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Abstract Data analytics are moving beyond the lim-

its of a single platform. In this paper, we present the

cost-based optimizer of Rheem, an open-source cross-

platform system that copes with these new require-

ments. The optimizer allocates the subtasks of data an-

alytic tasks to the most suitable platforms. Our main

contributions are: (i) a mechanism based on graph

transformations to explore alternative execution strate-

gies; (ii) a novel graph-based approach to determine ef-

ficient data movement plans among subtasks and plat-

forms; and (iii) an efficient plan enumeration algorithm,

based on a novel enumeration algebra. We extensively

evaluate our optimizer under diverse real tasks. We

show that our optimizer can perform tasks more than

one order of magnitude faster when using multiple plat-

forms than when using a single platform.
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1 Introduction

Modern data analytics are characterized by (i) increas-

ing query/task1 complexity, (ii) heterogeneity of data

sources, and (iii) a proliferation of data processing plat-

forms (platforms, for short). Examples of such analytics

include: (i) North York hospital that needs to process

50 diverse datasets that run on a dozen different plat-

forms [34]; (ii) Airline companies that need to analyze

large datasets of different data formats, produced by

different departments, and residing on multiple data

sources, so as to produce global reports for decision

makers [51]; (iii) Oil & Gas companies that need to

process large amounts of diverse data spanning var-

ious platforms [10, 32]; (iv) Data warehouse applica-

tions that require data to be moved from a MapReduce-
like system into a DBMS for further analysis [24, 59];

(v) Business intelligence applications that typically re-

quire an analytic pipeline composed of different plat-

forms [61]; and (vi) Machine learning systems that

use multiple platforms to improve performance signifi-

cantly [15,41].

Cross-platform data processing. As a result,

today’s data analytics often need to perform cross-

platform data processing, i. e., running their tasks on

more than one platform. Research and industry commu-

nities have identified this need [5,62] and have proposed

systems to support different aspects of cross-platform

data processing [4, 7, 13, 25, 27, 30]. We have identified

four situations in which an application requires support

for cross-platform data processing [4, 40]:

(1) Platform-independence: Applications run an entire

task on a single platform but may require switching

1 Hereafter, we use the term task without loss of generality.
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platforms for different input datasets or tasks usually

with the goal of achieving better performance.

(2) Opportunistic cross-platform: Applications might

benefit performance-wise from using multiple platforms

to run one single task.

(3) Mandatory cross-platform: Applications may re-

quire multiple platforms because the platform where

the input data resides, e.g., PostgreSQL, cannot per-

form the incoming task, e.g., a machine learning task.

Thus, data should be moved from the platform in which

it resides to another platform.

(4) Polystore: Applications may require multiple plat-

forms because the input data is stored on multiple data

stores, e. g., in a data lake setting.

Current practice. The current practice to cope

with cross-platform requirements is either to build spe-

cialized systems that inherently combine two or more

platforms, such as HadoopDB [2], or to write ad-hoc

programs to glue different specialized platforms to-

gether [7,8,13,26,48]. The first approach results in being

tied to specific platforms, which can either become out-

dated or outperformed by newer ones. Re-implementing

such specialized systems to incorporate newer systems

is very often prohibitively time-consuming. Although

the second approach is not coupled with specific plat-

forms, it is expensive, error-prone, and requires exper-

tise on different platforms to achieve high efficiency.

Need for a systematic solution. Thus, there is a

need for a systematic solution that doucouples appli-

cations from the underlying platforms and enables effi-

cient cross-platform data processing, transparently from

applications and users. The ultimate goal would be to

replicate the success of DBMSs for cross-platform ap-

plications: users formulate platform-agnostic data ana-

lytic tasks and an intermediate system decides on which

platforms to execute each (sub)task with the goal of

minimizing cost (e. g., runtime or monetary cost). Re-

cent research works have taken first steps towards that

direction [25, 30, 61, 64]. Nonetheless, they all lack im-

portant aspects. For instance, none of these works con-

siders different alternatives for data movement and as

a result they may hinder cross-platform opportunities.

Recently, commercial engines, such as DB2 [22] and

Teradata [63], have extended their systems to support

different platforms, but none provides a systematic so-

lution: users still have to specify the platform to use.

Cost-based cross-platform optimization. The key

component for a systematic solution is a cross-platform

optimizer, which is the focus of this paper. Concretely,

we consider the problem of finding an execution plan

able to run across multiple platforms that minimizes

the execution cost of a given task. A very first solution

would be a rule-based optimizer: e. g., execute a task

on a centralized/distributed platform when the input

data is small/large. However, this approach is neither

practical nor effective. First, setting rules at the task

level implicitly assumes that all the operations in a

task have the same computational complexity and input

cardinality. Such assumptions do not hold in practice,

though. Second, the cost of a task on any given plat-

form depends on many input parameters, which ham-

pers a rule-based optimizer’s effectiveness as it oversim-

plifies the problem. Third, as new platforms and appli-

cations emerge, maintaining a rule-based optimizer be-

comes very cumbersome. We thus pursue a cost-based

approach instead.

Challenges. Devising a cost-based optimizer for

cross-platform settings is challenging for many reasons:

(i) platforms vastly differ in their supported operations;

(ii) the optimizer must consider the cost of moving data

across platforms; (iii) the optimization search space is

exponential with the number of atomic operations in a

task; (iv) cross-platform settings are characterized by

high uncertainty, i. e., data distributions are typically

unknown and cost functions are hard to calibrate; and

(v) the optimizer must be extensible to accommodate

new platforms and emerging application requirements.

Contributions. We delve into the cross-platform op-

timizer of Rheem [3, 4, 47], our open source cross-

platform system [55]. While we present the system de-

sign of Rheem in [4] and briefly discuss the data move-

ment aspect in [43], in this paper, we describe in detail

how our cost-based cross-platform optimizer tackles all

of the above research challenges.2 The idea is to split a

single task into multiple atomic operators and to find

the most suitable platform for each operator (or set of

operators) so that its total cost is minimized. After a

Rheem background (Section 2) and an overview of our

optimizer (Section 3), we present our contributions:

(1) We propose a graph-based plan inflation mecha-

nism that is a very compact representation of the entire

plan search space, and we provide a cost model purely

based on UDFs (Section 4).

(2) We model data movement across platforms as a

new graph problem, which we prove to be NP-hard, and

propose an efficient algorithm to solve it (Section 5).

(3) We devise a new algebra and a new lossless pruning

technique to enumerate executable cross-platform plans

for a given task in a highly efficient manner (Section 6).

(4) We explain how we exploit our optimization

pipeline for performing progressive optimization to deal

with poor cardinality estimates (Section 7).

2 Note that, we have recently equipped Rheem with an ML-
based cross-platform optimizer [39].
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Fig. 1 A Rheem plan that represents the SGD algorithm of
data extracted from a database (left side) and its execution
plan with additional execution operators for data movement
when using three different processing platforms (right side).

(5) We discuss our optimizer’s design that allows us to

seamlessly support new platforms and emerging appli-

cations requirements (Section 8).

(6) We extensively evaluate our optimizer under di-

verse tasks using real-world datasets and show that it

allows tasks to run more than one order of magnitude

faster by using multiple platforms instead of a single

platform (Section 9).

Finally, we discuss related work (Section 10) and

conclude this paper with a summary (Section 11).

2 Rheem Background

Before delving into the details, let us briefly outline

Rheem, our open source cross-platform system, so as

to establish our optimizer’s context. Rheem decouples

applications from platforms with the goal of enabling
cross-platform data processing. [4, 5]. Although decou-

pling data processing was the driving motive when de-

signing Rheem, we also adopted a three-layer opti-

mization approach envisioned in [5]. One can see this

three-layer optimization as a separation of concerns

for query optimization. Overall, as Rheem applications

have good knowledge of the tasks’ logic and the data

they operate on, they are in charge of any logical and

physical optimizations, such as operator re-ordering

(the application optimization layer). Rheem receives

from applications an optimized procedural Rheem plan

and produces an execution plan, which specifies the

platforms to use so that the execution cost is mini-

mized (the core optimization layer). Then, the selected

platforms run the plan by performing further platform-

specific optimizations, such as setting the data buffer

sizes (the platform optimization layer). Rheem is at

the core optimization layer.

Rheem is composed of two main components

(among others): the cross-platform optimizer and the

executor. The cross-platform optimizer gets as input a

Rheem plan and produces an execution plan by specify-

ing the platform to use for each operator in the Rheem

plan. In turn, the executor orchestrates and monitors

the execution of the generated execution plan on the se-

lected platforms. For more details about Rheem’s data

model and architecture, we would like to refer the in-

terested reader to [4, 55]. In this paper, we focus on

the cross-platform optimizer. Below, we explain what

Rheem and execution plans are, i. e., the input and

output of the cross-platform optimizer.

Rheem plan. As stated above, the input to our opti-

mizer is a procedural Rheem plan, which is essentially

a directed data flow graph. The vertices are Rheem

operators and the edges represent the data flow among

the operators, such as in Spark or Flink. Rheem opera-

tors are platform-agnostic and define a particular kind

of data transformation over their input, e. g., a Reduce
operator aggregates all input data into a single output.

Rheem supports a wide variety of transformation and

relational operators, but it is extensible to adding other

types of operators. A complete list of the currently sup-

ported operators can be found in Rheem’s documenta-

tion [55]. Only Loop operators accept feedback edges,

thus enabling iterative data flows. A Rheem plan with-

out any loop operator is essentially a DAG. Conceptu-

ally, the data is flowing from source operators through

the graph and is manipulated in the operators until it

reaches a sink operator. As of now, Rheem supports

neither nested loops nor control-flow operators.

Example 1 Figure 1(a) shows a Rheem plan for

Stochastic Gradient Descent (SGD) when the initial

data is stored in a database.3 Data points are read via

a TableSource and filtered via a Filter operator. Then,

they are (i) stored into a file for visualization using a

CollectionSink and (ii) parsed using a Map, while the ini-

tial weights are read via a CollectionSource. The main

operations of SGD (i. e., sampling, computing the gra-

dients of the sampled data point(s) and updating the

weights) are repeated until convergence (i. e., the termi-

nation condition of RepeatLoop). The resulting weights

are output in a collection. For a tangible picture of the

context in which our optimizer works, we point the in-

terested reader to the examples of our source code4.

Execution plan. Similar to a Rheem plan, an exe-

cution plan is a data flow graph with two differences.

First, the vertices are platform-specific execution op-

3 Please note that a colored printout of this paper is rec-
ommended for a better interpretation of the figures.
4 https://github.com/rheem-ecosystem/

rheem-benchmark
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erators. Second, the execution plan may comprise ad-

ditional execution operators for data movement across

platforms, e. g., a Collect operator. Conceptually, given

a Rheem plan, an execution plan indicates the platform

the executor must enact each Rheem operator.

Example 2 Figure 1(b) shows the execution plan for

the SGD Rheem plan when Postgres, Spark and Java

Streams are the only available platforms. This plan

exploits Postgres to extract the desired datapoints,

Spark’s high parallelism for the large input dataset and

at the same time benefits from the low latency of JavaS-

treams for the small collection of centroids. Also note

the three additional execution operators for data move-

ment (Results2Stream, Broadcast) and to make data

reusable (Cache). As we show in Section 9, such hybrid

execution plans often achieve higher performance than

plans with only a single platform: e. g., few seconds in

contrast to 5 minutes.

