
Building your Cross-Platform Application with RHEEM

Sanjay Chawla1 Bertty Contreras-Rojas1 Zoi Kaoudi1

Sebastian Kruse2∗ Jorge-Arnulfo Quiané-Ruiz1

1Qatar Computing Research Institute, Hamad Bin Khalifa University
2Hasso Plattner Institute, University of Potsdam

http://da.qcri.org/rheem/

ABSTRACT
Today, organizations typically perform tedious and costly
tasks to juggle their code and data across different data
processing platforms. Addressing this pain and achieving
automatic cross-platform data processing is quite challeng-
ing because it requires quite good expertise for all the avail-
able data processing platforms. In this report, we present
Rheem, a general-purpose cross-platform data processing
system that alleviates users from the pain of finding the
most efficient data processing platform for a given task. It
also splits a task into subtasks and assigns each subtask to a
specific platform to minimize the overall cost (e.g., runtime
or monetary cost). To offer cross-platform functionality, it
features (i) a robust interface to easily compose data an-
alytic tasks; (ii) a novel cost-based optimizer able to find
the most efficient platform in almost all cases; and (iii) an
executor to efficiently orchestrate tasks over different plat-
forms. As a result, it allows users to focus on the business
logic of their applications rather than on the mechanics of
how to compose and execute them. Rheem is released under
an open source license.

1. INTRODUCTION
The pursuit of comprehensive, efficient, and scalable

data analytics as well as the one-size-does-not-fit-all dictum
have given rise to a plethora of data processing platforms
(platforms for short). These specialized platforms include
DBMS, NoSQL, and MapReduce-like platforms. In fact,
just under the umbrella of NoSQL, there are reportedly over
200 different platforms1. Each excels in specific aspects al-
lowing applications to achieve high performance and scala-
bility. For example, while Spark supports Select queries,
Postgres can execute them much faster by using indices.
However, Postgres is not as good as Spark for general pur-
pose batch processing where parallel full scans are the key
performance factor. Several studies have shown this kind of
performance differences [20,32,36,50,57].

Moreover, today’s data analytics is moving beyond the
limits of a single platform. For example: (i) IBM re-
ported that North York hospital needs to process 50 di-
verse datasets, which run on a dozen different platforms [35];

∗Work partially done while interning at QCRI.
1http://db-engines.com

(ii) Airlines need to analyze large datasets, which are pro-
duced by different departments, are of different data for-
mats, and reside on multiple data sources, to produce global
reports for decision makers [9]; (iii) Oil & Gas companies
need to process large amounts of diverse data spanning var-
ious platforms [19, 34]; (iv) Several data warehouse appli-
cations require data to be moved from a MapReduce-like
system into a DBMS for further analysis [27,53]; and (v) Us-
ing multiple platforms for machine learning improves perfor-
mance significantly [20,36].

To cope with these new requirements, developers (or
data scientists) have to write ad-hoc programs and scripts
to integrate different platforms. This is not only a te-
dious, time-consuming, and costly task, but it also re-
quires knowledge of the intricacies of the different platforms
to achieve high efficiency and scalability. Some systems
have appeared with the goal of facilitating platform integra-
tion [2, 4, 10, 12]. Nonetheless, they all require a good deal
of expertise from developers, who still need to decide which
processing platforms to use for each task at hand. Recent
research has taken steps towards transparent cross-platform
execution [15, 28, 32, 43, 55, 56], but lacks several important
aspects. Usually these efforts do not automatically map
tasks to platforms. Additionally, they do not consider com-
plex data movement (i.e., with data transformations) among
platforms [28, 32]. Finally, most of the research focuses on
specific applications [15,43,55].

Therefore, there is a clear need for a systematic approach
to enable efficient cross-platform data processing, i.e., use of
multiple data processing platforms. The Holy Grail would
be to replicate the success of DBMSs for cross-platform data
processing. Users simply send their tasks expressing the
logic of their applications, and the cross-platform system
decides on which platform(s) to execute each task with the
goal of minimizing its cost (e.g., runtime or monetary cost).
In other words, users focus on the high level details and the
cross-platform system takes care of the low level details.

