
Rheem: Enabling Multi-Platform Task Execution

– A Shortcut to Freedom –

Divy Agrawal2⇤ Lamine Ba1 Laure Berti-Equille1 Sanjay Chawla1 Ahmed Elmagarmid1

Hossam Hammady1 Yasser Idris1 Zoi Kaoudi1 Zuhair Khayyat4⇤ Sebastian Kruse3⇤

Mourad Ouzzani1 Paolo Papotti5⇤ Jorge-Arnulfo Quiané-Ruiz1 Nan Tang1 Mohammed J. Zaki6⇤
1Qatar Computing Research Institute, HBKU 2University of California, Santa Barbara 3Hasso Platner Institute
4King Abdullah University of Science and Technology 5Arizona State University 6Rensselaer Polytechnic Institute

ABSTRACT
Many emerging applications, from domains such as health-
care and oil & gas, require several data processing systems
for complex analytics. This demo paper showcasesRheem, a
framework that provides multi-platform task execution for
such applications. It features a three-layer data process-
ing abstraction and a new query optimization approach for
multi-platform settings. We will demonstrate the strengths
of Rheem by using real-world scenarios from three di↵erent
applications, namely, machine learning, data cleaning, and
data fusion.

1. NEED FOR FREEDOM
Following the philosophy “one size does not fit all”, we

have embarked on an endless race of developing data pro-
cessing platforms for supporting di↵erent tasks, e.g., DBMSs
and MapReduce-like systems. While these systems allow us
to achieve high performance and scalability, users still face
two major problems.

Need for Processing Platform Independence. Users
are faced with a large number of choices on where to pro-
cess their data. Each choice comes with possibly orders of
magnitude di↵erences in terms of performance. Moreover,
whenever a new platform that achieves better performance
than the existing ones becomes available, users are enticed to
move to the new platform, e.g., Spark taking over Hadoop.
Typically, such a move does not come without pain. There-
fore, there is a clear need for a system that frees us from the
burden and cost of re-implementing applications from one
platform to another.

Need for Multi-Platform Task Execution. Several
complex data analytic pipelines are emerging in many dif-
ferent domains. These complex pipelines require combining
multiple processing platforms to perform each task of the

⇤Work done while at QCRI.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

process and then integrating the results. Performing this
combination and integration requires users to be intimate
with the intricacies of the di↵erent processing platforms and
to deal with their interoperability. There is a clear need for
a system that eases the integration among di↵erent process-
ing platforms by automatically dividing a task into subtasks
and determining the underlying platform for each subtask.

Motivating Example. Let us illustrate these two prob-
lems by using an oil & gas use case [7]. A single oil company
can produce more than 1.5TB of diverse data per day [3],
which may be structured or unstructured. During the explo-
ration phase, data has to be acquired, cleaned, integrated,
and analyzed in order to predict if a reservoir would be prof-
itable. Thousands of downhole sensors in exploratory wells
produce real-time seismic data for monitoring resources and
environmental conditions. Users integrate these data with
the physical properties of the rocks to visualize volume and
surface renderings. From these visualizations, geologists and
geophysicists formulate hypotheses and verify them with
machine learning methods. Thus, an application support-
ing such a complex analytic pipeline has to access several
sources for historical data (relational, but also text and semi-
structured), remove the noise from the streaming data com-
ing from the sensors, possibly integrate a subset of these
data sources, and run both traditional (such as SQL) and
statistical analytics (such as machine learning algorithms)
over di↵erent processing platforms.

Rheem. We recently presented a vision of Rheem, our
solution to tackle these two problems and thus provide data
processing freedom [2]. Generally speaking, we propose a
three-level data processing abstraction that allows a large
variety of applications to achieve processing platform inde-
pendence as well as multi-platform task execution. The latter
makes our proposal distinct from [5], which does not include
an optimizer for automatic multi-platform task execution.
Furthermore, in contrast to [6], Rheem also considers the
cost of data movement across underlying platforms. In this
demonstration, we will showcase the benefits of Rheem in
terms of flexibility and e�ciency. To prove its applicability,
we will present three applications, namely, machine learning,
data cleaning, and truth discovery.

2. RHEEM OVERVIEW
The current prototype of Rheem provides two main con-

cepts of the vision presented in [2]: the data processing
abstraction and the multi-platform task optimizer. In this

Figure 1: Rheem architecture.

section, we start by describing the general architecture of
Rheem. We then briefly discuss its two main features.