3 Overview

We now give an overview of our cross-platform cost-

based optimizer. Unlike traditional relational database

optimizers, the only goal of our cross-platform opti-

mizer is to select one or more platforms to execute a

given Rheem plan in the most efficient manner. It does

not aim at finding good operator orderings, which take

place at the application layer [5]. The main idea be-

hind our optimizer is to split a single task into multiple

atomic operators and to find the most suitable platform

for each operator (or set of operators) so that the total

cost is minimized. For this, it comes with (i) an “up-

front” optimization process, which optimizes the entire

Rheem plan before execution, and (ii) a set of tech-

niques to re-optimize a plan on-the-fly to handle uncer-

tainty in cross-platform settings.

Figure 2 depicts the workflow of our optimizer. At

first, given a Rheem plan, the optimizer passes the plan

through a plan enrichment phase (Section 4). In this

phase, the optimizer first inflates the input plan by ap-

plying a set of mappings. These mappings list how each

of the platform-agnostic Rheem operators can be im-

plemented on the different platforms with execution op-

erators. The result is an inflated Rheem plan that can

be traversed through alternative routes. That is, the

nodes of the resulting inflated plan are Rheem opera-

tors with all its execution alternatives. The optimizer

then annotates the inflated plan with estimates for both

data cardinalities and the costs of executing each execu-

tion operator. Next, the optimizer takes a graph-based

approach to determine how data can be moved most

efficiently among different platforms and annotates the

inflated plan accordingly (Section 5). It then uses all

these annotations to determine the optimal execution

plan via an enumeration algorithm. This enumeration

algorithm is centered around an enumeration algebra

and a highly effective, yet lossless pruning technique

(Section 6). Finally, as data cardinality estimates might

be imprecise5, the optimizer inserts checkpoints into the

execution plan for on-the-fly re-optimization if required

(Section 7). Eventually, the resulting execution plan can

be enacted by the executor of Rheem.

We detail each of the above phases in the follow-

ing (Sections 4–7). Additionally, we discuss the flexible

design of our optimizer, which allows for extensibility:

adding a new platform to Rheem does not require any

change to the optimizer codebase (Section 8).

4 Plan Enrichment

Given a Rheem plan, the optimizer has to do some

preparatory work before it can start exploring alterna-

tive execution plans. We refer to this phase as plan en-

richment. Concretely, our optimizer (i) determines all

eligible platform-specific execution operators for each

Rheem operator (Section 4.1); and (ii) estimates their

execution costs (Section 4.2).

4.1 Plan Inflation

While Rheem operators declare certain data process-

ing operations, they do not provide an implementation

and are thus not executable. Therefore, our optimizer

inflates the Rheem plan with all corresponding execu-

tion operators, each providing an actual implementa-

tion on a specific platform. Mapping dictionaries is a

basic approach to determine corresponding execution

operators, such as in [25, 38]. This approach would al-

low for 1-to-1 operator mappings between Rheem and

execution operators. However, different data process-

ing platforms work with different abstractions: While

databases employ relational operators and Hadoop-like

systems build upon Map and Reduce, special purpose

systems (e. g., graph processing systems) rather pro-

vide specialized operators (e. g., for the PageRank algo-

rithm). Due to this diversity, 1-to-1 mappings are often

insufficient and a flexible operator mapping technique

is called for supporting more complex mappings.

5 Note that devising a sophisticated cardinality estimation
technique is out of the scope of our paper.
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4.1.1 Graph-based operator mappings

We thus define operator mappings in terms of graph

mappings. In simple terms, an operator mapping maps

a matched subgraph to a substitute subgraph. We for-

mally define an operator mapping as follows.

Definition 1 (Operator mapping) An operator

mapping p → s consists of a graph pattern p and a

substitution function s. Assume that p matches the

subgraph G of a given Rheem plan. Then, the operator

mapping designates the substitute subgraph G′ := s(G)

for G via substitution function s.

Usually, the matched subgraph G is a constellation

of Rheem operators (i. e., a group of operators fol-

lowing a certain pattern) and the substitute subgraph

G′ is a corresponding constellation of execution opera-

tors. However, we also have mappings from execution

to execution operators; and mappings from Rheem to

Rheem operators. The latter allows us to consider plat-

forms that do not natively support certain execution

operators. We illustrate this in the following example.

Example 3 (Mappings) In Figure 3(a), we illustrate an

1-to-1 mapping from the ReduceBy Rheem operator

to the ReduceBy Spark execution operator, an 1-to-n

mapping from the ReduceBy Rheem operator maps to

a constellation of GroupBy and Map Rheem operators

which in turn are mapped to JavaStreams execution

operators via an m-to-n mapping. Such mappings are

crucial for considering JavaStreams as a possible plat-

form for the ReduceBy Rheem operator, even if there

is no ReduceBy execution operator in JavaStreams.

In contrast to 1-to-1 mapping approaches, our

graph-based approach provides a more powerful means

to derive execution operators from Rheem operators.

Our approach also allows us to break down complex op-

erators (e. g., PageRank) and map it to platforms that

do not support it natively. Mappings are provided by

developers when adding a new Rheem or execution op-

erator. Adding a new platform thus does not require any

change to our optimizer.

4.1.2 Operator inflation

It is worth noting that applying operator mappings to

simply replace matched subgraphs G by one of their

substitute subgraphs G′ would cause two insufficiencies.

First, this strategy would always create only a single

execution plan, thereby precluding any cost-based opti-

mization. Second, the resulting execution plan would be

dependent on the order in which the mappings are ap-

plied. This is because once a mapping is applied, other

relevant mappings might become inapplicable. We over-

come both insufficiencies by introducing inflated oper-

ators in Rheem plans. An inflated operator replaces

a matched subgraph and comprises that matched sub-

graph and all the substitute graphs. This new strat-

egy allows us to apply operator mappings in any or-

der and to account for alternative operator mappings.

Ultimately, an inflated operator expresses alternative

subplans inside Rheem plans. Thus, our graph-based

mappings do not determine the platform to use for each

Rheem operator. Instead, it lists all the alternatives for

the optimizer to choose from. This is in contrast to Mus-
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keteer [30] and Myria [64], which use their rewrite rules

to obtain the platform each operator should run on.

Example 4 (Operator inflation) Consider again the k-

means example. Figure 3(b) depicts the inflation of the

ReduceBy operator. Concretely, the Rheem ReduceBy
operator is replaced by an inflated operator that hosts

both the original and two substitute subgraphs.

As a result, an inflated Rheem plan defines all pos-

sible combinations of execution operators of the original

Rheem plan, but, in contrast to [57], without explicitly

materializing them. Thus, an inflated Rheem plan is a

highly compact representation of all execution plans.

4.2 Operators Cost Estimation

Once a Rheem plan is inflated, the optimizer estimates

and annotates costs to each alternative execution op-
erator (see the right side of Figure 3(b)). It does so

by traversing the plan in a bottom-up fashion. Note

that cardinality and cost estimation are extremely chal-

lenging problems – even in highly cohesive systems,

such as relational databases, which have detailed knowl-

edge on execution operator internals and data statis-

tics [45]. As Rheem has little control on the underly-

ing platforms, the optimizer uses a modular and fully

UDF-based cost model. This is similar to [37], which

used wrapper-based selectivity and statistics estima-

tors. Rheem also represents cost estimates as intervals

with a confidence value, which allows it to perform on-

the-fly re-optimization. We discuss how Rheem does

such re-optimizations later on in Section 7.

4.2.1 Cost estimation

Inspired by Garlic [37], we propose a simple, yet pow-

erful UDF-based approach that decouples the cost for-

mulas to enable developers to intervene at any level of

the cost estimation process. Furthermore, this approach

also allows both the developers to define their own ob-

jective criteria for optimizing Rheem plans and the op-

timizer to be portable across different deployments.

Figure 4 illustrates this cost estimation process,

where the boxes represent all the UDFs in the pro-

cess. The total cost estimate for an execution oper-

ator o depends on the cost of the resources it con-

sumes (CPU, memory, disk, and network), defined as:

costo = tCPU
o + tmem

o + tdisko + tneto . The cost of each

resource tro is the product of (i) its utilization ro and

(ii) the unit costs ur (e. g., how much one CPU cycle

costs). The latter depends on hardware characteristics

(such as number of nodes and CPU cores), which are

encoded in a configuration file for each platform.

Our optimizer estimates the resource utilization

with a cost function ro that depends on the input car-

dinality cin of its corresponding Rheem operator. For

instance, the cost function to estimate the CPU cy-

cles required by the SparkFilter operator is CPUSF :=

cin(Filter)×α+β, where parameter α denotes the num-

ber of required CPU cycles for each input data quantum

and parameter β describes some fixed overhead for the

operator start-up and scheduling.

For iterative tasks, the cost of the loop operator

depends on the number of iterations. If the task it-

self does not specify the exact number of iterations, a

user can still give hints to the optimizer and provide a

rough estimate. If this information is omitted, Rheem

uses default values and relies on re-optimization (Sec-

tion 7). Note that discussing different techniques to es-

timate the number of iterations of an ML algorithm,

such as [41], is beyond the scope of this paper.

4.2.2 Cost learner

Obtaining the right values for all these parameters in

the cost model, such as the α, β values, is very time-

consuming if it is done manually via profiling. Further-

more, profiling operators in isolation is unrealistic in

cross-platform settings as many platforms optimize ex-

ecution across multiple operators, e. g., by pipelining.

Indeed, we found cost functions derived from isolated

benchmarking to be insufficiently accurate.

We thus take a different approach. Rheem provides

an offline cost learner module that uses historical exe-

cution logs from plans covering all Rheem operators

to learn these parameters. We model the cost as a

regression problem. The estimated execution time is

t′ =
∑
i costi(x, ci) where x is a vector with all the

parameters that we need to learn, and ci is the input

cardinalities. Let t be the real execution time, we then

seek x that minimizes the difference between t and t′:
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xmin = arg minx loss(t, t′). We consider a relative loss

function defined as: loss(t, t′) =
(
|t−t′|+s
t+s

)2
, where s is

a regularizer inspired by additive smoothing that tem-

pers the loss for small t.

We then use a genetic algorithm [50] to find xmin. In

contrast to other optimization algorithms, genetic algo-

rithms impose only few restrictions on the loss function

to be minimized. Thus, our cost learner can deal with

arbitrary cost functions and one can calibrate the cost

functions with only little additional effort.

4.2.3 Cardinality estimation

Apart from the parameters, which are automatically

learned, and the hardware specifications, the cost model

requires as input the result sizes of each operator. Even

though some underlying platforms may have their own

statistics to compute result sizes, our optimizer does

not use such statistics because they are rarely (or never)

exposed to the applications.

Our optimizer estimates the output cardinality of

each Rheem operator by first computing the output

cardinalities of the source operators via sampling and

then traverses the inflated plan in a bottom-up fashion.

For this, each Rheem operator is associated with a car-

dinality estimator function, which considers its proper-

ties (e. g., selectivity and number of iterations) and in-

put cardinalities. For example, the Filter operator uses

cout(Filter):= cin(Filter)×σf , where σf is the selectivity

of the user’s Filter operator. The cardinality estimator

functions are defined once by the developer (or system

administrator) when adding a new Rheem operator.

