduce the supervision. Simple forms like transfer learning, i.e. adapting a well-trained system

to a related task by fine-tuning with a smaller training set, are routinely used [40, 81]. On the contrary,

more challenging scenarios are at most partially solved and are currently very active research topics.

Examples include unsupervised domain adaptation [116,180], where one has a well-trained system but

only unlabeled data for the target task; few-shot learning [24,83,111,181], where the range of target

values (e.g. object classes, terrain heights, etc.) shall be expanded with only a few examples for the

new, previously unseen cases; zero-shot learning [208], where the learned representation should have

enough metric structure to handle previously unseen output values outside the training range; and

meta-learning to obtain flexible representations that can be transferred to new tasks with little effort

and training data [24,63,83,155]. A rich literature already exists about all these attempts to increase

the generalisation and label efficiency, c.f. Section 2.

An open question specific to computer vision, and its application for EO, is the role of AI and learning in
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the context of 3D scene reconstruction and how to integrate learning into conventional 3D vision based

on well-established stereo triangulation, shading, and direct range measurements (e.g. with LiDAR or

InSAR). Exciting attempts have been made to integrate machine learning components into 3D surface

reconstruction [41,50,100,144,174], and to incorporate 3D reconstruction and semantic interpretation [21].

But we are still far from a complete understanding of the opportunities and limitations of AI for 3D

vision. The field partially overlaps with the above-mentioned hybrid, physics-informed ML, since parts

of the 3D vision system, like the shading/rendering equations, are well-understood physical models.

One may speculate that combining the well-known multi-view geometry with learning-based models

may give rise to geometry-informed machine learning models.

1.3 Beyond computer vision

Finally, we argue that CV methods should not be viewed in isolation. In the context of EO, CV is

a tool that needs to be embedded in the larger context of integrated Earth system monitoring and

decision support.

From that perspective, one important question is how to best integrate AI systems into the EO

infrastructure. Arguably, computer vision capabilities and modules should not be added to an EO

program ex-post as independent components; instead, they should already be considered in the

planning phase and inform the system design. For instance, it may make sense to plan space missions

synergistically, such that they support AI methods to combine their respective outputs into a higher-

value product. At present, such combinations are employed opportunistically where they arise, e.g.

commercial very high-resolution images feature only a few coarse spectral channels and are thus often

fused with spectrally richer, but spatially coarser imagery like Landsat or Sentinel-2 [66, 158]. Another

example considers combining accurate but sparse spaceborne LiDAR data with optical imagery (in

some cases from different, independent national space programs) to generate dense maps of vegetation

structure [101,140]. We postulate that systematically planned combinations that factor in the potential

of joint processing could significantly increase the impact of many satellite missions. A further example

where computer vision and machine learning must be included as a mandatory component of the

planning are onboard AI processors that deploy AI in space, for instance, to coordinate constellations

or to compress and preprocess data.

Once one includes AI in the system design, the question naturally arises why it should be limited to

low-level processing and perception. We speculate that in the long run computer vision will only be

a component of much larger AI systems that go all the way to spatial and high-level reasoning and

direct decision support. One might even argue that turning EO data into maps and stopping there is

an arbitrary and unnatural cut, as there is no clear boundary between perception and reasoning. Some

machine learning researchers claim [43] that, at the technical level, one may have to integrate statistical

AI with relational, symbolic AI (see Section 4) as reasoning gains more importance.
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2 Machine learning for Earth observation

Modern applications of Earth observation face new challenges. For example, increasing amounts of data

become available through continuous data streams with extremely high frequency. Moreover, more

complex types of data are being introduced. Additionally, the data and labels can be noisy. All these

issues have further raised the expectations and challenges placed on ML for EO.

2.1 Learning paradigms in Earth observation

Most of the tasks for EO (e.g. land-cover maps generation and updating) are usually achieved by

supervised classification techniques, which require a set of labelled samples for training the classification

algorithm. Land-use land-cover (LULC) classes are related to physical phenomena characterized by

specific properties (spatial variability of classes, non-stationary spectral signatures, etc.) that are very

difficult to be modelled without genuine labelled data [27]. Gathering a sufficient number of high-quality

labelled samples is time-consuming, costly and may not be feasible in large-scale EO applications. The

quality of samples is related to different factors: (i) the degree to which the training data is sampled

independently (this is often violated because training data is often collected in neighbouring locations

on the ground); (ii) the intrinsic variability of the spectral signatures of land-cover classes which is

related to the acquisition and the ground conditions [27]. This limits the design of effective classification

models with supervised learning schemes.

To overcome the difficulties of assembling large-scale labelled training samples, DL models pre-trained

on publicly available datasets (e.g. ImageNet) have been favoured within the CV community. However,

recent studies have demonstrated that this approach is not adequate for remote sensing (RS) due to

the differences between the characteristics of the images in CV and RS (e.g. Sentinel-2 multispectral

images contain 13 spectral bands associated with varying and lower spatial resolutions) and their

semantic content (and thus the considered semantic classes) [133,177]. Alternatively, one can enrich the

information given as input to the supervised classifier by iteratively expanding the original training set

via human/machine interaction. This approach, known as active learning, is detailed in Section 7.

To avoid the extensive cost of collecting large-scale, labelled training sets, self-supervised methods

have attracted substantial attention in RS in the context of learning general image features from

large-scale unlabeled data without using any human-annotated labels (see Section 1). Interesting

research directions for EO include: 1) integrating active learning and self-supervised learning methods

for large-scale EO data analysis and 2) developing augmentation-free self-supervised learning methods.

Augmentation-free self-supervised learning has recently attracted significant attention in CV and ML

communities [103] and can be highly relevant for different EO problems. Using first self-supervised

learning and then fine-tuning approaches leverage unlabeled and labelled data and thus constitute

a semi-supervised learning scheme. More generally, semi-supervised learning alternatively uses data

with labels to learn a representation function to the target objective (e.g. classification) and data only

to get the underlying data structure. Various strategies co-exist, including self-training [34, 76] on
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unsupervised tasks (e.g. image reconstruction), consistency regularization and pseudo-labeling [73,170],

and generative modeling [35,152]. These last research directions seem the most promising for addressing

standard EO tasks at a large scale.

2.2 Learning from noisy labels for Earth observation

Another conceptually different approach to gathering representative training images covering wide areas

is to exploit publicly available thematic products (e.g. the Corine Land Cover [CLC] map provided

by the Copernicus Land Monitoring Service) as labeling sources. Since these products already exist, a

large number of labels are already available at no cost. However, these products are subject to (i) errors

in the map (depending on the data/algorithm used to generate them, e.g. the accuracy of the CLC

map is reported to be 85% [88]); (ii) changes in land-use/land-cover after the derivation of the maps;

and (iii) geolocation errors (e.g. due to the residual misalignment between a digital map and a satellite

image) [134].