Building a cross-platform system is challenging on numer-
ous fronts: (i) a cross-platform system not only has to ef-
fectively find all the suitable platforms for a given task, but
also has to choose the most efficient one; (ii) cross-platform
settings are characterized by high uncertainty as different
platforms are autonomous and thus one has little control
over them; (iii) the performance gains of using multiple plat-
forms should compensate the added cost of moving data
across platforms; (iv) it is crucial to achieve inter-platform
parallelism to prevent slow platforms from dominating exe-
cution time; and (v) the system should be extensible to new

ar
X

iv
:1

80
5.

11
72

3v
1

 [
cs

.D
B

]
 2

9
M

ay
 2

01
8

http://da.qcri.org/rheem/
http://db-engines.com

RHEEM

ML4all

Platforms

Applications

Cross-Platform System

BigDansing Xdb …

JavaStreams DBMS Spark …
Figure 1: Rheem in the data analytics stack.

platforms and application requirements.
In this report, we present Rheem2, the first general-

purpose cross-platform system to tackle all of the above
challenges. The goal of Rheem is to enable applications and
users to run data analytic tasks efficiently on one or more
data processing platforms. To do so, it decouples applica-
tions from platforms as shown in Figure 1. Applications
issue their tasks to Rheem, which in turn decides where
to execute them. As of today, Rheem supports a variety
of platforms: Spark, Flink, JavaStreams, Postgres, GraphX,
GraphChi, and Giraph. We are currently testing Rheem in
a large international airline company and in a biomedical
research institute. In the former case, we aim at seamlessly
integrating all data analytic activity governing an aircraft;
In the latter case, we aim at reducing the effort scientists
need for building data analytic pipelines while at the same
time speeding up the running time. Several papers show
different aspects of Rheem: the vision behind it [17]; its op-
timizer [39]; its inequality join algorithm [38]; and a couple
of its applications [36, 37]. A couple of demo papers show-
case the benefits of Rheem [16] and its interface [44]. This
report aims at presenting the complete design of Rheem and
how all its pieces work together.

In summary, we identify four situations in which applica-
tions require support for cross-platform data processing in
Section 2. For each case, we use a real application to show
experimentally the benefits of cross-platform data process-
ing using Rheem. In Section 3, we present the data and pro-
cessing model of Rheem and show how it shields users from
the intricacies of the underlying platforms. Rheem provides
flexible operator mappings that allow for better exploiting
the underlying platforms. Also, its extensible design allows
users to add new platforms and operators with very little
effort. Then, in Section 4, we discuss the key components of
Rheem that make it novel: among them a cost-based cross-
platform optimizer that considers data movement costs; a
progressive optimization mechanism to deal with inconsis-
tent cardinality estimates; and a learning tool that alleviates
users from the burden of tuning the cost model. We present
the Rheem interfaces whereby users can easily code and run
a data analytic task in Section 5. In particular, we present
a data-flow language (RheemLatin) and a visual integrated
development environment (Rheem Studio). In Section 6,
we show in detail three examples of real Rheem plans to
better illustrate how developers can build their applications
using these interfaces. Section 8 outlines the limitations of
Rheem. Finally, we discuss related work in Section 9 and
conclude with some open problems in Section 10.

2. CROSS-PLATFORM PROCESSING
We identified four situations in which an application re-

quires support for cross-platform data processing [51]. Fig-
ure 2 illustrates these four cases.

2Rheem is open source under the Apache Software Li-
cense 2.0 and can be found at https://github.com/
rheem-ecosystem/rheem.

(1) Platform-independence. Applications run an entire task
on a single platform but may require switching platforms
for different input datasets or tasks usually with the goal of
achieving better performance (Figure 2(a)).

(2) Opportunistic cross-platform. Applications might also
benefit performance-wise from using multiple platforms to
run one single task (Figure 2(b)).

(3) Mandatory cross-platform. Applications may require
multiple platforms because the platform where the input
data resides, e.g., PostgreSQL, cannot perform the incom-
ing task, e.g., a machine learning task. Thus, data should
be moved from the platform it resides to another platform
(Figure 2(c)).