Users and applications (the ones issuing input

queries) need to provide the selectivity of their UDF,

which is independent of the input dataset. Recall that

to address the uncertainty inherent to the selectivity

estimation the optimizer expresses the cardinality esti-

mates in an interval with a confidence value. Basically,

this confidence value gives the likelihood that the inter-

val indeed contains the actual cost value. For the selec-

tivities the optimizer relies on basic statistics, such as

the number of output tuples and distinct values. These

statistics are provided by the application/developer or

obtained by runtime profiling, similar to [33, 56]. If

not available, the optimizer uses default values for the

selectivities, similarly to [28], [37], and relies on re-

optimization for correcting the execution plan if nec-

essary. We intentionally do not consider devising a so-

phisticated cardinality estimation mechanism as this is

an orthogonal problem [58]. This also allows us to study

the effectiveness of our optimizer without interference

from cardinality estimation.

5 Data Movement

Selecting optimal platforms for an execution plan might

require to move and transform data across platforms.

This leads to an inherent trade-off between choos-

ing the optimal execution operators and minimizing

data movement and transformation costs. Additionally,

in contrast to distributed and federated databases, a

cross-platform setting typically has completely differ-

ent data formats and hence data transformation costs

must be considered. These make planning and assessing

communication in cross-platform settings a challenging

problem. First, there might be several alternative data

movement strategies, e. g., from RDD to a file or to a

Java object. A simple strategy of transferring data via

a file, such as in [30, 64], may miss many opportunities

for cross-platform data processing. Second, the costs

of each strategy must be assessed so that our optimizer

can explore the trade-off between selecting optimal exe-

cution operators and minimizing data movement costs.

Third, data movement might involve several interme-

diate steps to connect two operators of different plat-

forms, as also stated in [61].

We thus represent the space of possible communi-

cation steps as a graph (Section 5.1). This graph rep-

resentation allows us to model the problem of finding

the most efficient communication path among execu-

tion operators as a new graph problem (Section 5.2).

We then devise a novel algorithm to efficiently solve

this graph problem (Section 5.3). A short version of

our data movement strategy can also be found in [43].

5.1 Channel Conversion Graph

The channel conversion graph (CCG for short) is a

graph whose vertices are data structures (e. g., an RDD

in Spark) and whose edges express conversions from one

data structure to another. Before formally defining the

CCG, let us first explain how we model data struc-

tures (communication channels) and data transforma-

tion (conversion operators).

Communication channel. Data can flow among op-

erators via communication channels (or simply chan-

nels), which form the vertices in the CCG. A chan-

nel can be for example an internal data structure or

a stream within a platform, or simply a file. The

yellow boxes in Figure 5 depict the standard chan-

nels considered by our optimizer for Java Streams,

Postgres, Spark, and Flink. Channels can be reusable,

i. e., they can be consumed multiple times, or non-

reusable, i. e., once they are consumed they cannot be
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used anymore. For instance, a file is reusable while a

data stream is usually not.

Conversion operator. When moving data from one

platform to another, it might also become necessary to

convert a channel from one type to another, e. g., con-

vert an SQL query result to a data stream. Such conver-

sions are handled by conversion operators, which form

the edges in the CCG. Conversion operators are in fact

regular execution operators. For example, Rheem pro-

vides the SqlToStream execution operator, which trans-

forms the result set of an SQL query to a Java data

stream channel. Rheem also uses conversion operators

to deal with semantic integration issues, such as trans-

forming data from one format to another (e. g., from

CSV to TSV). The benefit of using conversion operators

for both data transfer and transformation is twofold:

(i) there is less overhead in the execution pipeline and

(ii) as they are execution operators, the conversion costs

are straightforward to compute (see Section 4.2).

Channel conversion graph. We now formally define

the channel conversion graph below.

Definition 2 (Channel conversion graph) A CCG

is a directed graph G := (C,E, λ), where the set of ver-

tices C is the channels, E comprises the directed edges

indicating that the source channel can be converted to

the target channel, and λ : E → O is a labeling func-

tion that attaches the appropriate conversion operator

o ∈ O to each edge e ∈ E.

Rheem provides the CCG with generic channels,

e. g., CSV files, together with the channels of the sup-

ported platforms, e. g., RDDs. Still developers can eas-

ily extend the CCG if needed as we will see in Section 8.

Example 5 Figure 5 shows an excert of Rheem’s de-

fault CCG. The yellow boxes (nodes in the graph) are

the channels, while all edges are attached with conver-

sion operators6.

5.2 Minimum Conversion Tree Problem

CCGs allow us to model the problem of planning data

movement as a graph problem. This approach is very

flexible: If there is any way to connect execution op-

erators via a sequence of conversion operators, we will

discover it. Unlike other approaches, e. g., [25, 30], de-

velopers do not need to provide conversion operators

for all possible source and target channels. CCGs thus

make it much easier for developers to add new platforms

to Rheem and make them interoperable with the other

6 We do not depict all conversion operators for clarity.

Filter
Stream

Broadcast

RDD

Java Streams

Spark

Channel conversion graph

reusable channel non-reusable channel
JavaStreams operator

Map

root

target2

target1

Spark operator

SinkRelation

Postgres

CSVFile
Flink

Dataset CachedRDD

Collection

Postgres operator

(for clarity we do not show conversion operators in all edges)conversion operator

Fig. 5 A channel conversion graph along with root and tar-
get operators from different platforms. The MCT problem is
to find the most efficient paths in the graph to connect the
output of the root with the input of the targets.

platforms. Let us further motivate the utility of CCGs

for data movement with a concrete example.

Example 6 Assume the CCG of Figure 5. Consider now

the Filter operator in our running example (see Fig-

ure 1), whose output goes to the CollectionSink and Map
operators. The goal is to move data from a PostgresFilter
execution operator (root) to a JavaSink (target1) and a

SparkMap (target2) execution operator. While the root

produces a Relation as output channel, target1 and

target2 accept only a Java Collection and a (cached)

RDD, respectively, as input channels. Multiple conver-

sions are needed to serve the two target operators.

The CCG also enables the optimizer to use multiple

intermediate steps to connect two operators. For ex-

ample, for transferring data from Postgres to Flink or

Spark in Figure 5, there are two intermediate channels

involved. We model such complex scenarios of finding

the most efficient communication path from a root pro-

ducer to multiple target consumers as the minimum

conversion tree (MCT) problem.

Minimum Conversion Tree Problem. Given a root

channel cr, n target channel sets Cti (0 < i ≤ n),

and the CCG G = (C,E, λ), find a subgraph G′ such

that:

(1) G′ is a directed tree with root cr and contains at

least one channel cti ∈ Cti for each target channel set

Cti ;

(2) any non-reusable channel in G′, must have a single

successor, i. e., a conversion or a consumer operator;

(3) there is no other subgraph G′′ that satisfies the

above two conditions and has a smaller cost (i. e., the

sum of costs of all its edges) than G′. The cost of an

edge e is the estimated cost for the associated conver-

sion operator λ(e).



RHEEMix in the Data Jungle: A Cost-based Optimizer for Cross-Platform Systems 9

Algorithm 1: Minimum conversion tree search.

Input: conversion graph G, root channel cr, target
channel sets Ct

Output: minimum conversion tree
1 Ct ← kernelize(Ct);
2 Tcr

← traverse(G, cr,Ct, ∅, ∅);
3 return Tcr

[Ct];

Example 7 Assume, in Figure 5, the root channel

is cr := Relation and the target channel sets

are Ct1 := {Collection} (for target1) and Ct2 :=

{RDD,CachedRDD} (for target2). The minimum con-

version tree for this scenario could be: The Relation root

channel is converted to a Java Stream, then to a Java

Collection, which is used to satisfy Ct1 and to be con-

verted to an RDD (thereby satisfying Ct2). Note that

this is possible only because Collection is reusable.

Although our MCT problem seems related to other

well-studied graph problems, such as the minimum

spanning tree and single-source multiple-destinations

shortest paths, it differs from them for two main rea-

sons. First, MCTs have a fixed root and need not span

the whole CCG. Second, MCT seeks to minimize the

costs of the conversion tree as a whole rather than

its individual paths from the root to the target chan-

nels. Our MCT problem resembles more to the Group

Steiner Tree (GST) problem [54]: There, n sets of ver-

tices should be connected by a minimal tree. However,

GST is typically considered on undirected graphs and

with no notion of non-reusable channels. Furthermore,

GST solvers are often designed for specific types of

graphs, such as planar graphs or trees. These dispar-

ities preclude the adaption of existing GST solvers to

the MCT problem. Yet, the GST problem allows us to

show the NP-hardness of the MCT problem.

Theorem 1 The MCT problem is NP-hard.

Proof See Appendix A for the proof.

5.3 Finding Minimum Conversion Trees

Because the MCT problem differs from existing graph

problems, we devise a new algorithm to solve it (Algo-

rithm 1). Given a CCG G, a root channel cr, and n tar-

get channel sets Ct := {Ct1 , Ct2 , ..., Ctn}, the algorithm

proceeds in two principal steps. First, it simplifies the

problem by modifying the input parameters (kerneliza-

tion). Then, it exhaustively traverses the graph (chan-

nel conversion graph exploration) to find the MCT. We

discuss these two steps in the following.

5.3.1 Kernelization

In the frequent case that several target consumers,

e. g., targeti and targetj , accept the same channels,

Cti = Ctj , with at most one non-reusable channel

and at least one reusable channel, we can merge them

into a single set by discarding the non-reusable chan-

nel: Cti,j = {c | c ∈ Cti ∧ c is reusable}. Doing so de-

creases the number of target channel sets and thus,

reduces the maximum degree (fanout) of the MCT,

which is a major complexity driver of the MCT prob-

lem. In fact, in the case of only a single target channel

set the MCT problem becomes a single-source single-

destination shortest path problem. We can thus solve

it with, e. g., Dijkstra’s algorithm.

Example 8 (Merging target channel sets) In Figure 5,

target2 accepts the channels Ct2 = {RDD,CachedRDD}.
Assuming that target1 is a SparkReduce operator in-

stead, which accepts the same set of channels as target2,

we could then merge their input channels into Ct1,2 =

{CachedRDD}.

Lemma 1 A solution for a kernelized MCT problem

also solves the original MCT problem.

Proof See Appendix A for the proof.

5.3.2 Channel conversion graph exploration

After kernelizing the original MCT problem, Algo-

rithm 1 proceeds to explore the CCG, thereby build-

ing the MCT from “its leaves to the root”: Intuitively,

it recursively searches – starting from the root chan-

nel cr – across the CCG for communication channels

that satisfy the target channel sets Ct; It then back-

tracks the search paths, thereby incrementally build-

ing up the MCT. In summary, the graph traversal of

CCG is composed of three main parts: (i) it visits a

new channel, checks if it belongs to any target channel

set, and potentially creates a partial singleton conver-

sion tree; (ii) then it traverses forward, thereby creating

partial MCTs from the currently visited channel to any

subset of target channel sets; and (iii) it merges the

partial MCTs from the steps (i) and (ii) and returns

the merged MCTs. The algorithm terminates when the

partial MCTs form the final MCT.

We give more details about the traversal part of our

algorithm in Appendix B.

5.3.3 Correctness and complexity

Theorem 2 Given a channel conversion graph, Algo-

rithm 1 finds the minimum conversion tree if it exists.
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Proof See Appendix A for the proof.