Missing and noisy labels can simultaneously appear across different spatial areas of a given image. Their

direct use results in uncertainty in the ML models and, thus, uncertainty in the LULC maps/scene

predictions. Therefore, there is a need for methods robust to label noise that: 1) identify and correct

the label-noise associated with different thematic products and 2) are architecture-independent and can

allow training of any DL model under input-dependent label noise.

To address these issues, several studies have been presented recently to demonstrate learning from

noisy labels in RS [6, 46, 60, 79, 194]. Most existing methods in RS are sensitive to long-tailed class

label distributions (a common issue observed in the analysis of large-scale EO data). They can provide

inaccurate results, particularly for the minority classes in the training set, represented by insufficient

reliable labelled samples. Accordingly, label noise-sensitive methods robust to imbalanced training sets

are needed.

2.3 Automated machine learning for Earth observation

The quality of ML-derived products depends (i) on the choice of the model and training algorithm to

be used and (ii) on the settings of various hyperparameters. A poorly chosen or ill-configured model

can lead to mediocre performance, whereas a well-chosen, carefully tuned model can yield drastically

better results and sometimes outperform human experts. As a consequence, there has been substantial

work and progress by the automated machine learning (AutoML) community on model selection and,

to an even larger degree, hyperparameter optimization [86], with methods including random search [19],

Bayesian optimization [18,59,84,169,184], evolutionary optimization [114], meta-learning [24,77,83]

and bandit-based methods [108].

While these methods are general enough to be applied out-of-the-box to ML problems encountered in EO,

we believe that the Earth observation community would benefit from methods tailored to the specific

kinds of data arising in EO problems. Several of those specifics are large amounts of observational

11/50



data, relatively few high-quality labels, and data showing substantial variation between different spatial

regions. Therefore, to best support EO research, AutoML should go beyond the standard paradigm of

selecting models and optimising their hyperparameters and address more complex topics, particularly

in AutoML for spatio-temporal data. This includes, for example, investigations on which type of

search spaces would lead to good results within the constraints of the application [85,137,195], or of

the impact of acquiring more labelled data by modelling and analysing the learning curves of certain

algorithms [125,126].

Furthermore, we see neural architecture search (NAS) [57,124] as a very promising direction of AutoML

in the area of DL. NAS aims to automatically find the best DL model for a given task and dataset,

e.g. for image classification, which can be done by using reinforcement learning [15, 224]. Current

research directions focus on speeding up the search process, e.g. by optimisation in the search space

using stochastic gradient descent [112] (including for remote sensing classification [136]) or direct NAS

without retraining [78,122].

To realise these and other advances in AutoML for EO, new benchmarks consisting of EO data should be

created. While initiatives like BigEarthNet [177] can be seen as a first step towards this goal, additional

and prominent benchmarks would motivate researchers from the AutoML community to invest in these

types of data [133].

2.4 Domain adaptation for large-scale Earth observation data analysis

Domain adaptation is another approach to improve the statistic in the learning of a classifier. Domain

adaptation, which can be seen as a particular case of transfer learning [141, 190], aims at classifying

an image for which no prior information is available (target domain) by using existing information

acquired from another image on the same area at a different time or from a spatially disjoint site (source

domain).

It is worth noting that the pre-trained source models can be fine-tuned for the given target domain.

However, fine-tuning still needs considerable amounts of labelled training data, which may not be

available for typical EO applications. Through domain adaptation, the need and effort to recollect

labelled samples are significantly reduced by adapting the already available information on the source

domain to classify the target domain. To this end, the domain adaptation methods define strategies that

adapt and use the information available on the source domain to classify the target domain, assuming

that the two domains may have different (but related) distributions [89, 190]. In RS, the current

research studies in the context of domain adaptation have recently shown the importance of developing

methods that are capable of (i) efficiently and accurately learning domain-invariant data representations;

(ii) generalising well to the different spatially disjoint large-scale areas; and (iii) mitigating uncertainties

of the classification model associated to imbalanced and incomplete source domain training sets [141,190].

These terms are crucial, as classifiers trained on one image seldom perform well on other images acquired

at a different time or for other geographical areas under different conditions. To address these issues,
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discrepancy-based methods [216,217,221], adversarial methods [110,210,218,220], and self-supervised

methods [39, 149, 165] have been recently demonstrated to be effective for different EO problems.

Similarly, meta-learning approaches have also been developed [24, 77, 83]. Meta-learning takes a slightly

different approach, where data from the source domain is utilized to determine a learning procedure

that can learn more efficiently from limited amounts of available data, for example by determining good

initialisation weights [63] or even by learning an optimisation algorithm [11,82,145]. A meta-learning

approach to land-cover classification (cast as a few-shot learning problem) was proposed in [155], using

model-agnostic meta-learning (MAML) [63]. Most existing domain adaptation methods mainly aim

at adapting a model to a single target domain without considering a more practical scenario where

the target consists of multiple data distributions. To investigate a more realistic setting for domain

adaptation, an interesting approach is to study the problem of multiple-target domain adaptation

and develop domain adaptation methods compatible with both single-target and multi-target domain

adaptation settings [149]. We also note that, considering that the labelled source domains may contain

multi-modal data (e.g. multispectral, SAR, etc.), the joint use of different EO data modalities can

boost the performance of domain adaptation.

2.5 Continual learning from growing archives

Once an ML model is trained with the available training samples, it is fixed to be employed to realise

the considered EO tasks. However, the repeat-pass nature of satellite orbits with high speed (i.e. high

temporal resolution) results in fast and regular growth of the EO data archives. For example, through

the Sentinel satellites, a volume of roughly 12TB of satellite images is acquired daily. Accordingly,

continuously learning new information (e.g. new LULC classes, sudden/abrupt changes) from a stream

of recently acquired EO data is essential. This requires updating the model parameters by considering

the recently acquired training images. On the one hand, re-training the entire ML model is impractical

for large-scale EO applications (due to constraints on computational and storage resources). On

the other hand, updating the model parameters based on only recently available training samples

may degrade the capability of the model for characterizing the previous data (this issue is known as

catastrophic forgetting [209]. Open world (or open set) recognition [16, 67] represents the exemplar

use-case: knowledge about the world is only given partially, and new classes can be presented at inference

time. Thus, the methods (and related tools) that achieve learning over time in a streaming fashion

(with changing data distributions) are needed. Few deep continual learning studies have recently been

presented in RS [10,105,171,185]. The primary goal of these methods is to overcome the forgetting of

already learned LULC classes and to leverage the earlier knowledge for obtaining better performance or

faster convergence/training speed on the new LULC classes (considered as new concepts). However,

these methods require a set of accurate labels to describe the new classes, which may not be feasible in

large-scale EO applications. In addition, these methods assume that the concept boundaries/identities

are known. However, such a setup is unsuitable in operational EO applications since the concept

boundaries/identities are not known a priori. For example, the LULC classes that appeared and
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disappeared in different geographical areas may not be known a priori at a large scale. To address

this problem, concept-agnostic learning (i.e. online learning), which has recently attracted attention

in CV communities [215], can be highly relevant. Motivated by advances in reinforcement learning,

an interesting approach is to investigate memory-based online continual learning methods. Another

interesting direction is to research unsupervised domain adaptation methods in continual learning

settings, aiming to update a model continually to learn distributional shifts across arriving concepts

with unlabeled data while retaining the earlier knowledge.