(4) Polystore. Applications may require multiple platforms
because the input data is stored on multiple data stores
(Figure 2(d)).

In contrast to existing systems [28, 29, 32, 55, 58], Rheem
helps users in all above cases. The design of our system has
been mainly driven by four applications: a data cleaning ap-
plication, BigDansing [37]; a machine learning application,
ML4all [36]; a database application, xDB; and an end-to-
end data discovery and preparation application, Data Civ-
ilizer [31]. We use these applications to showcase the ben-
efits of performing cross-platform data processing, instead
of single-platform data processing, in terms of both perfor-
mance and ease of use.

2.1 Platform Independence
Applications are usually tied to a specific platform. This

may not constitute the ideal case for two reasons. First, as
more efficient platforms become available, developers need
to re-implement existing applications on top of these new
platforms. For example, Spark SQL [14] and MLlib [13]
are the Spark counterparts of Hive [6] and Mahout [7]. Mi-
grating an application from one platform to another is a
time-consuming and costly task and hence it is not always
a viable choice. Second, for different inputs of a specific
task, a different platform may be the most efficient one, so
the best platform cannot be determined statically. For in-
stance, running a specific task on a big data platform for
very large datasets is often a good choice, while single-node
platforms with only little overhead costs are often a better
choice for small datasets [20]. Thus, enabling applications
to seamlessly switch from one platform to another according
to the input dataset and task is important. Rheem dynam-
ically determines the best platform to run an incoming task.

Benefits. We use BigDansing [37] to demonstrate the ben-
efits of providing platform independence. Users specify a
data cleaning task with five logical operators: Scope (iden-
tifies relevant data), Block (defines the group of data among
which an error may occur), Iterate (enumerates candidate er-
rors), Detect (determines whether a candidate error is indeed
an error), and GenFix (generates a set of possible repairs).
Rheem maps these operators to Rheem operators to decide
the best underlying platform. We show the power of sup-
porting cross-platform data processing by running an error
detection task on a widely used Tax dataset [30]. The task is
based on the denial constraint ∀t1, t2,¬(t1.Salary > t2.Salary
∧t1.Tax < t2.Tax), which states that there is an inconsis-
tency between two tuples representing two different persons
if one earns a higher salary but pays a lower tax. We consid-
ered NADEEF [24], a data cleaning tool, and SparkSQL, a

https://github.com/rheem-ecosystem/rheem
https://github.com/rheem-ecosystem/rheem

Store A

Platform X Platform Y

Application
task 1a task 1b

data  
access

data  
access

task 1

(b) Opportunistic Cross-Platform
Store A

Platform X Platform Y

Application
task 1a task 1b

data  
movementdata  

access

task 1

(c) Mandatory Cross-Platform
Store A

Platform X Platform Y

Application

data  
access

data  
access

task 1

(a) Platform Independence
Store A

Platform X Platform Y

Application
task 1a task 1b

data  
access

task 1

(d) Polystore

data  
access

Store B

or

Figure 2: Cross-platform cases.

0

35

70

105

140

Dataset
rcv1 higgs synthetic svm

ML@Rheem MLlib SystemML

ou
t o

f m
em

or
y

R
un

tim
e

(s
)

1
10

100

1000
10000

100000

Number of rows
100k 200k 1M 2M

DC@Rheem NADEEF Spark SQL
X

10
83

3 3,
73

1

30
4,

52
9

1,
24

0 5,
31

9

X X X X

0

35

70

105

140

Dataset size
200MB 500MB 1GB

xDB@Rheem Ideal case

1

10

100

1000

10000

Scale factor
1 10 100

1488

122
47

7354

558

58

1608

112

19

DataCiv@Rheem Postgres Spark

(a) Platform Independence (b) Opportunistic Cross-Platform (c) Mandatory Cross-Platform (d) Polystore

�1

Figure 3: Benefits of the cross-platform data processing approach (using Rheem).

general-purpose framework, as baselines and forced Rheem
to use either Spark or JavaStreams per run.