Our algorithm solves the MCT problem exactly by

exhaustively exploring the CCG graph. This comes at

the cost of exponential complexity: There are (n − 1)!

ways to traverse a full CCG of n channels and we might

need to maintain 2k partial trees in the intermediate

steps, where k is the number of target channel sets.

However, in practical situations, our algorithm finishes

in the order of milliseconds, as the CCG comprises only

tens of channels and is very sparse. Also, the number of

target channel sets k is mostly only 1 or 2 and can often

be diminished by kernelization. More importantly, our

algorithm avoids performance penalties from inferior

data movement plans. However, if it ever runs into per-

formance problems, one may consider making it approx-

imate inspired from existing algorithms for GST [20,29].

Yet, we show that our algorithm gracefully scales to a

reasonable number of platforms (see Section 9.5).

6 Plan Enumeration

The goal of our optimizer is to find the optimal exe-

cution plan, i. e., the plan with the smallest estimated

cost. That is, for each inflated operator in an inflated

plan, it needs to select one of its alternative execu-

tion operators such that the overall execution cost is

minimized. Finding the optimal plan, however, is chal-

lenging because of the exponential size of the search

space. A plan with n operators, each having k execu-

tion operators, will lead to kn possible execution plans.

This number quickly becomes intractable for growing

n. For instance, a cross-community PageRank plan,

which consists of n=27 operators, each with k=5, yields

7.45 × 1018 possible execution plans. One could apply

a greedy pruning technique to reduce this search space.

However, greedy techniques cannot guarantee to find

the optimal execution plan, which may hurt perfor-

mance due to data movement and start-up costs.

We thus take a principled approach to solve this

problem: We define an algebra to formalize the enu-

meration (Section 6.1) and propose a lossless pruning

technique (Section 6.2). We then exploit this algebra

and pruning technique to devise an efficient plan enu-

meration algorithm (Section 6.3).

6.1 Plan Enumeration Algebra

Inspired by the relational algebra, we define the plan

enumeration search space along with traversal opera-

tions algebraically. This approach enables us to: (i) de-

fine the enumeration problem in a simple, elegant man-

ner; (ii) concisely formalize our enumeration algorithm;

Map ReduceBy Map

Map
assign

assign

GroupBy Map
sum & count

Map
average

Map
assign

Map
average

ReduceBy
sum & count

Scope

Subplan 1

Subplan 2

SparkJavaStreamsinflated operator conversion operator

averagesum & count

Fig. 6 A plan enumeration example of a subplan consisting
of 3 operators: It contains three columns, one for each inflated
operator, and two subplans, one in each row.

and (iii) explore design alternatives. Below, we describe

the data structures and operations of our algebra.

6.1.1 Data structures

Our enumeration algebra needs only one principal data

structure, the enumeration E = (S, SP ), which com-

prises a set of execution subplans SP for a given scope

S. The scope is the set of inflated operators that the

enumeration has unfolded in the current step. Each

subplan contains execution operators for each inflated

operator in S, including execution operators for data

movement. One can imagine an enumeration as a rela-

tional table whose column names correspond to the in-

flated operators contained in the scope and whose rows

correspond to the possible execution subplans.

Example 9 (Enumeration) Figure 6 depicts an enumer-

ation for the subplan consisting of 3 operators shown

in Figure 3. The enumeration contains three columns,

one for each inflated operator, and two subplans, one

in each row.

Notice that if the scope contains all the inflated op-

erators of a Rheem plan (complete enumeration), then

the corresponding subplans form complete execution

plans. This admits the following problem formalization.

Plan Enumeration Problem. Let E = (S,SP) be

the complete enumeration of a Rheem plan. The goal is

to efficiently find SP such that ∃spk ∈ SP, cost(spk) ≤
cost(spi) ∀spi ∈ SP, where cost(spi) includes of execu-

tion, data movement, and platform initialization costs.

6.1.2 Algebra operations

We use two main operations, Join (./) and Prune (σ),

to expand an enumeration with the neighboring oper-

ators of its subplans. In few words, Join connects two

small enumerations to form a larger one, while Prune

scraps inferior subplans from an enumeration for effi-

ciency reasons. Below, we formally define each of these

two operations.

(1) Join is analogous to a natural join in the relational

algebra. It creates a new enumeration whose scope is
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the union of the scopes of the two input enumerations

and whose subplans are all the merged subplan combi-

nations. We formally define this operation as follows.

Definition 3 (Join) Given two disjoint enumerations

E1 = (S1,SP1) and E2 = (S2,SP2) (i. e., S1 ∩ S2 =

∅), we define a join E1 ./ E2 = (S,SP) where

S := S1 ∪ S2 and SP := {connect(sp1, sp2) | sp1 ∈
SP1 can be connected to sp2 ∈ SP2}. The connect

function connects sp1 and sp2 by adding conversion op-

erators between operators of the two subplans.

Example 10 (Merging subplans) The enu-

meration in Figure 6 could be created by

joining an enumeration with scope S1 =

{Map(“assign”),ReduceBy(“sum&count′′)} with an

enumeration with scope S2 = {Map(“average”)}.
In particular, the connect function adds conversion

operators to link the two Maps in Subplan 1.

(2) Prune is akin to the relational selection operator.

As we stated earlier, an exhaustive enumeration of all

subplans is infeasible. This operation thus removes sub-

plans from an enumeration according to some pruning

rule, e. g., retaining only the top-k plans with the small-

est costs. We formally define Prune as follows.

Definition 4 (Prune) Given an enumeration E =

(S,SP), a pruned enumeration is an enumeration

σπ(E) := (S,SP′), where SP′ := {sp ∈ SP |
sp satisfies π} and π is a configurable pruning criterion.

6.1.3 Applying the algebra

We can now draft a basic enumeration algorithm based

on the Join operation only. For each inflated operator o,

we create a singleton enumeration E = ({o}, SPo),
where SPo are the executable subplans provided by o.

We then join these singleton enumerations one after

another to obtain an exhaustive enumeration for the

complete Rheem plan. This basic algorithm not only

lacks an instance of the Prune operation, but also an

order for the joins. We present our choices for both in

the remainder of this section.

6.2 Lossless Pruning

To deal with the exponential size of the search space,

we devise a novel pruning technique that is lossless:

it will not prune a subplan that is part of the opti-

mal execution plan. Our pruning technique builds upon

the notion of boundary operators. These are those in-

flated operators of an enumeration with scope S that

are adjacent to some inflated operator outside of S.

Algorithm 2: Rheem plan enumeration

Input: Rheem inflated plan R
Output: Optimal execution plan spmin

1 E ←
{
({o},SPo) : o is an inflated operator ∈ R

}
;

2 joinGroups← find-join-groups(E) ;
3 queue← create-priority-queue(joinGroups) ;
4 while |queue| > 0 do
5 joinGroup = {Eout, E1

in, E
2
in, . . . } ← poll(queue) ;

6 E./ ← σ(Eout ./ E1
in ./ E

2
in ./ . . . ) ;

7 foreach joinGroup′ ∈ queue do
8 if joinGroup ∩ joinGroup′ 6= ∅ then
9 update(joinGroup′ with E./) ;

10 re-order(joinGroup in queue);

11 spmin ← the subplan in E./ with the lowest cost ;

In the enumeration in Figure 6, Map(“assign”) and

Map(“average”) are the boundary operators: They are

adjacent to RepeatLoop and Map(“parse”), which are

not part of the enumeration (see Figure 1). The idea

behind our pruning technique is that if there are two

execution subplans for the same enumeration with the

same boundary execution operators, it keeps the one

with the lowest total estimated cost. Rheem uses the

geometric mean of the lower and upper bound of the

cost interval as the total estimated cost. Note that

Rheem ignores the confidence value at this stage and

use it only for on-the-fly re-optimization. We formally

define our pruning technique below.

Definition 5 (Lossless Pruning) Let E = (S, SP )

be an enumeration and Sb ⊆ S be the set of its boundary

operators. The lossless pruning removes all sp ∈ SP for

which there is another sp′ ∈ SP that (i) contains the

same execution operators for all Sb as sp, and (ii) has

a lower estimate cost than sp.

Example 11 (Lossless Pruning) For the enumeration in

Figure 6, the lossless pruning discards either Subplan 1

or 2 (whichever has the higher cost), because both sub-

plans contain the same boundary execution operators

(JavaMap(“assign”) and SparkMap(“average”)).

Note that this pruning technique allows us to not

prune optimal subplans.

Lemma 2 The lossless pruning does not prune a sub-

plan that is contained in the optimal plan with respect

to the cost model.

Proof See Appendix A for the proof.

6.3 Enumeration algorithm

Using the previously described enumeration algebra

and the lossless pruning strategy we now construct our
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plan enumeration algorithm. Intuitively, the algorithm

starts from singleton enumerations (i. e., an enumer-

ation of a single operator) and repeatedly joins and

prunes enumerations until it obtains the optimal ex-

ecution plan. A good order in joining enumeration is

crucial for maximizing the pruning effectiveness. Algo-

rithm 2 shows the pseudocode.

Given an inflated Rheem plan as input, it first cre-

ates a singleton enumeration for each inflated opera-

tor (Line 1). It then identifies join groups (Line 2).

A join group indicates a set of plan enumerations to

be joined. Initially, it creates a join group for each in-

flated operator’s output, so that each join group con-

tains (i) the enumeration for the operator with that out-

put, Eout, and (ii) the enumerations for all inflated op-

erators that consume that output as input, Eiin. For in-

stance in the inflated plan of Figure 1, the enumerations

for Map(“assign”) and ReduceBy(“sum&count”) form

an initial join group. While the join order is not rel-

evant to the correctness of the enumeration algorithm,

joining only adjacent enumerations is beneficial to per-

formance: It maximizes the number of non-boundary

operators in the resulting enumeration, which in turn

makes our lossless pruning most effective (see Defini-

tion 5, Criterion (i)). To further enhance the pruning

effect, we order the join groups ascending by the num-

ber of boundary operators and add them in a priority

queue (Line 3). Then, we greedily poll the join groups

from the queue, perform the corresponding join, and

prune the join result (Lines 4–6). After joining a set of

enumerations Eout and Eiin, we first check if these enu-

merations are members of other join groups (Line 8). If

that is the case, we replace them with their join result

E./ and update the priority in the queue (Line 9–10).

This is necessary for re-ordering the rest join groups

with the new number of boundary operators they con-

tain. Eventually, the last join result is a full enumera-

tion for the complete Rheem plan. Its lowest cost sub-

plan is the optimal execution plan (Line 11).

Our algorithm has been inspired by classical

database optimizers [58] with the difference that the

problem we are solving is not operator re-ordering. For

this reason, we do not opt for a top-down or bottom-up

approach but rather exploit the entire search space si-

multaneously. Moreover, our lossless pruning is related

to the concept of interesting sites [42] in distributed re-

lational query optimization, especially to the interesting

properties [58]. We can easily extend our prune opera-

tor to account for properties other than boundary op-

erators. For example, we already do consider platform

start-up costs in our cost model (see the plan enumera-

tion problem statement in Section 6.1). As a result, we

avoid pruning subplans with start-up costs that might

be redeemed over the whole plan.

Correctness. Our algorithm always finds the optimal

execution plan. The reason behind this is its pruning

technique, which never discards a subplan that is con-

tained in the optimal plan (Lemma 2). We formally

state this property in the following theorem.

Theorem 3 Algorithm 2 determines the optimal exe-

cution plan with respect to the cost estimates.