3 Advanced processing and computing

The efficient processing and intelligent analysis of very large, complex and heterogeneous EO data are

crucial to revolutionizing and substantially improving our capabilities for EO. In this perspective, the

management of big EO data and ML is the scientific and technical pillar powering the current wave of

innovation in AI for EO. This section describes the state-of-the-art and the challenges in the advanced

processing and computing of EO data. It outlines the most promising research directions to address

these challenges.

3.1 Earth observation ecosystems – new system architectures

The growing operational capability of global EO provides scientists and practitioners with a wealth of

information that can be used for various EO applications. However, to take advantage of this data,

users need significant expertise to validate their assumptions and gain insights. Recently, different EO

exploitation platforms — such as the Google Earth Engine, Open Data Cube, and Sentinel Hub – have

emerged to ease large-scale analyses by offering a certain level of processing and data abstraction [175].

Yet, despite these benefits, all exploitation platforms rely on a heterogeneous set of technologies with

varying sets of interfaces and data formats, making the federated use of these platforms difficult [202].

The openEO [164] project goes in the right direction, but it requires users to do all the binding of the

different EO platforms. We believe that EO technology must be interoperable and accessible to everyone

in a seamless manner. The AgoraEO project is exploring this direction toward a decentralized, open,

and unified EO ecosystem, where one can share, find, compose, and efficiently execute cross-platform

EO assets [202]. With such EO ecosystems, the project aims at fostering innovation, by putting

EO technology at the disposal of all, and improving EO data literacy for the EO application and

service developers, space agencies, the space industry, the science community and the general public.

However, building EO ecosystems is still a big challenge. First, assets are highly heterogeneous, ranging

from datasets (e.g. Sentinel data), processing tools (e.g. SNAP and GDAL), and ML algorithms to

high-performance computing clusters and human expertise (e.g. an RS expert providing consultancy

services). This high heterogeneity renders asset management (storing, querying, and composition) an

open problem [187]. Second, most EO analytics are exploratory, which requires fast query results. Third,

data assets are naturally scattered across multiple sites and platforms, making conventional (AI-based)

14/50



analytics hard. It is necessary to devise a framework to support federated analytics.

3.2 Federated learning

An increasing amount of EO applications operate in highly distributed settings, especially with the

emergence of EO ecosystems. Nowadays, it is not rare at all to find EO data highly scattered across

multiple sites. However, standard ML algorithms require centralising the data before training, which

is problematic in the EO settings today because EO and other geo-referenced data are often large in

volume. Additionally, centralising datasets might be impossible due to data constraints, such as privacy

regulations or legal issues. Indeed, many public authorities and private industries remain reluctant to

share their data with third parties for confidentiality, privacy, and legal reasons, but often also due

to its economic value. Federated learning is a way to address this problem of associated governance,

privacy concerns, and technical challenges [2, 99]. Federated learning aims to learn a local model on

each distributed site and aggregate the resulting local models to a shared global model [121]. Federated

learning reduces data transfer costs to a minimum, and models can generalise across EO datasets,

leading to more accurate and less biased models. Applying federated learning to geo-distributed EO

data is challenging because federated learning relies on the general assumption that the underlying data

are independent and identically distributed (the i.i.d. assumption). This is rarely the case in real-world

EO data scenarios. Furthermore, in RS, the data naturally tends to be remarkably heterogeneous – not

only because of the variety of sensors, modalities, and characteristics of RS missions but even within the

same product. Most current federated learning algorithms cannot effectively deal with these conditions,

leading to a sub-optimal performance [219]. Moreover, independent third parties cannot build standard

ML models while respecting data privacy constraints. This feature is crucial in EO ecosystems where

participants do not know each other beforehand.

3.3 AI interoperability

The need for distributed or federated analytics and learning is increasing rapidly. An increasing

amount of applications require building models in a distributed or federated fashion (i.e. over multiple

data sources). Interoperability, in terms of data and model communication, across different areas

to achieve a common goal, e.g. to build a global model, is critical in these applications. Without

interoperability, achieving common goals efficiently and effectively is almost impossible. Primarily,

we expect interoperability as a de facto standard in EO ecosystems (environments), where multiple

participants can join to contribute with their assets. This calls for standards representing input data

(e.g. satellite imagery) and intermediate data (e.g. local models) to optimise multiple data sources and

information models. Unfortunately, most data representations and systems are not interoperable at all.

Examples in this direction are the Hub project by ActiveLoop, which aims at providing an AI database,

i.e. a common storage representation, for input data [3], the Open Neural Network eXchange (ONNX)

format, an open-source standard for machine and deep learning [4], or OpenML [196], an eco-system

for sharing machine learning datasets, algorithms and results. However, real interoperability is still
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far from reality in EO. AI interoperability must be solved if we expect EO ecosystems to succeed and

increase shortly.

3.4 Scalable data processing

RS is developing so fast that data is not only getting increasingly diverse but also the amount of available

data is increasing at a very fast pace [17]. This poses many new challenges for scalable and efficient

data processing to support emerging EO applications [9, 42]. We have to revisit the entire processing

stack. First, we must redesign how data is ingested into data processing systems for analysis. Instead,

we must be able to process the data in-situ with fast virtual data ingestion, i.e. without physically

moving or copying the data into a processing system. Additionally, one could take inspiration from

works in the data management community [7, 117] whose idea is to load or prepare only those portions

of the data required by incoming queries. This allows the system to scatter the data loading cost

across the processing of multiple incoming queries. Second, scanning the entire available datasets every

time a query comes is impractical. There is a need to develop new indexing techniques that allow

for fast querying of EO data. Recent works propose hashing-based indexing and approximate nearest

neighbours search in extensive EO data archives [178]. Hashing methods encode high-dimensional image

descriptors into a low-dimensional Hamming space. The image descriptors are represented by binary

hash codes, indexed into a hash table that enables real-time search. Such binary hash codes can also

significantly reduce the memory required for storing the RS images in the auxiliary archives. The

success of deep neural networks in image feature learning has inspired research on developing DL-based

hashing methods (i.e. deep hashing methods). Recently, several deep hashing-based indexing systems

that simultaneously learn image representations and hash functions based on the suitable loss functions

were introduced [151,178]. Given the heterogeneity of data and processing in EO applications, one must

be able to run different data analyses on a diverse set of processing hardware devices (e.g. CPUs, GPUs,

FPGAs), depending on the input data and query. In particular, a significant challenge is efficiently

processing EO data on the space segment (see Section 3.5).