2.1 Overview
Overall, our system provides a three-layer data processing

abstraction that sits between user applications and data pro-
cessing platforms such as Hadoop and Spark (see Figure 1):
(i) an application layer that models all application-specific
logic; (ii) a core layer that provides the intermediate rep-
resentation between applications and processing platforms;
and (iii) a platform layer that embraces the underlying pro-
cessing platforms. The communication among these three
layers is enabled by operators defined as user defined func-
tions (UDFs). Rheem provides a set of operators at each
layer, namely, logical operators, Rheem operators, and ex-
ecution operators. Using user-provided implementations of
the logical operators specific to the application, the applica-
tion layer produces a set of possible optimized Rheem plans.
An application passes these Rheem plans to the core layer
together with the cost functions to help the optimizer in
choosing the best plan. These cost functions are obtained
by applications and passed to the core layer as UDFs. At
the core layer, Rheem performs several multi-platform opti-
mizations and outputs an execution plan. Then, the under-
lying processing platforms might further optimize a subplan
for better performance. Notice that, in contrast to a DBMS,
Rheem decouples the core (physical) level from the execu-
tion one. This separation allows applications to express a
Rheem plan in terms of algorithmic needs, without being
tied to any platform.

These three layers allow Rheem to provide applications
with platform independence, which is exploited by the
Rheem optimizer to perform multi-platform task execution.
Such execution is crucial to achieve the best performance at
all times. In the following, we discuss in more details the
data processing abstraction as well as theRheem optimizer.

2.2 Data Processing Abstraction
We now discuss how developers can define operators at

the three levels of the Rheem data processing abstraction.

Application Layer. A logical operator is a UDF that acts

Figure 2: Rheem development interface.

as an application-specific unit of data processing. Basically,
it is a template where users provide the logic of their tasks.
Such an abstraction enables both ease-of-use, by hiding un-
derlying implementation details from the users (e.g., task
parallelization), and high performance, by allowing several
optimizations, e.g., seamless distributed execution. A logi-
cal operator works on data quanta; these are the smallest
units of data from an input datasets. For example, a data
quantum might represent a tuple in the input dataset or a
row in a matrix. This fine-grained data model allows us to
apply operators in a highly parallel fashion and thus achieve
better performance.
To provide more insights about this layer, let us illustrate

its use via a machine learning (ML) example. Consider a
developer who wants to o↵er end users logical operators to
implement various ML algorithms. He can define three ba-
sic operators: (i) Initialize, to initialize algorithm-specific pa-
rameters, e.g., initializing cluster centroids, (ii) Process, for
the computations required by the ML algorithm, e.g., find-
ing the nearest centroid of a point, and (iii) Loop, for spec-
ifying the stopping condition. Users can implement algo-
rithms, e.g., SVM, K-means, and linear/logistic regression,
using these operators.

Core Layer. This layer, which is at the heart of Rheem,
exposes a pool of Rheem operators. Each represents an al-
gorithmic decision for executing an analytic task. A Rheem
operator is a platform-independent implementation of a log-
ical operator whereby a developer can deploy a new appli-
cation on top of Rheem. For example, in the above ML
example, the application optimizer maps Initialize to a Map
Rheem operator and Process to a GroupBy Rheem operator.
The system also allows developers to define new operators as
needed. Once an application has produced a Rheem plan,
the system translates this plan into an execution plan by
optimizing it according to the underlying processing plat-
forms. Therefore, in contrast to DBMSs, Rheem produces
execution plans that can run on multiple platforms.

Platform Layer. An execution operator (in an execution
plan) defines how a task is executed on the underlying pro-
cessing platform. In other words, an execution operator is
the platform-dependent implementation of a Rheem oper-
ator. For instance, consider again the above ML example,
the MapPartitions and ReduceByKey execution operators for
Spark are one way to perform Initialize and Process.

Defining mappings between Rheem and execution oper-
ators is the developers’ responsibility whenever a new ex-

ecution platform is plugged in. Rheem relies on an inter-
nal mapping structure that models the correspondences be-
tween operators together with context information such as
cost functions. The context is needed for the e↵ective and
e�cient execution of each operator.

2.3 Multi-Platform Optimization
The optimizer is responsible for translating a given ab-

stract RheemPlan (or a set of alternatives) into the most
e�cient ExecutionPlan. The resulting ExecutionPlan consists
of a set of platform-specific subplans. Notice that this opti-
mization problem is quite di↵erent from traditional database
query optimization and thus poses several challenges. First,
Rheem itself is highly extensible and hence neither the
RheemPlan operators nor the platforms are fixed. Sec-
ond, the optimizer should be extensible on how to translate
RheemPlans to platform-specific plans. Finally, Rheem’s
data processing abstraction is based on UDFs, so operators
appear to the optimizer as black-boxes; making cost and
cardinality estimations harder.