Proof As Algorithm 2 applies a lossless pruning tech-

nique (as per Lemma 2) to an otherwise exhaustive plan

enumeration, it detects the optimal execution plan. ut

7 Dealing with Uncertainty

It is well-known that poor cardinalities can harm the

optimizer [45]. A cross-platform setting is even more

susceptible to imprecise data cardinalities due to its

high uncertainty, e. g., the semantics of UDFs are usu-

ally unknown. Although the design of our optimizer al-

lows applications and developers to supplement valu-

able optimization information, such as UDF selectiv-

ities, users might not always be willing or be able

to specify them. In this case, default values are used

which may lead to suboptimal plans. To mitigate the

effects of bad cardinality estimates, we re-use our en-

tire optimization pipeline to perform progressive query

optimization [49]. The key principle is to monitor ac-

tual cardinalities of an execution plan and re-optimize

the plan on the fly whenever the observed cardinalities

greatly mismatch the estimated ones. Progressive query

optimization in cross-platform settings is challenging

because: (i) we have only limited control over the un-

derlying platforms, which makes plan instrumentation

and halting executions difficult, and (ii) re-optimizing

an ongoing execution plan must efficiently consider the

results already produced.

We leverage Rheem’s interval-based cost estimates

and and confidence values to tackle the above chal-

lenges. The optimizer inserts optimization checkpoints

into execution plans when it optimizes an incoming

Rheem plan for the first time. An optimization check-

point is basically a request for re-optimization before

proceeding beyond it. It inserts these checkpoints be-

tween two execution operators whenever (i) cardinality

estimates are uncertain (i. e., having a wide interval or

low confidence) and (ii) the data is at rest (e. g., a Java

collection or a file). Before execution, the optimizer asks

the execution drivers of the involved platforms to col-

lect the actual cardinalities of their intermediate data

structures. The execution plan is then executed until
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the optimization checkpoints. Every time an optimiza-

tion checkpoint is reached, the Rheem monitor checks

if the actual cardinalities considerably mismatch the

estimated ones. If so, the optimizer re-optimizes (as ex-

plained in previous sections) the remaining plan with

the updated cardinalities and already executed opera-

tors. Once this is done, the involved execution drivers

simply resume the execution with the re-optimized

plan. This yields a progressive optimization that uses

the existing optimization pipeline as well as the lat-

est statistics. Notice that Rheem can switch between

execution and progressive optimization any number of

times at a negligible cost.

8 Extensibility

Cross-platform environments are characterized by con-

tinuous changes as new platforms arise or existing ones

get updated. A cross-platform optimizer needs to take

such changes into consideration in order to be effective.

However, such changes may overwhelm the system ad-

ministrator that needs to maintain the system. For this

reason, we have designed our optimizer to be highly ex-

tensible to accommodate new platforms or updates to

existing ones with very little effort. Rheem users can

add new operators, including data movement operators,

and plug-in new platform drivers without modifying the

existing source code of our optimizer.

Our optimizer requires three main elements to work:

(i) cardinality estimates for each Rheem operator as

well as the CPU and memory load of each execution

operator, (ii) mappings from Rheem to execution op-

erators, and (iii) the channel conversion graph. System

administrators can easily specify these elements when

supplying new operators or integrating new platforms.

First, our UDF-based cost model is an essential part

of the optimizer’s extensibility. Adding a new Rheem

operator requires users to simply extend the abstract

Operator class in Rheem. It is recommended that the

user implements a method of this class for specifying

the expected output cardinality of the operator. If not

implemented, Rheem uses a default implementation

whose value can be adjusted during the progressive op-

timization (see Section 7). Moreover, when adding a

new execution operator, users have to implement the

ExecutionOperator interface. It is recommended that

users provide a specific method to specify the load that

this operator incurs in terms of CPU and memory. In

case a user cannot manually specify the cost functions,

our offline cost learner (see Section 4.2) allows to learn

them from previously executed tasks.

Second, our flexible mappings make our optimizer

easily extensible. Once a user creates a new execution

(or Rheem) operator, she usually needs to create a

mapping from its corresponding Rheem operator to

the new execution operator (or vice-versa). Users can

do this by implementing the Mapping interface. This

new Mapping implementation specifies a graph pattern

that matches a Rheem operator (or subplan) as well as

defines a transformation function that creates a replace-

ment operator (or subplan) for the matched operator.

Finally, when plugging a new platform, new com-

munication channels and conversion operators may be

required in the channel conversion graph. Users can cre-

ate a channel by extending the abstract Channel class.

Adding a conversion operator is like adding an execu-

tion operator, i. e., an operator that transforms data

from one format to another (e. g., from RDD to file).

All these elements are given as input to the opti-

mizer and, thus, system administrators do not need to

add or modify any line of code of our optimizer.

9 Experiments

Our optimizer is part of Rheem, an open-source cross-

platform system7. For the sake of simplicity, we hence-

forth refer to our optimizer simply as Rheem. We have

carried out several experiments to evaluate the effec-

tiveness and efficiency of our optimizer. As our work

is the first to provide a complete cross-platform opti-

mization framework, we compared it vis-a-vis individ-

ual platforms and common practices. For a system-level

comparison refer to [4]. Note that we did not compare

our optimizer with a rule-based optimization approach

for two main reasons. First, defining simple rules based

on the input dataset size, such as in SystemML [15],

does not always work: There are non-obvious cases

where even if the input is small (e. g., 30MB) it is bet-

ter to use a big data platform, such as Spark, as we will

see in the following. Thus, rules need to be more com-

plex and descriptive. Second, defining complex rules re-

quires a lot of expertise and results in a huge rule base.

For example, Myria requires hundreds of rules for only

three platforms [64]. This is not only time-consuming

but it is not easily extensible and maintainable when

new platforms are added.

We evaluate our optimizer by answering the fol-

lowing four main questions. Can our optimizer en-

able Rheem to: choose the best platform for a given

task? (Section 9.2); spot hidden opportunities for cross-

platform processing that improve performance? (Sec-

tion 9.3); and effectively re-optimize an execution plan

on-the-fly? (Section 9.4). Last but not least, we also

7 https://github.com/rheem-ecosystem/rheem
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Table 1 Tasks and datasets.

Task Description #Rheem operators Dataset (size) Default store
WordCount (TM) count distinct words 6 Wikipediaabstracts (3GB) HDFS
Word2NVec (TM) word neighborhood vectors 14 Wikipediaabstracts (3GB) HDFS
SimWords (TM) word neighborhood clustering 26 Wikipediaabstracts (3GB) HDFS
Aggregate (RA) aggregate query (TPC-H Q1) 7 TPC− H (1-100GB) HDFS
Join (RA) 2-way join (TPC-H Q3) 18 TPC− H (1-100GB) HDFS
PolyJoin (RA) n-way join (TPC-H Q5) 31 TPC− H (1-100GB) Postgres, HDFS, LFS
Kmeans (ML) clustering 9 USCensus1990 (361MB) HDFS
SGD (ML) stochastic gradient descent 10 HIGGS (7.4GB) HDFS
CrocoPR (GM) cross-community pagerank 22 DBpediapagelinks (20GB) HDFS

evaluate the scalability (Section 9.5) and design choices

(Section 9.6) of our optimizer.

9.1 General Setup

Hardware. We ran all our experiments on a cluster of

10 machines: each with one 2 GHz Quad Core Xeon pro-

cessor, 32 GB main memory, 500 GB SATA hard disks, a

1 Gigabit network card, and runs 64-bit platform Linux

Ubuntu 14.04.05.

Processing & storage platforms. We consid-

ered the following platforms: Java’s Streams (JavaS-

treams), PostgreSQL 9.6.2 (PSQL), Spark 2.4.0

(Spark), Flink 1.7.1 (Flink), GraphX 1.6.0 (GraphX),

Giraph 1.2.0 (Giraph), a self-written Java graph library

(JGraph), and HDFS 2.6.5 to store files. We used all

these with their default settings and set the RAM of

each platform to 20 GB. We disabled the progressive

optimization feature of our optimizer in order to first

better study its upfront optimization techniques. In Sec-

tion 9.4 we study the effect of progressive optimization.

Tasks and datasets. We considered a broad range

of data analytics tasks from different areas, namely

text mining (TM), relational analytics (RA), machine

learning (ML), and graph mining (GM). Details on the

datasets and tasks are shown in Table 1. These tasks

and datasets individually highlight different features of

our optimizer and together demonstrate its general ap-

plicability. To challenge Rheem and allow it to choose

among most of the available platforms, most tasks’ in-

put datasets are stored on HDFS (except when specified

otherwise). We also considered a polystore case where

data is dispersed among different stores (PolyJoin),

however, such cases are easier to handle as the search

space becomes smaller and we thus omit them from

further evaluation.

Cost model. To learn the parameters required for the

operator’s cost functions, we first generated a number of

execution logs using a set of 10 training tasks (Grep, In-

vertedIndex, SetDifference, SetIntersection, TPC-H Q1

and Q2, PageRank, SVM, Knn, and InclusionDepen-

dency) with synthetic datasets of varying sizes. We then

used a genetic algorithm. Last, as estimating UDFs’ se-

lectivity is out of the scope of this paper, we assume

accurate selectivities for the first sets of experiments

studying the upfront optimization. This gives us a bet-

ter view on how Rheem can perform without being af-

fected by wrong cardinalities estimates. In Section 7 we

study the progressive optimization and use estimated

selectivities computed as discussed in Section 4.2.3.

Repeatability. All the numbers we report are the av-

erage of three runs on the datasets of Table 1. To ensure

repeatability, we will provide the code of all our exper-

imental tasks, SQL queries, datasets, and a detailed

guideline on how to reproduce our experiments8.

9.2 Single-Platform Optimization

Applications might require to switch platforms accord-

ing to the input datasets and/or tasks in order to

achieve better performance. We call such a use case

platform independence [40]. We, thus, start our exper-

iments by evaluating how well Rheem selects a single

platform to execute a task.

Experiment Setup. For Rheem, we forced our op-

timizer to use a single platform throughout a task and

checked if it chose the one with the best runtime. We

ran all the tasks of Table 1 with increasing dataset sizes.

Note that we did not run PolyJoin because it requires

using several platforms. For the real-world datasets,

we took samples from the initial datasets of increasing

size. We also increased the input datasets up to 1TB

for most tasks in order to further stress the optimizer.

Note that, due to their complexity, we do not report

the 1TB numbers for Word2NVec and SimWords: none

of the platforms managed to finish in a reasonable time.

The iterations for CrocoPR, K-means, and SGD are 10,

100, and 1, 000, respectively.

Experiment Results. Figure 7 shows the execution

times for all our tasks and for increasing dataset sizes.

8 https://github.com/rheem-ecosystem/

rheem-benchmark
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Fig. 7 Platform independence: Rheem avoids all worst cases and chooses the best platform for most tasks.

The stars denote the platform selected by our optimizer.

First of all, let us stress that the results show significant

differences in the runtimes of the different platforms:

even between Spark and Flink, which are big data plat-

form competitors. For example, Flink can be up to 2.4x

faster than Spark and Spark can be up to 2x faster than

Flink. Thus, it is crucial to prevent tasks from falling

into such non-obvious worst cases.