3.5 On-board data processing

One of the most impelling goals in EO is to transfer satellite data processing from Earth (ground segment)

to space (space segment) through the development of so-called onboard payload data processing. Indeed,

quite often, the raw data generated by modern instruments is more than what can be transmitted

to the ground. This makes using various signal processing and compression techniques necessary to

reduce the amount of data transmitted, especially for small satellites. However, onboard processing

requires several characteristics, such as flexibility, robustness and low computation burden. Moreover,

the design of optimum schemes generally involves an appropriate combination of software and hardware

solutions. For this reason, AI models represent a valid technology [223]. Indeed, in this case, the highest

processing demand is required during the training phase, which is operated on the ground segment,

while less effort is necessary to yield the onboard products. Hardware prototyping can be done in fast
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loops, utilizing for example the neural compute stick. ESA has already launched a first demonstration

mission named Phi-sat-1, characterized by onboard AI processing for cloud detection. More challenging

AI-based applications are being developed for implementation on the payload of the Phi-sat-2 mission.
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Part II

Understanding — Physics-machine learning

interplay, causality and ontologies

4 Knowledge-based AI and Earth observation

AI is indeed much broader than just deep learning (and machine learning in general) and includes

knowledge representation, reasoning (incl. constraint satisfaction) and planning (incl. scheduling).

With the need for explanations and the rise of the topic of explainable AI, knowledge-based AI is

again attracting a significant amount of research interest. This section discusses several issues of

knowledge-based AI relevant to EO, including decision modelling and decision support, knowledge-based

machine learning, and knowledge representation in ontologies for environmental sciences.

4.1 Decision modelling and decision support with Earth observation

A prototypical example of the knowledge-based approach to AI is expert systems, designed to mimic

the behaviour of human experts in narrow areas of expertise [87]. Introduced in the mid-1960s, expert

systems were among the first truly successful forms of AI software. They consist of a knowledge base

(capturing human knowledge) and an inference engine (emulating human reasoning) and overall support

the decision-making process.

The spirit of expert systems has survived in its purest form at the intersection of AI and decision support,

and is exemplified by the DEX (Decision EXpert) approach [22]. DEX is a hierarchical multi-criteria

decision modelling method, which represents decision preferences on alternatives described by qualitative

variables in the form of decision rules, very similar to the IF-THEN rules of expert systems, and supports

a variety of knowledge-explanation methods. DEX helps decision-makers in tackling difficult decisions

by ranking the available options and supporting explanations (e.g. what-if questions), thus allowing

humans to explore a given situation in depth and to make informed, well-justified decisions.

DEX has been successfully and extensively used in various areas, with increasing applications concerning

agriculture and its environmental impacts. One example of such an application is SoilNavigator, a field-

scale decision support system for assessing and managing soil functions [47]. It jointly considers multiple

soil functions, including primary productivity, nutrient cycling, water purification and regulation, climate

regulation and carbon sequestration, and finally, soil biodiversity and habitat provision. In addition, it

provides management advice for improving the performance of prioritised soil functions.

Due to the lack of measured data on soil functions, the SoilNavigator decision support system assesses

all of them in a knowledge-based manner. However, when combined with machine learning, EO can
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provide more objective and precise information on at least some of the soil functions: for example, recent

work by Wolanin et al. [203] has applied machine learning to EO data to estimate primary productivity.

The potential of EO data in decision-making is increasingly recognised, even if applications are still

rare. For example, the OECD [1] has prepared a document entitled “EO for decision making”, which

clearly states the importance of EO data for decision making, especially when combining it with other

geospatial (e.g. ground data on air pollution), administrative and socio-economic data, in the context of

assessing environmental risks and their impacts on humans and ecosystems. Combining knowledge-based

approaches to decision support with EO data or downstream products derived by machine learning will

unlock a whole new range of applications of AI that can help in achieving the sustainable development

goals [199].

4.2 Knowledge-based machine learning and Earth observation

Most ML approaches today are data-driven and require large quantities of data to produce accurate

and reliable models, which are typically not transparent and do not provide explanations. However, ML

approaches that focus on cause and make use of formally represented domain knowledge, in addition

to data, have a long tradition in the field, starting with explanation-based learning [123]. Inductive

logic programming [102, 128] uses logic programs to represent data (examples), domain knowledge

(background knowledge) and learned models (hypotheses). This approach has given rise to a broader

learning paradigm known as relational learning or relational data mining [55]. Combining logical

representations with probability theory has led to the development of approaches that learn probabilistic

models expressed in logic within the paradigm of statistical relational learning [69] and, more broadly,

statistical relational AI [143].

The knowledge used in ML, in addition to data, can take different forms. Taxonomies are a form

of domain knowledge that represent relations among concepts in the domain of study: in predictive

modelling and classification, such taxonomies can represent hierarchical relations among the classes

predicted. Typically, examples in this context have multiple labels from the taxonomy and the task at

hand is known as hierarchical multi-label classification [167,198].

Land cover classification schemes [211], such as the Corine Land Cover map, are typically hierarchical.

However, most ML approaches to land cover classification ignore this and learn models for each land

cover class separately. Only recently has a multi-label classification of land cover [172] and classification

with label hierarchies [193] begun to attract attention.

Other forms of knowledge that ML approaches can use include constraints, as considered in constraint-

based data mining [54]. Rules can be hard or soft, and can (in predictive modelling) impose preferences

on the predictive power, form (language constraints), or size of the learned models. Constraints on

clustering can specify that specific data points should belong to the same cluster (or different ones) and

indicate the number and size of groups.
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Last but not least, explanation and the use of existing domain knowledge play a prominent role in

computational scientific discovery [56], which includes the topic of automated modelling of dynamical

systems in science and engineering. Approaches such as process-based modelling, exemplified by the

tool ProBMoT [168], integrate data-driven and knowledge-driven approaches into modelling, where

ontological domain knowledge in the form of templates can be used as model parts. Thus, understandable

models can be obtained, which can not only simulate the behaviour of the modelled system, but also

explain its structure in terms of the processes involved. Up-to-date land use data from EO would greatly

help in the design of effective models.