Rheem tackles these challenges as follows. First, it applies
an extensible set of graph transformations to the RheemPlan
to find alternative ExecutionPlans. Then, it compares those
alternatives by using the ExecutionOperator’s cost functions.
These can either be given or learned, and are parameterized
w.r.t. the underlying hardware (e.g., number of comput-
ing nodes for distributed operators). Because Rheem data
processing abstraction is based on UDFs, which are black-
boxes for the optimizer, domain-specific optimizations have
to be done in collaboration with applications. Rheem lets
applications expose semantic properties about their func-
tions as in [10], and furthermore provides optimization hints
(e.g., numbers of iterations), constraints (e.g., physical col-
location of operators), and alternative plans. The optimizer
uses those artifacts where available in a best-e↵ort approach.

When the optimizer has decided upon an ExecutionPlan,
the Engine executes that plan by (i) scheduling the di↵erent
subplans, (ii) orchestrating the data flow across platforms,
and (iii) collecting statistics of the execution to further im-
prove its optimizations.

3. DEMONSTRATION
Our main goal in this demo is to show the benefits of

Rheem with respect to three main aspects: (i) diversity
of applications, (ii) platform independence, and (iii) multi-
platform execution. The audience will be able to interact
with Rheem directly through its GUI, as well as with appli-
cations, namely machine learning, data cleaning, and truth
discovery, built on top of the system. The GUI enables users
to drag-and-drop Rheem operators to create a physical plan
and see how the Rheem optimizer transforms it into an ex-
ecution plan (see Figure 2).

3.1 Machine Learning
Many current applications, such as our oil & gas example,

require highly e�cient machine learning algorithms (MLAs)
to perform scalable statistical analytics. However, ensuring
high e�ciency for MLAs is challenging because of (i) the
amount of data involved and (ii) the number of times a
MLA has to process the data. Simply distributing MLAs
is not obvious due to their iterative nature. Hence, current
distributed solutions su↵er from performance bottlenecks.
In addition, users have to deal with many physical details

for implementing a MLA. Achieving high performance and
ease-of-use are major lacunae that need to be urgently ad-
dressed. Finally, distributing an MLA is not always the best
choice to proceed, especially if the data is small or the MLA
is sequential. In this demo, we will show how Rheem tack-
les the above problems through platform independence and
multi-platform execution.

Scalable Clustering. We will consider the real case from a
large airline based in the middle east to carry out large scale
clustering for personalizing promotion o↵ers to customers.
For this, we will use the K-means algorithm and demon-
strate the power of Rheem to distribute the execution of a
classical clustering algorithm depending on the dataset size.
The audience will also be able to choose among a selection of
input datasets are taken from UCI, a publicly available ML
respository, and visually see the Rheem plans produced by
the application as well as the execution plans produced. The
goal of this use case is to show how platform independence
not only frees the users from platform-specific implementa-
tion details but can also lead to huge performance benefits.

Multi-Platform Gradient Descent. We consider three
methods of gradient descent (GD), namely, the batch GD,
the stochastic GD, and the mini-batch one. The audience
will be able to choose among these three methods to perform
classification on a set of input datasets from UCI as well as
tune some parameters such as the batch size. Depending
on the chosen method and the size of the batch, the users
will be able to see how a specific plan can run partly in
Spark and partly in a JVM platform. The overall goal of
this use case is to demonstrate how multi-platform execution
achieves better performance.

Datasets. We will use a dataset from a large airline
based in the middle east. The data is spread across intra-
organizational boundaries making it impossible to create a
unified dataset to apply a standard clustering algorithm. We
will show how Rheem operators can be used to decouple the
algorithm design from the underlying processing platform
which in turn can be decoupled from the precise data stor-
age layout. The second set of datasets we will use is taken
from UCI, a publicly available ML repository.

3.2 Data Cleaning
Data cleaning, which is detecting and repairing data er-

rors, is critical in data management and data analytics. This
is because high-quality business decisions must be made
based on high-quality data. In response to the need of sup-
porting heterogeneous and ad-hoc quality rules for various
applications, we have built a commodity data cleaning sys-
tem Nadeef [4]. We have further extended Nadeef us-
ing Rheem [8]. In this demo, users will have the opportu-
nity to experience how Rheem can boost the performance
of Nadeef through platform independence.

Rule Specification in Logical Level. Figure 3 displays
the Nadeef GUI for specifying data quality rules. The users
can either (a) load rules using rule classes e.g., CFDs, MDs
or DCs; or (b) implement a customized rule by writing func-
tions based on programming interface in a few lines of code.

Scalable Nadeef. We will first show how logical
Nadeef operators can be mapped to Rheem operators.
Through these di↵erent operators, Rheem frees Nadeef
from platform-specific implementation details. That is,
Rheem will decide, based on the logical Nadeef opera-

Figure 3: Rule specification in Nadeef.

tors, the best platform to execute this task for best per-
formance. Moreover, to show extensibility, we extended the
set of physical Rheem operators with a new join operator
(called IEJoin [9]) to boost performance. This new operator
provides a fast algorithm for joins containing only inequality
conditions.