Figure 3(a) shows the results3. Overall, we observe that
Rheem (DC@Rheem) allows data cleaning tasks to scale up
to large datasets and be at least three orders of magnitude
faster than baselines. One order of magnitude gain comes
from the ability of Rheem to automatically switch plat-
forms. Rheem used JavaStreams for small datasets speed-
ing up the data cleaning task by avoiding Spark’s overhead,
while it used Spark for the largest datasets. Furthermore, in
contrast to SparkSQL that cannot process inequality joins ef-
ficiently, Rheem’s extensibility allowed us to plug in a more
efficient inequality-join algorithm [38], thereby further im-
proving over these baselines. In a nutshell, BigDansing ben-
efited from Rheem because of its ability to effectively switch
platforms and because of its extensibility to easily plug op-
timized algorithms. We demonstrated how BigDansing ben-
efits from Rheem in [16].

2.2 Opportunistic Cross-Platform
While some applications can be executed on a single plat-

form, there are cases where their performance would be sped
up by using multiple platforms. For instance, users can run
a gradient descent algorithm, such as SGD, on top of Spark
relatively fast. Still, we recently showed that mixing it with
JavaStreams significantly improves performance [36]. In fact,
opportunistic cross-platform processing can be seen as the
execution counter-part of polyglot persistence [52], where dif-
ferent types of databases are combined to leverage their in-
dividual strengths. However, developing such cross-platform
applications is difficult: developers must know all the cases
where it is beneficial to use multiple platforms and how ex-
actly to use them. These opportunities are often very hard
(if not impossible) to spot. Even worse, like in the plat-
form independence case, they usually cannot be determined

3The red cross means we stopped the execution after 40 hrs.

a priori. Rheem finds and exploits opportunities of using
multiple processing platforms.

Benefits. Let us now take our machine learning applica-
tion, ML4all [36], to showcase the benefits of using multiple
platforms to perform one single task. ML4all abstracts three
fundamental phases (namely preparation, processing, and
convergence) found in most machine learning tasks via seven
logical operators which are mapped to Rheem operators.
In the preparation phase, the dataset is prepared appropri-
ately along with the necessary initialization of the algorithm
(Transform and Stage operators). The processing phase
computes the gradient and updates the current estimate
of the solution (Sample, Compute, and Update operators)
while the convergence phase repeats the processing phase
based on the number of iterations or other criteria (Loop
and Converge operators). We demonstrate the benefits of
using Rheem with a classification task over three benchmark
datasets, using Stochastic Gradient Descent (SGD).

Figure 3(b) shows the results. We observe that, even
though all systems use the same SGD algorithm, Rheem
allows this algorithm to run significantly faster than com-
peting Spark-based systems. This is because of two main
reasons. First, this comes from opportunistically running
the Compute, Update, Converge, and Loop operators on
JavaStreams, thereby avoiding some of the Spark’s overhead.
Rheem runs the rest of the operators on Spark. MLlib and
SystemML do not avoid such overhead by purely using Spark
for the entire algorithm. Second, ML4all leverages Rheem’s
extensibility to plug an efficient sampling operator, result-
ing in significant speedups. We demonstrated how ML4all
further benefits from Rheem in [16].

2.3 Mandatory Cross-Platform
There are cases where an application needs to go beyond

the functionalities offered by the platform on which the data
is stored. For instance, a dataset is stored on a relational
database and a user needs to perform a clustering task on
particular attributes. Doing so inside the relational database

might simply be disastrous in terms of performance. Thus,
the user needs to move the projected data out of the rela-
tional database and, for example, put it on HDFS in order
to use Apache Flink [3], which is known to be efficient for
iterative tasks. A similar situation occurs in complex data
analytics applications with disparate subtasks. As an exam-
ple, an application that extracts a graph from a text corpus
to perform subsequent graph analytics may require using
both a text and a graph analytics system. The required in-
tegration of platforms is tedious, repetitive, and particularly
error-prone. Nowadays, developers write ad-hoc programs
to move the data around and integrate different platforms.
Rheem not only selects the right platforms for each task but
also moves the data if necessary at execution time.