4.3 Ontologies for open science in machine learning and Earth observation

Ontologies formally represent knowledge about a domain of interest, focusing on entities in the field

and the relations between them. They mainly comprise classes (or concepts), properties (or attributes),

instances (or class members) and relationships. Ontologies are crucial in providing controlled vocabularies

for semantic annotation of datasets, which allows datasets to be FAIR, i.e. findable, accessible,

interoperable and reusable [120]. With the rapidly increasing amounts of EO data, it must be FAIR

according to the aforementioned criteria, to maximise its added value. More broadly, we should strive

for open Earth science, where all products of the scientific process (e.g. data and models) are stored

and available for reuse according to FAIR principles.

Currently, EO data are primarily managed through spatial data infrastructures, which facilitate the

exchange, sharing, use and integration of geospatial data based on interoperability standards. Spatial

data infrastructures follow the FAIR principles in some aspects (e.g. have registered or indexed meta-

data in a searchable resource and are also accessible, even when the data are no longer available).

However, they are not yet entirely FAIR-compliant [71], mainly due to the lack of ontologies for EO data

that would provide vocabularies for meta-data that follow FAIR principles. Ontologies for describing

EO data, such as RESEO (the REmote SEnsing Ontology), are only starting to appear [8]. In the near

future, we expect significant further development of ontologies for EO as well as ontologies for ML and

other areas of AI. These should be connected to commonly accepted upper-level ontologies, facilitating

their interoperability. Linking the ontologies for EO and AI will significantly facilitate open science at

the intersection of EO and AI.

5 Explainable AI and causal inference

Experimentation and observational data analysis provide the basis for the accurate modelling of physical

phenomena. Nevertheless, model fitting is typically not enough, and one often wants to also understand

and characterise the system’s behaviour. Scientific consistency, reliability, and explainability of the

results obtained from AI-based models are of paramount relevance when working with complex systems

like the Earth or its climate systems [146, 153, 192]. A prerequisite is to design models that are

robust and whose inner functioning can be visualised, queried, and interpreted. In this context, we
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should aim for transparency, interpretability, and explainability of machine learning models for several

reasons: 1) to ensure consistency, generalisability, and robustness of the model performance, 2) to better

understand the system, and 3) to achieve wider adoption and confidence by domain scientists. Yet,

model interpretability comes in many flavours and is complicated by the fact that the model under

scrutiny already assumes a particular causal relation (inputs cause outputs), which is not necessarily

correct or complete. Retrieving causal relations from observations has been the goal of humanity for

centuries, and it is one of the key goals when using AI approaches, and notably machine learning

techniques, for scientific enquiries.

5.1 Explainable AI

Many successful neural network models are so large and complex that it is challenging to understand

or study their inner workings at a level of abstraction that gives insight into the predictions obtained

from them. Many eXplainable AI (XAI) methods exist for various learning paradigms [150, 160]. These

techniques range from post-hoc interpretability, via either advanced feature ranking techniques [91, 204]

or analysis of the activation maps within the learned network (e.g. GradCam or the layer-wise relevance

propagation method described below); to interpretability by design, i.e. networks that are learned to

be explicitly explainable [119]. These techniques can derive spatially explicit and temporally resolved

explanations of what the AI models have learned and what are the most expressive space and temporal

scales [91].

“Post-hoc” methods include (but are not limited to) backpropagation-based or feature attribution

techniques, such as layer-wise relevance propagation, DeepLift, and integrated gradients [150,160]. Input

feature ablation, occlusion, and perturbation-based approaches, such as model reliance and Shapley

value sampling, also belong to this category. They all try to address the problem of meaningfully

relating the output or the intermediate activations of a complex neural architecture to its input features.

Attention mechanisms and transformers have recently shown great potential in Earth sciences [154] and

provide ante-hoc explanations by assigning coefficients to the different spatio-temporal locations, which

correspond to their importance of the latter when the model provides an output. These coefficients

constitute saliency maps, which can be used for interpretation purposes. Unlike conventional recurrent

neural networks, they allow introspection into the long-range interactions in space-time series.

“Explainable by design” methods are methods whose interpretability is built into the model from the

start. Examples are models based on semantic bottlenecks, where intermediate processing pipelines

(e.g. a classifier of concepts relevant to the downstream task) are learned parallel to the final task.

In recent EO literature, such models have been proposed to understand reasons behind perceived

subjective appreciation of landscapes (e.g. if a specific type of land use is connected to a more positive

appreciation of a landscape [107]), aligning forests type classifiers by replicating the concepts behind

the decision-making process employed by foresters [130] or the unsupervised exploration of what makes

a landscape wild [173].
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5.2 Causal inference

Despite the outstanding predictive capabilities of the current machine and deep learning methods, there

is still little actual learning. Machine learning algorithms excel in fitting complex functions but do not

produce clear understanding of the underlying causal relations [52,135,153]. Analysis of the Earth’s

complex systems faces the problem of extracting information from multivariate and non-gridded datasets.

Missing data, non-linearities, and non-stationarities are present in the wild. Variables and physical

processes are often coupled in space and time, and (tele)connections can be long-range, discontinuous,

and varying in strength and intensity. Addressing this problem can allow us to identify the right set of

predictors, develop robust models and to avoid obtaining correct answers for the wrong reasons.

Causal inference aims to discover and explain the system’s causal structure based on data, models

and assumptions [135,139,153]. Causal inference and discovery tackle fundamental problems in Earth

sciences: 1) hypothesis testing, 2) discovery of latent factors and relations beyond spurious correlations,

and 3) understanding the system from observational data and assumptions. True understanding is

about knowledge of the entire causal chain; without it, we cannot predict the consequences of our

actions (interventions) or analyse where things went wrong (counterfactuals).

Interventional analysis. So far, causal inference methods applied to observations have not produced

scientific discoveries in climate science. We attribute this to the inherent complexity of the problem

and the lack of controlled experiments (i.e. the lack of interventional data). To remedy this, one can

perform interventions on the simulations. Incorporating interventions, if done carefully, will make the

causal discovery process much more efficient and robust.

Working on interventions is typically a non-unique challenge. For example, intervening on global mean

temperature could mean setting it to a constant value globally, but that would be a poor intervention

not respecting the spatio-temporal trajectory of the system. Not all interventions make physical (and

causal) sense, because some variables are impossible to intervene on in isolation. For instance, it

is physically impossible to intervene in temperature without changing other climate variables. An

intervention only makes sense if it leads to a true distributional shift in the system’s dynamics. We also

note that interventions can occur at different levels: on exogenous variables, on observed trajectories,

by removing interactions, or even in a latent space. This sort of intervention translates into a fantastic

playground for doing science with data and simulations and answering what if questions.