Datasets. We use three real-world large datasets. The first
one is from an intelligence company that monitors over 700K
Web sources. Errors are captured by temporal FD rules [1].
The second is a tra�c data of Doha. Duplicates and erro-
neous readings are reported due to anomalies both in the
detectors and in the Bluetooth devices. The third dataset
comes from sensors reading from wells in an oil field. Erro-
neous readings need to be detected from di↵erent sensors in
the Well during its normal operation, shutting, and open-
ing . They are detected using di↵erent statistics-based data
cleaning rules. We will demonstrate the significant perfor-
mance gain (in orders of magnitude), by leveraging the easy
mapping from Nadeef logical operators to Rheem opera-
tors, and the platform independence of Rheem to find the
fastest execution plan.

3.3 Truth Discovery
Many real-world applications, e.g., our oil & gas use case,

might face the problem of discovering the truth when merg-
ing conflicting information from a collection of heteroge-
neous sources. Such settings can use truth discovery al-
gorithms that aim at resolving conflicts from di↵erent data
sources in an automatic manner. Most of current truth dis-
covery algorithms conduct an iterative process, which con-
verges when a certain accuracy threshold or a given user-
specified number of iterations is reached. As a result, some
operations, such as the pairwise value similarity, highly im-
pact the performance of truth discovery algorithms, limit-

ing their scalability [11]. In fact, most truth discovery tech-
niques are platform-dependent implementations with single-
node execution. In this demo, we will use a typical data
fusion scenario to demonstrate how Rheem enables truth
discovery algorithms to scale and be platform independent,
with no additional e↵ort.

Scalable Truth Discovery. We will show how a truth
discovery application can be built on top of Rheem, thanks
to the flexibility of its operators. In particular, we will show
how such an application can leverage the platform indepen-
dence of Rheem to overcome the common single-node execu-
tion of such algorithms. We will also show how Rheem scales
truth discovery to large datasets by seamlessly distributing
some operations, such as value similarity, leveraging Spark.

Datasets. We showcase our scalable Rheem truth dis-
covery application using a large-size real-world biographical
dataset. We show the improvement obtained from distribut-
ing RHEEM operations on SPARK against single-node exe-
cution on Java platform. Our dataset, whose entries (claims
and sources) are extracted from several Wikipedia articles,
contains over 10 millions values from one million sources.

4. REFERENCES
[1] Z. Abedjan, C. G. Akcora, M. Ouzzani, P. Papotti,

and M. Stonebraker. Temporal rules discovery for web
data cleaning. PVLDB, 9(4):336–347, 2015.

[2] D. Agarwal, S. Crawla, A. Elmagarmind, Z. Saoudi,
M. Ouzzani, P. Papati, J.-A. Quiané-Ruiz, N. Tang,
and M. J. Zaki. Road to Freedom in Big Data
Analytics. In EDBT, 2016.

[3] A. Baaziz and L. Quoniam. How to use big data
technologies to optimize operations in upstream
petroleum industry. In 21st World Petroleum
Congress, 2014.

[4] M. Dallachiesa et al. NADEEF: A Commodity Data
Cleaning System. In SIGMOD, 2013.

[5] A. Elmore et al. A Demonstration of the BigDAWG
Polystore System. In VLDB 2015 (demo), 2015.

[6] I. Gog, M. Schwarzkopf, N. Crooks, M. P. Grosvenor,
A. Clement, and S. Hand. Musketeer: All for One, One
for All in Data Processing Systems. In EuroSys, 2015.

[7] A. Hems, A. Soofi, and E. Perez. How innovative oil
and gas companies are using big data to outmaneuver
the competition. Microsoft White Paper,
http://goo.gl/2Bn0xq, 2014.

[8] Z. Khayyat, I. F. Ilyas, A. Jindal, S. Madden,
M. Ouzanni, P. Papotti, J.-A. Quiané-Ruiz, N. Tang,
and S. Yin. BigDansing: A System for Big Data
Cleansing. In SIGMOD, 2015.

[9] Z. Khayyat, W. Lucia, M. Singh, M. Ouzzani,
P. Papotti, J.-A. Quiané-Ruiz, N. Tang, and P. Kalnis.
Lightning Fast and Space E�cient Inequality Joins.
PVLDB, 8(13), 2015.

[10] A. Rheinländer, A. Heise, F. Hueske, U. Leser, and
F. Naumann. SOFA: An extensible logical optimizer
for UDF-heavy data flows. Inf. Syst., 52:96–125, 2015.

[11] D. A. Waguih and L. Berti-Equille. Truth discovery
algorithms: An experimental evaluation, QCRI
technical report, 2014.