The results, in Figure 7, show that our optimizer in-

deed makes robust platform choices whenever runtimes

differ substantially. This effectiveness of the optimizer

for choosing the right platform transparently prevents

applications from using suboptimal platforms. For in-

stance, it prevents running: (i) Word2NVec on Spark for

5% and 100% of its input dataset. Spark performs worse

than Flink because it employs only two compute nodes

(one for each input data partition), while Flink uses

all of them9; (ii) SimWords on Java for 1% of its input

dataset (∼ 30MB); as SimWords performs many CPU-

intensive vector operations, using JavaStreams (i. e., a

single compute node) simply slows down the entire pro-

cess; (iii) WordCount on Flink for 800% of its input

dataset (i. e., 24GB) and 1TB, where, in contrast to

Spark, Flink suffers from a slower data reduce mecha-

nism10; (iv) Aggregate on Flink for scale factors higher

than 200, because it tends to write often to disk when

dealing with large groups (formed by the GroupBy op-

erator); and (v) CrocoPR on JGraph for more than 10%

of its input dataset as it simply cannot efficiently pro-

cess large datasets as well as on Spark and Flink for

1TB whose performance is deteriorated by the num-

9 One might think of re-partitioning the data for Spark, but
this is a task- and data-specific optimization, which is not the
goal of Rheem.
10 Flink uses a sorting-based aggregation, which – in this
case – appears to be inferior to Spark’s hash-based aggrega-
tion.

ber of created objects. Thus, our optimizer is capable

of discovering non-obvious cases: For example, for the

Word2NVec and SimWords a simple rule-based optimizer

based on input cardinalities would choose JavaStreams

for the small input of 30MB (i. e., 1% of the dataset).

However, JavaStreams is 7x to 12x slower than Spark

and Flink in these two cases.

We also observe that Rheem generally chooses the

right platform even for the difficult cases where the

execution times are quite similar on different plat-

forms. For example, it always selects the right platform

for Aggregate and Join even if the execution times

for Spark and Flink are quite similar in most of the

cases. Only in few of these difficult cases the optimizer

fails to choose the best platform, e. g., Word2NVec and

SimWords for 0.1% of input data: the accuracy of our

optimizer is sensitive to uncertainty factors, such as cost

and cardinality estimates. Still, all these results allow

us to conclude that our optimizer chooses the best plat-

form for almost all tasks and it prevents tasks from

falling into worst execution cases.

Rheem selects the most efficient platform to exe-

cute a task in 46 out of 48 cases.

9.3 Multi-Platform Optimization

We now study the efficiency of our optimizer when using

multiple platforms for a single task. We evaluate if our

optimizer: (i) allows Rheem to spot hidden opportuni-

ties for the use of multiple platforms to improve per-

formance (the opportunistic experiment); (ii) perform

well in a data lake setting (the polystore experiment);

and (iii) efficiently complement the functionalities of
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Fig. 8 Opportunistic: Rheem improves performance by combining multiple data processing platforms.

Table 2 Opportunistic cross-platform breakdown.

Task Selected Platforms Data Transfer/Ite.
WordCount Spark, JavaStreams ∼82 MB
Word2NVec Flink –
SimWords Flink –
Aggregate Flink, Spark ∼23% of the input
Join Flink –
Kmeans (k=10) Spark –
Kmeans (k=100, k=1,000) Spark, JavaStreams ∼6 KB & ∼60 KB
SGD Spark, JavaStreams ∼0.14 KB × batch size
CrocoPR Flink, JGraph, JavaStreams ∼544 MB

one platform with another to perform a given task (the

complementary-platforms experiment).

Opportunistic Experiment. We re-enable Rheem

to use any platform combination. We used the same

tasks and datasets with three differences: we ran

(i) Kmeans on 10x its entire dataset for a varying num-

ber of centroids, (ii) SGD on its entire dataset for in-

creasing batch sizes, and (iii) CrocoPR on 10% of its

input dataset for a varying number of iterations.

Figure 8 shows the results. Overall, we find that in

the worst case Rheem matches the performance of any

single platform execution, but in several cases consider-

ably improves over single-platform executions. Table 2
illustrates the platform choices that our optimizer made

as well as the cross-platform data transfer per iteration

for all our tasks. We observe Rheem to be up to 20×
faster than Spark, up to 15× faster than Flink, up to

22× faster than JavaStreams, up to 2× faster than Gi-

raph. There are several reasons for having this large

improvement. For SGD, Rheem decided to handle the

model parameters, which is typically tiny (∼0.1KB for

our input dataset), with JavaStreams while it processed

the data points (typically a large dataset) with Spark.

For CrocoPR, surprisingly our optimizer uses a combina-

tion of Flink, JGraph, and JavaStreams, even if Giraph

is the fastest baseline platform (for 10 iterations). This

is because after the preparation phase of this task, the

input dataset for the PageRank operation on JGraph

is ∼544 MB only. For WordCount, Rheem surprisingly

detected that moving the result data (∼ 82 MB) from

Spark to JavaStreams and afterwards shipping it to the

driver application is slightly faster than using Spark

only. This is because when moving data to JavaStreams

Rheem uses the action Rdd.collect(), which is more

efficient than the Rdd.toLocalIterator() operation that

Spark offers to move data to the driver. For Aggregate,

our optimizer selects Flink and Spark, which allows it

to run this task slightly faster than the fastest baseline

platform. Our optimizer achieves this improvement by

(i) exploiting the fast stream data processing mecha-

nism native in Flink for the projection and selection

operations, and (ii) avoiding the slow data reduce mech-

anism of Flink by using Spark for the ReduceBy opera-

tion. In contrast to all previous tasks, Rheem can afford

to transfer ∼23% of the input data because it uses two

big data platforms for processing this task. All these

are surprising results per-se. They show not only that
Rheem outperforms state-of-the-art platforms, but also

that it can spot hidden opportunities to improve per-

formance and to be much more robust.
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Fig. 9 JoinX: Rheem
outperforms Postgres by
executing the join and
aggregation in Spark
even if both relations are
stored in Postgres.

To further stress the im-

portance of finding hidden

cross-platform execution op-

portunities, we ran a sub-

task (JoinX) of PolyJoin.

This task gets the account

balance ratio between a sup-

plier and all customers in

the same nation and calcu-

lates the average ratio per

nation. For this, it joins

the relations SUPPLIER and

CUSTOMER (which are stored

on Postgres) on the at-

tribute nationkey and ag-

gregates the join results on
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Fig. 10 Rheem outperforms single platforms even if 8 out
of 40 workers are strugglers.

the same attribute. For this additional experiment, we

compare Rheem with the execution of JoinX on Post-

gres, which is the obvious platform to run this kind of

queries. The results are displayed in Figure 9. Remark-

ably, we observe that Rheem significantly outperforms

Postgres, even though the input data is stored there.

In fact, Rheem is 2.5x faster than Postgres for a scale

factor of 10. This is because it simply pushes down the

projection operation into Postgres and then moves the

data into Spark to perform the join and aggregation op-

erations, thereby leveraging the Spark parallelism. We

thus do confirm that our optimizer both indeed identi-

fies hidden opportunities to improve performance and

performs more robustly by using multiple platforms.

Finally, we demonstrate how our optimizer is ag-

nostic to any heterogeneity of the underlying cluster.

To illustrate this we emulated 2 struggle nodes (i. e., 8

workers) by running background applications so that

these machines are slowed down. We also modified the

cost model to take into account struggler nodes. Fig-

ure 10 shows the results for one task of each type. We

observe that Spark, Flink and Giraph are affected by

the struggler nodes which slightly decrease their perfor-

mance. However, even in such a case Rheem manages

to choose the best platform(s) as such information can

be incorporated in it UDF-based cost model.

Rheem will often make unexpected but ulti-

mately more efficient decisions to execute a task,

e. g., carry out a join in Spark (to exploit paral-

lelism) even when data resides on Postgres.

Polystore Experiment. We now consider the

PolyJoin task, which takes the CUSTOMER, LINEITEM,

NATION, ORDERS, REGION, and SUPPLIER TPC-H tables

as input. We assumed the large LINEITEM and ORDERS

tables are stored on HDFS, the medium-size tables

CUSTOMER, REGION, and SUPPLIER on Postgres, and the

small NATION table on a local file system (LFS). In this

scenario, the common practice is either to move the

data into a relational database in order to enact the
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Fig. 11 (a) Polystore experiment: datasets are stored in
heterogeneous sources. (b) Complementary-platforms exper-
iment: complementing platforms is indeed beneficial and
Rheem achieves this automatically.

queries inside the database [24, 59] or move the data

entirely to HDFS and use Spark. We consider these

two cases as the baselines. We measure the data mi-

gration time and the task execution time as the total

runtime for these baselines. Rheem processes the input

datasets directly on the data stores where they reside

and moves data if necessary. For a fair comparison in

this experiment, we set the parallel query and effective

IO concurrency features of Postgres to 4.

Figure 11(a) shows the results for this experi-

ment. The results are unanimous: Rheem is signifi-

cantly faster, up to 5×, than moving data into Post-

gres and run the query there. In particular, we observed

that even if we discard data migration times, Rheem

performs quite similarly to Postgres. This is because

Rheem can parallelize most part of the task execution

by using Spark. We also observe that our optimizer has

negligible overhead over the case when the developer

writes ad-hoc scripts to move the data to HDFS for

running the task on Spark. In particular, Rheem is 3x

faster than Spark for scale factor 1, because it moves

less data from Postgres to Spark. As soon as the Post-

gres tables get larger, reading them from HDFS rather

than directly from Postgres is more beneficial because

of its parallel reads. This shows the substantial benefits

of our optimizer not only in terms of performance but

also in terms of ease-of-use: users do not write ad-hoc

scripts to integrate different platforms.

In polystores, Rheem will execute tasks in-situ in-

stead of migrating all data into a common platform.

Complementary-Platforms Experiment. To eval-

uate this feature, we consider the CrocoPR and Kmeans

tasks. In contrast to previous experiments, we assume

both input datasets (DBpedia and USCensus1990) to be

on Postgres. As the implementation of these tasks on

Postgres would be very impractical and of utterly infe-

rior performance, it is important to move the computa-

tion to a different processing platform. In these exper-



18 Sebastian Kruse et al.

iments, we consider the ideal case as baseline, i. e., the

case where data is already on a platform being able to

perform the task. As ideal case, we assume that the data

is on HDFS and that Rheem uses either JavaStreams

or Spark to run the tasks.

Figure 11(b) shows the results. We observe that

Rheem achieves similar performance with the ideal case

in almost all scenarios. This is a remarkable result, as it

needs to move data out of Postgres to a different pro-

cessing platform, in contrast to the ideal case. These

results clearly show that our optimizer frees users from

the burden of complementing the functionalities of di-

verse platforms, without sacrificing performance.

Rheem cannot only mix processing platforms to

complement their functionalities but also keep per-

formance similar to the ideal cases.

9.4 Progressive Optimization

We proceed to evaluate the utility of progressive op-

timization feature of our optimizer in the presence of

incorrect estimates.

Experiment Setup. We enabled the progressive opti-

mization (PO) feature of our optimizer. We considered

the Join task for this experiment. We extended the

Join task with a low-selective selection predicate on

the names of the suppliers and customers. To simulate

the usual cases where users cannot provide accurate se-

lectivity estimates, we provide a high selectivity hint to

Rheem for this filter operator.
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Experiment Results. Figure 12

shows the results for this experi-

ment. We clearly observe the ben-

efits of our progressive optimizer.