Counterfactuals analysis In interventional analysis, one asks what will happen on average when

acting on a particular variable. In counterfactual analysis, one tries to imagine what would have

happened had a different course of action been taken in a specific situation. Attributing causes of

extreme events to climate change is intrinsically a counterfactual thought experiment: would this event

have happened in a world without humans? Counterfactual modules (e.g. relying on MACE, DACE,

and NSGA-II algorithms) can help interpret the output of a model in human-like language. They could

– and should – find application in the Earth and climate sciences. Using counterfactuals would have
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an additional positive impact; the interaction between the model, the machine, and the user is made

explicit, allowing the user to gain knowledge, while improving both the model of the environment and

the machine.

Causal discovery. Interventions may be infeasible and unethical in the Earth sciences and only

possible in the model world. In this case, observational causal discovery comes into play to extract cause-

effect relationships from multivariate datasets, going beyond the commonly adopted correlation approach.

Several approaches for causal discovery are available nowadays: probabilistic graphical models [98],

structure learning methods [153], dynamical systems [52], Granger-causality [53, 72], instrumental

variable paradigms and additive noise models [153]. There is a significant body of literature that, under

some assumptions, allows us to learn causal relations even when time is not necessarily involved [139].

To tackle climate change, one needs to understand the complex phenomena occurring on the planet.

Discovering teleconnection patterns is an essential part of this endeavour. Events such as El Niño-

Southern Oscillation (ENSO) impact essential climate variables at large distances and influence the

underlying Earth system dynamics. However, their automatic identification from the observational data

is still unresolved. Nonlinearities, nonstationarities, and the (ab)use of correlation analyses hamper the

discovery of true causal patterns. Time series feature extraction in combination with traditional Granger

causality [72] or extensions to account for nonlinearities and nonstationarities [53] have given good

results. However, extracting modes of variability and causal discovery are typically two independent

steps which may give rise to false detections. Recently, deep learning has allowed the extraction of

causal feature representations from spatio-temporal Earth data [197].

6 Physics-aware machine learning

Machine learning has been widely and openly criticised because of the difficulty to interpret models and

the lack of physical consistency. Models are so big and overparameterised that accuracy compromises

fulfilling physical laws, such as mass or energy conservation. Losing contact with physics should always

be avoided if we want to design robust and reliable (machine learning) models. This disconnection has

implications for the consistency of products and parameter estimation in data assimilation schemes and

forecasting tools and in understanding the underlying processes from Earth’s observational data.

Historically, physical modelling and machine learning have been treated as two fields under very different

scientific paradigms (theory-driven versus data-driven). However, integrating domain knowledge and

physical consistency has been suggested as a principled way to provide solid theoretical constraints on

top of the observational ones [146]. The synergy between the two approaches has gained attention by

either redesigning model’s architecture, augmenting the training dataset with simulations, or including

physical constraints in the cost function to be minimised [93,146,183]. Integrating physics in machine

learning models may achieve improved performance and generalisation and, more importantly, may

lead to improved consistency and credibility of the machine learning models. The hybridisation has
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an interesting regularisation effect, given that the physics limits the parameter space to search and

thus discards implausible models. Therefore, physics-aware machine learning models combat overfitting

better, typically become simpler (sparser), and require less training data to achieve similar performance.

Physics-aware ML thus leads to enhanced computational efficiency and constitutes a stepping stone

towards achieving more interpretable and robust machine learning models [161,200].

6.1 Inverting physical models with machine learning

Biogeophysical parameter estimation and retrieval with machine learning learn a mapping from an

observed satellite spectrum to an underlying biophysical parameter. Unfortunately, relying only on

observational data (both spectra and in-situ measurement) to perform regression is expensive, time-

consuming, and very often infeasible [31,33]. This problem can be better posed by exploiting the wealth

of simulated data available through physical models such as radiative transfer models (RTMs) and

electromagnetic models (EMs). They solve what is called the forward problem, that is, they generate

physically meaningful observational data (e.g. spectra) from state parameters (e.g. leaf-level or canopy

parameters). Once the simulations of a particular observed bio-geophysical scenario (e.g. a forest) are

given, they provide the electromagnetic quantity that would be measured by the EO sensor (e.g. the

back-scattering coefficients or reflectances). Using these models, we can generate as many input-output

pairs as we need for training and testing our ML scheme to do the inversion, i.e. to estimate parameters

from spectral data [48]. The use of an RTM/EM model can be beneficial from different points of view:

(1) they can help data generation balancing by compensating for the lack of ground measurements;

(2) they can help in understanding the bounds within which the desired parameters can be retrieved

less ambiguously; and (3) they can help in the selection of the optimal inputs of the ML model.

6.2 Hybrid machine learning: interactions of transfer models and machine learning

ML algorithms and physics can be fully blended in several ways extending traditional approaches based

on data assimilation. Still, simple constrained optimisation methods often work well in practice [94,206].

Indeed, by inferring the constraints to the input/output pairs based on physical models, machine

learning models can obtain improved performance. Another option is to learn machine learning

emulators combined with purely data-driven algorithms for model inversion [29]. Finally, one can also

consider a fully coupled neural network where layers that describe complicated and uncertain processes

feed physics layers that encode known relations of intermediate feature representation with the target

variables. The promise of such a hybrid modelling approach [30] is to combine the excellent predictive

abilities of modern machine learning, fuelled by the “unreasonable effectiveness of data” [74] with the

causal consistency, explainability, and data efficiency of classical physical modelling.

Physical models require setting parameters that are rarely derived from first-domain principles. ML

models can learn such parameterisations. For example, instead of assigning vegetation parameters

empirically to plant functional types in Earth system models, one can learn these parameterisations from
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proxy covariates using ML, and thus achieve flexibility, adaptability, dynamics, and context-dependent

properties [127].

Emulating models in geosciences, climate sciences, and remote sensing is gaining popularity [31,33,146].

Emulators are ML models that mimic the forward physical models using a small, yet representative data

set of simulations. Once trained, emulators can provide fast-forward simulations, allowing improved

model inversion and parametrisations. However, replacing physical models with machine learning models

require running expensive offline evaluations first, and alternatives exist that construct the model and

choose the proper simulations iteratively [29,182].

6.3 Discovering equations from data

As in many fields of science and engineering, Earth system models describe processes with a set of

differential equations encoding our prior belief about the dynamics and variable interactions. Learning

ordinary and partial differential equations (ODE/PDEs) from stochastic observations is perhaps one of

the most challenging problems nowadays in statistical learning. Several approaches exist for solving

this problem, ranging from equation-free modelling [213] and empirical dynamic modelling [52, 176]

to and automated inference of dynamics [45]. Imposing sparsity on equation discovery is a sensible

assumption that allows us to identify the governing equations of the biosphere more sharply [5, 26].