In more detail, our optimizer first

generates an execution plan using

Spark and JavaStreams. It uses

JavaStreams for all the operators

after the Filter because it sees that

Filter has a very high selectivity.

However, Rheem figures out that

Filter has in fact a low selectivity.

Thus, it runs the re-optimization

process and changes on-the-fly all

JavaStreams operators to Spark operators. This allows

it to speed up performance by almost 4 times. Last but

not least, we observed during our experiment that the

PO feature of Rheem has a negligible overhead (less

than 2%) over using platforms natively.
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Fig. 13 Optimization scalability: (a) Our optimizer performs
well for a practical number of platforms and even better by
augmenting a simple top-k pruning strategy. (b) It can scale
to very large plans.

Rheem further improves performance notably by

re-optimizing plans on-the-fly at a negligible cost.

9.5 Optimizer Scalability

We continue our experimental study by evaluating the

scalability of our optimizer to determine whether it op-

erates efficiently on large Rheem plans and for a large

numbers of platforms.

Experiment setup. We start by evaluating our op-

timizer’s scalability in terms of the number of sup-

ported platforms and then proceed to evaluate it in

terms of the number of operators in a Rheem plan. For

the former, we considered hypothetical platforms with

full Rheem operator coverage and three communica-

tion channels each. For the latter, we generated Rheem

plans with two basic topologies that we found to be at

the core of many data analytic tasks: pipeline and tree.

Experiment Results. Figure 13(a) shows the opti-

mization time of our optimizer for Kmeans when increas-

ing the number of supported platforms. The results for

the other tasks are similar. As expected, the time in-

creases along with the number of platforms. This is be-

cause (i) the CCG gets larger, challenging our MCT

algorithm, and (ii) our lossless pruning has to retain

more alternative subplans. Still, we observe that our op-

timizer (the no top-k series in Figure 13(a)) performs

well for a practical number of platforms: it takes less

than 10 seconds when having 5 different platforms. Yet,

one could leverage our algebraic formulation of the plan

enumeration problem to easily augment our optimizer

with a simple top-k pruning strategy, which simply re-

tains the k best subplans when applied to an enumer-

ation. To do so, we just have to specify an additional

rule for the Prune operator (see Section 6.1) to obtain

a pruning strategy that combines the lossless pruning

with a top-k one. While the former keeps intermediate
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Fig. 14 Efficiency and effectiveness of pruning strategies.

subplans diverse, the latter removes the worst plans.

Doing so allows our optimizer to gracefully scale with

the number platforms, e. g., for k=8 it takes less than

10 seconds for 10 different platforms (the top-8 series

in Figure 13(a)). Figure 13(b) shows the results regard-

ing the scalability of our optimizer in terms of number

of operators in a task. We observe that our optimizer

scales to very large plans for both topologies. In prac-

tice, we do not expect to find situations where we have

more than five platforms and plans with more than hun-

dred operators. In fact, in our workload the tasks con-

tain an average of 15 operators. All these numbers show

the high scalability of our optimizer.

Rheem scales to a realistic number of platforms

and number of operators in a Rheem plan.

9.6 Optimizer Internals

We finally conducted several experiments to further

evaluate the efficiency of our optimizer. We study five

different aspects of our optimizer: (i) how well our prun-

ing technique reduces the search space; (ii) how impor-

tant the order is, in which our enumeration algorithm

processes join groups; (iii) how effective our channel

conversion graph (CCG) is; (iv) how accurate our cost

model is; and (v) where the time is spent in the entire

optimization process.

Lossless Pruning Experiment. We proceed to com-

pare our lossless pruning strategy (Section 6) with sev-

eral alternatives, namely no pruning at all and just

top-k pruning. In contrast to Section 9.5 where we used

the top-k pruning to augment our lossless pruning, we

now consider it independently. Figure 14 shows the ef-

ficiency results of all pruning strategies (on the left) as

well as their effectiveness (on the right), i. e., the esti-

mated execution times of their optimized plans. Note

that we did not use the actual plan execution times to

assess the effectiveness of our enumeration strategy in

order to eliminate the influence of the calibration of the
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Fig. 15 Effect of join groups ordering and CCG. (a) Join
ordering is very crucial for the tree topology. (b) Our CCG
approach allows for more than one order of magnitude run-
time improvement over a simple file-based approach.

cost functions. As a first observation, we see that prun-

ing is crucial overall: An exhaustive enumeration was

not possible for SimWords and CrocoPR because of the

large number of possible execution operators that these

plans have. We also found that the top-1 strategy, which

merely selects the best alternative for each inflated op-

erator, is pruning too aggressively and fails in 3 out

of 7 times to detect the optimal execution plan. While

the numbers now seem to suggest that the remaining

lossless and top-10 pruning strategies are of the same

value, there is a subtle difference: The lossless strat-

egy guarantees to find the optimal plan (w.r.t. the cost

estimates) and is, thus, superior.

Join Groups Ordering Experiment. We start by

analyzing the importance of the join groups order (see

Section 6.3) by comparing it with a random order. Fig-

ure 15(a) shows that ordering the join groups is indeed

crucial for the tree topology. This is not the case for the

pipeline topology, where the process of ordering the join

groups does not seem to exert any measurable influence

on the optimization time.

For large, complex Rheem plans, a combination of

the lossless pruning followed by a top-k pruning might

be a valuable pruning strategy. While the former keeps

intermediate subplans diverse, the latter removes the

worst plans. This flexibility is a consequence of our al-

gebraic approach to the plan enumeration problem.

CCG Experiment. Next, we evaluate the effective-

ness of our channel conversion graph (CCG) approach

for data movement. For this experiment, we compare

our CCG approach with an HDFS-based data move-

ment approach, i. e., only through writing to an HDFS

file. Figure 15(b) shows the results in terms of runtime.

We observe that for k-means, Rheem can be more than

one order of magnitude faster when using CCG com-

pared to using only HDFS files for data movement. For
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Fig. 16 (a) Our cost model is sufficient for choosing a near-
optimal plan. (b) The average optimization time amounts to
around a second, which is several orders of magnitude smaller
than the actual runtime of the tasks.

SGD and CrocoPR, it is always more than one order of

magnitude faster. This shows the importance of well-

planned data movement.

Cost Model Experiment. We now validate the ac-

curacy of our cost model. Note that similarly to tra-

ditional cost-based optimizers in databases, our cost

model aims at enabling the optimizer to choose a good

plan while avoiding worst cases. That is, it does not aim

at precisely estimating the running time of each plan.

Thus, we evaluate the accuracy of our cost model

by determining which plan of the search space our op-

timizer chooses. The ideal case would be to exhaustively

run all possible execution plans and validate that our

optimizer chooses the best plan or one close to it. How-

ever, running all plans is infeasible as that would take

already several weeks for the small WordCount task with

only 6 operators. For this reason, in Figure 16(a) we

plot for SGD and WordCount the following: (i) the real

execution time of the first three plans with the mini-

mum estimated runtime; and (ii) the minimum, max-

imum, and average of the real execution times of 100

randomly chosen plans.

We make the following observations: First, the 1st

plan has the minimum real execution time compared

to all other plans (including the 2nd and 3rd plans).

Second, the first three plans have a better runtime not

only compared to the average real execution time of

the randomly chosen plans, but also compared to the

minimum execution time of the randomly chosen plans.

Based on these observations, we conclude that our cost

model is sufficient for our optimizer to choose a near-

optimal plan.

Breakdown Experiment. Last, we analyze where

the time is spent throughout the entire optimization

process. Figure 16(b) shows the breakdown of our op-

timizer’s runtime in its several phases for several tasks.

At first, we note that the average optimization time

amounts to slightly more than a second, which is sev-

eral orders of magnitude smaller than the time savings

from the previous experiments. The lion’s share of the

runtime is the source inspection, which obtains cardi-

nality estimates for the source operators of a Rheem

plan (e. g., for inspecting an input file). This could be

improved, e. g., by a metadata repository or caches. In

contrast, the enumeration and MCT discovery finished

in the order of tens of milliseconds, even though they

are of exponential complexity. The pruning technique

is the key that keeps the enumeration time low, while

MCT works satisfactorily for a moderate number of un-

derlying platforms that we used in our experiments.

10 Related Work

In the past years, the research and industry com-

munities have proposed many data processing plat-

forms [6, 9, 23, 53, 65]. In contrast to all these works,

we do not provide a new processing platform but an

optimizer to automatically choose among and combine

all these different platforms.

Cross-platform task processing has been in the

spotlight very recently. Some works have proposed dif-

ferent solutions to decouple data processing pipelines

from the underlying platforms [1, 25, 27, 30, 46, 61, 64].

Although their goals are similar, all these works dif-

fer substantially from our optimizer, as most of them

do not consider data movement costs, which is crucial

in cross-platform settings. Note that some complemen-

tary works [31, 52] focus on improving data movement

among different platforms, but they do not provide a

cross-platform optimizer. Moreover, each of these sys-

tems additionally differs from our optimizer in various

ways. Musketeer’s main goal is to decouple query lan-

guages from execution platforms [30]. Its main focus lies

on converting queries via a fixed intermediate represen-

tation and thus mostly targets platform independence.

BigDAWG [27] comes with no optimizer and requires

users to specify where to run cross-platform queries via

its Scope and Cast commands. Myria [64] provides a

rule-based optimizer which is hard to maintain as the

number of underlying platforms increases. In [25] the

authors present a cross-platform system intended for

optimizing complex pipelines. It allows only for sim-

ple one-to-one operator mappings and does not con-

sider optimization at the atomic operator granularity.

The authors in [61] focus on ETL workloads making it

hard to extend their proposed solution with new op-

erators and other analytic tasks. DBMS+ [46] is lim-

ited by the expressiveness of its declarative language

and hence it is neither adaptive nor extensible. Fur-

thermore, it is unclear how DBMS+ abstracts underly-

ing platforms seamlessly. Other complementary works,
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such as [31, 52], focus on improving data movement

among different platforms, but they do not provide a

cross-platform optimizer. Apache Calcite [13] decouples

the optimization process from the underlying process-

ing making it suitable for integrating several platforms.

However, no cross-platform optimization is provided.

Tensorflow [1] follows a similar idea, but for cross-

device execution of machine learning tasks and thus it

is orthogonal to Rheem. Finally, WWHow! envisions a

cross-platform optimizer but for data storage [36].

Query optimization has been the focus of a great

amount of literature [35]. However, most of these works

focus on relational-style query optimization, such as op-

erator re-ordering and selectivity estimation, and can-

not be directly applied to our system. More closely to

our work is the optimization for federated DBMSs. A

key aspect in federated DBMSs, as well as in distributed

machine learning systems, is adaptive query processing

and re-optimization [11,12,14,49]. More specifically, the

Rio optimizer [12] is closely related to our optimizer as

it uses the notion of uncertainty for cardinality esti-

mates and proposes a proactive re-optimization strat-

egy. The authors in [49] propose a progressive query

optimization technique for relational databases. Nev-

ertheless, the solutions of such works are tailored for

relational algebra and assume tight control over the ex-

ecution engine, which is not applicable to our case. Fi-

nally, there is work on UDF-based data flow optimiza-

tion, such as [33,56], but they are all are complementary

to our optimizer. One could leverage them to better in-

corporate UDFs in our cost models.