Other criteria, such as compositionality, unification of theories, and interestingness, can help in learning

laws and equations from data, while trying to alleviate the equifinality (non-identifiability) issue, that is,

finding many equally accurate models for the wrong reasons. For a comprehensive overview of equation

discovery techniques with case studies in Earth and climate sciences, we refer the interested reader to

the work of Camps-Valls et al. [28].
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Part III

Communicating — Machine-user interaction,

trustworthiness & ethics

7 User-centric Earth observation

Making EO data accessible in catalogues is not enough. Improving users’ experience when working with

it must be high on the agenda too. Such experience is currently still not optimal, since EO data analysis

and interpretation is still performed in a very laborious way, by repeated cycles of trial and error,

without reaching the desired degree of flexibility and robustness. Furthermore, the overwhelming amount

of data puts strong limitations on the extent (geographic coverage within acceptable cost bounds),

depth (causal analysis, evaluation of the implications) and response time of human interpretation. As a

consequence, a significant amount of EO data remains unfound and unused [62].

User-Centric EO is a concept to enable the interpretation EO data content, associate it with other

sources of information, understand user inquiries in an interactive dialogue (thus refining the expression

of needs), distil data content, and suggest the most appropriate algorithms, information items or the

interpretation alternatives. Overall, it is a framework at the convergence of geo-information intelligence

and human-machine interaction and communication.

7.1 Decreasing the user load with active learning

The first form of interaction is to be found in the support of human operators creating the information

necessary for learning, i.e. the labels. Extracting labels directly from images, without guidance, is

hugely time consuming and can be difficultly crowdsourced as it is done in other computer vision

tasks. EO crowdsourcing may not be impossible, but it will not easily be implemented since agreement

about class definitions is currently missing and class definitions are largely variable among communities,

problems and even users [156]. The label collection process can be optimized via human-machine

interaction with active learning [191]. The active learning process is conducted according to an iterative

process. At each iteration, the learning algorithm automatically chooses the most informative unlabeled

samples for manual labelling from a human expert (supervisor) and the supervised algorithm is retrained

with the additional labelled samples. This way, the unnecessary and redundant labelling of samples

that are not informative for the classifier is avoided, significantly reducing the labelling cost and time.

Questions of sample informativeness (which are associated with uncertainty and diversity of samples)

have been at the core of the debate. At the same time, equally important aspects such as accessibility

costs [49] and user’s skills in labelling have been so far relatively neglected [95, 189]. Also, the question

of the applicability of active learning methods to the improvement of deep learning models is still
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an open debate since single samples usefulness risks are diluted by the batch-learning nature of deep

neural networks [106,148]. A comprehensive and systematic overview of deep active learning methods

is provided in [147], showing promising avenues primarily on improving sample selection strategies,

optimising training methods and improving task-independent models.

7.2 Language-based interaction

Besides label collection, another crucial form of interaction has the scope of making the content of EO

images accessible to virtually anyone. To reach such a goal, one must work on the access interface

to the information itself. The engineering and modelling phase is a barrier insurmountable for many

users, who cannot exploit the potential of EO because of technical impediments. Creating access in

a more inclusive way, e.g. through natural language, would open EO to a much broader set of users,

including decision-makers, the press and virtually all areas of society. As for traditional search engines,

this access can be granted by working on the interface between image processing (the content extraction

process) and queries that would be asked in the simplest way possible, with natural language. Language

opens EO access to society: methodologies ensuring this access via multimodal processing connecting

natural language processing (NLP) models (understanding users’ questions) and visual models (from

computer vision, reviewed in the other sections) is critical. Visual question answering [12] is a set of

methodologies aiming at creating such links and is one of the most exciting areas in User-centric EO.

The first approaches are emerging, showing proofs of concept for Sentinel resolution and VHR resolution

imaging [113] and change detection [214]. These first methods still have a large margin of progression,

especially regarding the fusion strategies to mix language and images [36]; the way to generate, learn

and exploit from more realistic language [109]; and finally the usage of large language models from NLP

(BERT [51], GPT [25]) and the injection of EO context (or prompting) in these models [37]. All these

research lines, together, will permit in the future to develop digital assistants able to understand real

questions from users and retrieve the correct, action-ready information from EO. The emergence of

EO chatbots, scanning EO data and retrieving information on demand or dialoguing with users (like

ChatGPT does) is an exciting avenue for both research and the industry.

7.3 Improved exploration and storytelling

Besides answering user-specific questions, one could be interested in gathering general information about

a scene for writing a journalistic story, exploring large stacks of data, or simply having a summary of

the image content for storytelling. Such image transcription in the language is often referred to as image

summarization and captioning. By summarizing the content of images in human-readable text, imaging

captioning provides comprehensible information about EO images, making them understandable to

everyone. In this context, recent research has created large datasets, developed practical algorithms, and

extended potential applications for RS image captioning tasks [38,115,179]. Most existing remote sensing

image captioning methods are based on encoder-decoder frameworks [142], which use a convolutional

neural network or a recurrent neural network as a backbone. Such frameworks learn features from
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the input image, and the decoder converts the encoded features into natural language descriptions.

Attention mechanisms are also extensively explored in this task to adaptively attend to the relevant

semantic region of each word [207]. Transformers models showed state-of-the-art results, as they can

better model long-term dependencies and generate descriptions [166]. On the technical side, multi-task

learning may further boost the performance of remote sensing imaging captioning by defining related

auxiliary tasks such as multi-label classification and connecting to the visual question-answering task

described in the last section. Looking ahead, promising directions are spatio-temporal reasoning for

image captioning and its extension to retrieval/captioning systems focusing on changes and anomalies.

The idea is to explore the long-range relations of semantics in space and time. With particular emphasis

on this spatio-temporal context, higher-level information can be extracted in human-readable text,

which leads to a better understanding of the scene.

7.4 Enhanced visualisation

The joint interpretation of big multimodal data, including EO data multi-mission images, meta-data, or

text, is still seldom explored in research. This calls for new visualisation techniques able to represent data

in a way that eases interpretation and explanations, but also the discovery of unexpected information,

anomalies and causal relations (see Section 5). Succeeding in these new forms of exploration implies

designing new visualisation techniques, enhancing scientific visualisation, information visualisation,

visual analytics, human–computer interaction, augmented reality or virtual reality [157]. The EO

data visualisation methods shall respond to users’ needs for interaction (Section 7.1), human-machine

dialogues (Section 7.2) and exploration (Section 7.3) to support the decision process.

Early geographic EO visualisation attempts were ‘virtual flights’ on 3D terrains, rendered using 3D

models from stereo or InSAR observations. Artefacts and noise removal, as well as multi-resolution

integration, were the core issues. EO multi-, hyper-spectral or SAR image products could be visualised

therein, with information extracted by dimensionality reduction or Fourier-based transformations for

SAR complex-valued data and projected in the visual RGB representation [129].