MapReduce-based integration systems, such

as [24, 44], mainly aim at integrating Hadoop with

RDBMS and cannot be easily extended to deal with

more diverse data analytic tasks and different process-

ing platforms. There are also works that automatically

decide whether to run a MapReduce job locally or in

a cluster, such as FlumeJava [18]. Although such an

automatic choice is crucial for some tasks, it does not

generalize to data flows with other platforms.

Federated databases have been studied since almost

the beginnings of the database field itself [60]. Gar-

lic [17], TSIMMIS [19], and InterBase [16] are just three

examples. However, all these works significantly differ

from ours in that they consider a single data model and

push query processing to where the data is.

11 Conclusion

We presented a cross-platform optimizer that automat-

ically allocates a task to a combination of data pro-

cessing platforms in order to minimize its execution

cost. In particular, we proposed (i) novel strategies

to map platform-agnostic tasks to concrete execution

strategies; (ii) a new graph-based approach to plan data

movement among platforms; (iii) an algebraic formal-

ization and novel solution to select the optimal execu-

tion strategy; and (iv) how to handle the uncertainty

found in cross-platform settings. Our extensive evalua-

tion showed that our optimizer allows tasks to run up

to more than one order of magnitude faster than on

any single platform. We acknowledge that this is only a

first step towards real cross-platform optimization. As

future work, we may consider to extend our optimizer

to handle different types of systems, such as machine

learning systems or RDF stores. Future work might also

take into account memory restrictions of the platforms.

Last but not least, we recently started evaluating dif-

ferent optimization techniques in Rheem for data and

ML debugging [21] and plan to extent our cost-based

optimizer to support these cases.

References

1. Abadi, M., et al.: TensorFlow: A system for large-scale
machine learning. In: USENIX Symposium on Operating
Systems Design and Implementation (OSDI), pp. 265–
283 (2016)

2. Abouzeid, A., Bajda-Pawlikowski, K., Abadi, D.J.,
Rasin, A., Silberschatz, A.: HadoopDB: An Architectural
Hybrid of MapReduce and DBMS Technologies for Ana-
lytical Workloads. PVLDB 2(1), 922–933 (2009)

3. Agrawal, D., Ba, L., Berti-Equille, L., Chawla, S., Elma-
garmid, A., Hammady, H., Idris, Y., Kaoudi, Z., Khayyat,
Z., Kruse, S., Ouzzani, M., Papotti, P., Quiané-Ruiz,
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A Proofs

We present the proofs of the Theorems and Lemmas pre-
sented in Sections 5 and 6.2.

Theorem 1 The MCT problem is NP-hard.

Proof The NP-hard problem of GST [54] can be reduced in
polynomial time to an MCT problem. Recall a GST instance
consists of a weighted graph G with positive edge weights, a
root vertex r, and k subsets (groups) of vertices from G. The
goal of GST is to find a tree G′ on G that connects r with
at least one vertex of each group. We convert an instance of

GST to MCT as follows. We provide as input to MCT (i) a
channel conversion graph that has exactly the same vertices
and edges with G, (ii) the vertex r as root channel, (iii) the
k groups as target channel sets, and (iv) the edge weights of
the graph as conversion operator costs. This conversion can
trivially be done in polynomial time. ut

Lemma 1 A solution for a kernelized MCT problem also
solves the original MCT problem.

Proof Assume an original MCT problem Mo with target
channel sets Ct1 , . . . , Ctk and a kernelized MCT problem
Mk for which those Cti have been merged to a single target
channel set Ct∗. Now let tk be an MCT for Mk. Obviously, tk
is also a conversion tree for Mo, but it remains to show that
it is also minimum. For that purpose, we assume that tk was
not minimum for Mo; in consequence, there has to be some
other MCT to for Mo. If to satisfies all target channel sets
of Mo (i. e., the Cti) via the same communication channel
c, then to would also be an MCT for Mk, which contradicts
our assumption. Specifically, c must be a reusable channel,
as it satisfies multiple target channel sets. In contrast, if to
satisfies the target channel sets of Mo with different channels,
then there has to be at least one reusable channel c′ among
them because we kernelize only such target channel sets that
have at most one non-reusable channel. As c′ alone can al-
ready satisfy all target channel sets of Mo, it follows that to
produces more target channels than necessary and is there-
fore not minimal, which contradicts our assumption. ut

Theorem 2 Given a channel conversion graph, Algorithm 1
finds the minimum conversion tree if it exists.

Proof As per Lemma 1, the kernelization does not change the
solution of an MCT problem, so we proceed to prove the cor-
rectness of the graph traversal algorithm – by induction. Let h
be the height of the MCT. If h = 1, the conversion tree, which
is composed of only a root (cf. Algorithm 1, Line 8), is always
minimal as any conversion operator incurs non-negative costs.
Assume an MCT of height h. We prove that our algorithm
can output a tree of height h+ 1 that is also minimal. When
merging PCTs two facts hold: (i) any subtree in the MCT
must be an MCT (with its own root), otherwise this subtree
has a cheaper alternative and the overall conversion tree can-
not be minimal; and (ii) we consider all valid combination of
PCTs in the merging phase and hence will not miss out the
most efficient combination. Thus, given an MCT with height
h, the tree with height h+ 1 will also be minimal. ut

Lemma 2 The lossless pruning does not prune a subplan
that is contained in the optimal plan with respect to the cost
model.

Proof We prove this lemma by contradiction. Consider an
enumeration E = (S,SP) and two execution subplans
sp, sp′ ∈ SP. Let us assume that both subplans share the
same boundary operators and use the same platforms but sp′

has a lower cost than sp, so that our pruning removes sp.
Now assume that the subplan sp is contained in the optimal
plan p. If we exchange sp with sp′, we obtain a new plan p′.
This plan is valid because sp and sp′ have the same boundary
operators, so that any data movement operations between sp
with any adjacent operators in p are also valid for sp′. Fur-
thermore, p′ is more efficient than p because the costs for
sp′ are lower than for sp and besides those subplans, p and
p′ have the exact same operators and costs. This contradicts
the assumption that p is optimal.
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Algorithm 3: Recursive traversal of MCT of Al-

gorithm 1.

Input: channel conversion graph G, current channel c,
target channel sets Ct, visited channels Cv,
satisfied target channel sets Cs

Output: minimum conversion trees from c to subsets
of Ct

4 Function traverse(G, c,Ct, Cv,Cs)
5 T ← create-dictionary();
6 C ′s ← {Cti ∈ Ct | c ∈ Cti} \ Cs;
7 if C ′s 6= ∅ then
8 foreach C ′′s ∈ 2C ′

s \ ∅ do T [C ′′s ]← tree(c) ;
9 if Cs ∪ C ′s = Ct then return T ;

10 Cv ← Cv ∪ {c} ;
11 if reusable(c) then Cs ← Cs ∪ C ′s;
12 T ← ∅;
13 foreach (c

o→ c′) ∈ G with c′ 6∈ Cv do
14 T ′ ← traverse(G, c′,Ct, Cv,Cs);

15 T ′ ← grow(T ′, c
o→ c′);

16 T ← T ∪ {T ′};
17 if reusable(c) then d ← |Ct| − |Cs| else d ← 1;
18 foreach T ∈ disjoint-combinations(T , d) do
19 T ← merge-and-update(T, T )

20 return T ;

B Data Movement Algorithm Details

We now explain in further detail the traverse function of
Algorithm 1. Its pseudocode is shown in Algorithm 3. The
objective of each recursion step is to build up a dictionary
T (Line 5) that associates subsets of the target channel sets,
i. e., Cs ⊆ Ct, with partial conversion trees (PCTs) from the
currently visited channel to those target channels Cs. While
backtracking from the recursion, these PCTs can then be
merged successively until they form the final MCT. Essen-
tially, the algorithm uses an exhaustive approach to build all
PCTs and in the end merge them to construct the MCT with
the least cost. We use the following example to further explain
Algorithm 3.

Example 12 Assume we are solving the MCT problem in
Figure 5, i. e., cr := Relation, Ct1 := {Collection}, and
Ct2 := {RDD,CachedRDD}. Also, assume that we have al-
ready made one recursion step from the Relation to the Stream
channel. That is, in our current invocation of traverse we
visit c := Stream, on our current path we have visited only
Cv = {Relation} and did not reach any target channel sets,
i. e., Cs := ∅.
Visit channel (Lines 6–9). The traverse function starts by
collecting all so far unsatisfied target channel sets C ′s, that are
satisfied by the currently visited channel c (Line 6). If there
is any such target channel set (Line 7), we create a PCT for
any combinations of those target channel sets in C ′s (Line 8).
At this point, these PCTs consist only of c as root node, but
they will be “grown” during backtracking from the recursion.
If we have even satisfied all target channel sets on our cur-
rent traversal path, we can immediately start backtracking
(Line 9). For the Example 12, c = Relation does not satisfy
any target channel set, i. e., we get C ′s = ∅ and we need to
continue.

Forward traversal (Lines 10–16). In the second phase, the
traverse function does the forward traversal. For that pur-

pose, it marks the currently visited channel c as visited; and
if c is reusable and satisfies some target channel sets C ′s, it
marks those sets also as satisfied (Lines 10–11). This is im-
portant to let the recursion eventually terminate. Next, the
algorithm traverses forward by following all CCG edges start-
ing at c and leading to an unvisited channel (Lines 13–14).

Example 13 Continuing from Example 12 where c := Stream,
we next visit CSVFile and Collection. Each recursive call yields
another dictionary T ′ of PCTs. For instance, when invoking
traverse on CSVFile, we get T ′[Ct1 ] = CSVFile (a PCT con-
sisting only of CSVFile as root). At this point, we add the
followed edge to this PCT to “grow” it (Line 16) and ob-
tain the PCT Stream→ CSVFile. We store all those “grown”
PCTs in T .

Merge PCTs (Lines 17–20). As a matter of fact, none of the
PCTs in T might have reached all target channel sets. For
instance, the above mentioned PCT Collection → DataSet is
the only one to satisfy Ct1 , but it does not satisfy Ct2 . Thus,
the third and final phase of the traverse function merges
certain PCTs in T . Specifically, the disjoint-combinations

function (Line 18) enumerates all combinations of PCTs in T
that (i) originate from different recursive calls of traverse;
(ii) do not overlap in their satisfied target channel sets; and
(iii) consist of 1 to d different PCTs. While the former two
criteria ensure that we enumerate all combinations of PCTs
that may be merged, the third criterion helps us to avoid enu-
merating futile combinations: When the current channel c is
not reusable, it must not have multiple consuming conversion
operators, so d is set to 1 (Line 17). In any other case, any
PCT must not have a degree larger than the number of not
satisfied target channels sets; otherwise the enumerated PCTs
would overlap in their satisfied target channel sets. Note that
kernelization lowers the value of d, which reduces the number
of target channel sets.

Example 14 Assume we are in the step where we visit c =
Collection. Then, we have 4 outgoing conversion edges from
Collection but only 1 non-satisfied target channel set, namely
Ct2 . As a result, we can avoid merging PCTs from all four
edges simultaneously, as the resulting PCT could not be min-
imal.

Eventually, the merge-and-update function combines the
PCTs into a new PCT and, if there is no PCT in T already
that reaches the same target channel sets and has lower costs,
the new PCT is added to T (Line 19).

Example 15 Amongst others, we merge the PCTs
Collection → DataSet and Collection → RDD in our
running example. When we backtrack (Line 20), the result-
ing PCT will be “grown” by the edge Stream → Collection
and form the eventual MCT.