Visual data mining can be enhanced by employing immersive visualization [14] of the EO information

content with high user interaction. This can be achieved using immersive video environments like CAVE

(Cave automatic virtual environment, a cube-sized room, where data are projected on 3 to 6 inner walls.

The user is standing in its middle) or VR sets enriched with AI methods for multi-dimensional spaces

adaptive projections. These techniques may become popular in EO due to the progress of virtual reality

devices in the multimedia context.

The visualization methods and the analytics used interfaces shall be predictive, adaptive, learning and

anticipating the user behaviour and collaborating with the user. This means understanding the user’s

intentions and context and establishing a dialogue to transform non-visual sensor data and information

into easily understandable human representations.
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8 Earth observation and society: the growing relevance of ethics

In this section, we consider ethical issues linked to Artificial Intelligence, Earth observation and society

under the light of AI and data ethics.

Ethical issues related to combined uses of AI for EO can emerge either in the context of AI ethics or

data ethics. The principles linked to each of these overlap. However, it is helpful to understand them

separately.

8.1 Trustworthy AI and AI ethics

According to the European Union’s high-level expert group on artificial intelligence, any AI system

should be lawful, ethical and robust [58]. This is further specified into the following key requirements

for achieving trustworthy AI, citing [58]: (1) human agency and oversight, (2) technical robustness and

safety, (3) privacy and data governance, (4) transparency, (5) diversity, non-discrimination and fairness,

(6) environmental and societal well-being and (7) accountability. Recently, Jobin et al. [90] reviewed 84

documents containing AI ethics guidelines issued by various countries and international agencies and

categorized the most dominant/frequently re-appearing ones under 11 heads: (i) Transparency (ii) Justice

and fairness; (iii) Non-maleficence (iv) Responsibility; (v) Privacy; (vi) Beneficence; (vii) Freedom

and autonomy; (viii) Trust; (ix) Sustainability; (x) Dignity; and (xi) Solidarity. Notably, several of

these categories overlap with the principles of trustworthy AI compiled in the EU ethics guidelines for

trustworthy AI [58].

Even when neatly categorized above, ethics guidelines may appear vague or too high-level to EO

scientists. At the most superficial level, ethics is about minimizing harm and maximizing benefits using

appropriate (fair, honest) means. Accordingly, dominant Western approaches to ethics consider the

duties of the actor and the consequences of the action/inaction (deontological and consequentialist

approaches to ethics) to determine their acceptability.

Yet, these approaches may be impractical in emerging technologies such as AI4EO; scientists may not

be able to predict the future consequences of their research in the present and may not be fully aware of

their duties. Recent work recommends combining approaches that also consider the intentions/desires

(of the individual researcher and the research project/program as a whole) driving the research and

evaluating whether each action or research step corresponds with ethically motivated intentions or

desires [96].

Consider the ethical principle of justice and fairness, which requires, for example, that appropriate

measures be taken to ensure consistency and accuracy when applying sensitive data labels, such as

slums. Even when accurate, such labels can lead to stigmatization or even to uprooting people from

their living spaces (see [97]). Accordingly, ethics also calls for more constructive labeling, e.g. by

re-thinking research designs that are more likely to go beyond labeling and help uplift or improve the

socio-economic conditions of marginalized segments. Therefore, the principle of fairness can be applied
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at the time of labeling data and even earlier in the research life-cycle, i.e. when selecting research focus

areas and research questions. However, ethics is equally essential at other stages of research - from

allocating research funding to converting research findings to practical applications.

Similarly, the issue of responsibility, in cases where human-in-the-loop features are included in AI

designs, needs careful consideration. While active involvement of human actors (diverse stakeholders) in

every aspect of AI4EO research may not be possible, human agency and oversight must not be limited

within the confines of the system and its narrow research question. Such oversight is also needed to

understand the context in which the designed system will be implemented or introduced and the impact

that such an introduction may have on real people, their lives, livelihoods, cultural sensitivities, and

their environment.

If the human agency and oversight requirement does not evolve considerably in the AI4EO research

context while looking at the Earth and its physical elements from afar, complex human realities,

relationships and expediencies can be overlooked or ignored, leading to significant ethically undesirable

consequences. Ethics, therefore, calls for the humanization of projects and supplementing any simulations

and recommendations emerging from there with multi-disciplinary social science and ground realities

research. Here, ground realities are not limited to ground truth or in situ data as understood in

conventional EO language but also include socio-cultural, economic and political realities of the region

that can make the consequences of implementing recommendations emerging from AI4EO ethical or

unethical.

8.2 Data ethics

Recently, the Data Ethics Commission (in German: ‘Datenethikkommission’), set up by Germany’s

Federal Government on 18 July 2018, derived six additional general ethical and legal principles from

8 guiding motifs. These general ethical principles are: human dignity, self-determination, security,

democracy, justice and solidarity, and sustainability. These principles signal the central relevance

of human-centred and value-oriented technology design. However, the question of finding a balance

between potentially divergent tenets requires case-by-case attention.

For instance, in the context of agriculture, the EU code of conduct for agricultural data sharing

emphasizes that “The farmer remains at the heart of the collection, processing and management of

agricultural data” [44]. The code recognizes that farmers who share data have the right to know and

participate in the uses to which their data is put. The challenge in EO and AI4EO research is that such

data is not collected or shared by the farmers. Indeed the data is remotely collected, often without the

knowledge of farmers. There was little concern about ethical issues when such collections were limited

to providing information. However, as the collection, analysis and distribution of such (EO) data start

resulting in the formulation of policies that (adversely) impact individual farmers’ rights (e.g. their

right to dignity or self-determination), the principles of the EU code of conduct will become increasingly

relevant to ensure society’s participation in and eventual acceptance of the resulting policies.
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Conclusions

The field of AI for EO, and specifically, the use of ML methods in EO and remote sensing, is rapidly

advancing, due to the increasing availability of large amounts of sensor data at various resolutions. In

this perspective paper, we have provided an overview of the essential scientific tools and approaches

supporting the transition from raw EO data to usable information. Since its inception, computer science

and signal processing have been of key importance in this field. Recently, the integration of machine

learning, deep learning and computer vision techniques has opened up numerous avenues for further,

substantial advances in EO.

Here, we have discussed current challenges that still prevent the field to reach full maturity and

highlighted promising directions for future research leveraging approaches from computer vision,

explainable AI, physics-aware models, user-centric approaches, and advanced processing and computing.

Additionally, we have emphasised the importance of carefully considering ethical issues related to the

massive use of ML technologies in EO, which is further heightened in the context of large generative ML

models for EO. This overview aims to inspire the EO community to achieve necessary transformative

advances in the field and unlock future technical achievements, which are necessary to fulfill the monitor

capabilities of using Earth observation to take the pulse of Earth.
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