Benefits. We use xDB4, a system on top of Rheem with
database functionalities, to demonstrate the benefits of per-
forming cross-platform data processing for the above situ-
ation. It provides a declarative language to compose data
analytic tasks, while its optimizer produces a plan to be ex-
ecuted in Rheem. We evaluate the benefits of Rheem with
the cross-community pagerank5 task, which is not only hard
to express in SQL but also inefficient to run on a DBMS.
Thus, it is important to move the computation to another
platform. In this experiment, the input datasets are on Post-
gres and Rheem moves the data into Spark.

Figure 3(c) shows the results. As a baseline, we consider
the ideal case where the data is on HDFS and Rheem sim-
ply uses either JavaStreams or Spark to run the tasks. We
observe that Rheem allows xDB (xDB@Rheem) to achieve
similar performance with the ideal case in all the situations,
while fully automating the process. This is a remarkable
result as Rheem needs to move data out of Postgres to per-
form the tasks, in contrast to the ideal case.

2.4 Polystore
In many organizations, data is collected in different for-

mats and on heterogeneous storage platforms (data lakes).
Typically, a data lake comprises various DBMSs, document
stores, key-value stores, graph databases, and pure file sys-
tems. As most of these stores are tightly coupled with an
execution engine, e.g., a DBMS, it is crucial to be able to run
analytics over multiple platforms. For this, users perform
not only tedious, time-intensive, and costly data migration,
but also complex integration tasks for analyzing the data.
Rheem shields the users from all these tedious tasks and al-
lows them to instead focus on the logic of their applications.

Benefits. A clear example that shows the benefits of cross-
platform data processing in a polystore case is the Data
Civilizer system [31]. Data Civilizer is a big data manage-
ment system for data discovery, extraction, and cleaning
from data lakes in large enterprises [26]. It constructs a
graph that expresses relationships among data existing in
heterogeneous data sources. Data Civilizer uses Rheem to
perform complex tasks over information that spans multiple
data storages. We measure the efficiency of Rheem for these
polystore tasks with TPC-H query 5. In this experiment, we
assume that the data is stored in HDFS (LINEITEM and
ORDERS), Postgres (CUSTOMER, REGION, and SUP-
PLIER), and a local file system (NATION). Thus, this task

4https://github.com/rheem-ecosystem/xdb
5This task basically intersects two community-DBpedia
datasets and runs pagerank on the resulting dataset.

RHEEM operator Spark execution operator JavaStreams execution operator
UDFInput/Output Data flow Broadcast data flow

(a) RHEEM plan (b) Execution plan

Map
parse

Map
compute

Reduce
sum & count

Map
update

TextFile
Source

RepeatLoop

Collection
Sink

Collection
Source

Broadcast

Collect

CacheSample

RepeatLoop

Map
parse

Map
compute

Reduce
sum & count

Map
update

Collection
Sink

Collection
Source

TextFile
Source

Sample

Figure 4: SGD example.

performs join, groupby, and orderby operations across three
different platforms. In this scenario, the common practice is
to move the data into the database to enact the queries in-
side the database [27,53] or move the data entirely to HDFS
and use Spark. We consider these two practices as the base-
line. For a fairer comparison, we also set the “parallel query”
and “effective IO concurrency” features of Postgres to 4.

Figure 3(d) shows the results. Rheem (DataCiv@Rheem)
is significantly faster, namely up to 5×, than the current
practice. We observed that loading data into Postgres is
already approximately 3× slower than it takes Rheem to
complete the entire task. Even when discarding data mi-
gration times, Rheem can still perform quite similarly to
the parallel version of Postgres. The pure execution time in
Postgres for scale factor 100 amounts to 1, 541 sec compared
to 1, 608 sec for Rheem, which exploits Spark for data paral-
lelism. We also observe that Rheem has negligible overhead
over the case where the developer writes ad-hoc scripts to
move the data to HDFS for running the task on Spark. In
particular, Rheem is twice faster than Spark for scale factor
1 because it moves less data from Postgres to Spark.

3. RHEEM MODEL
First of all, let us emphasize that Rheem is not yet

another data processing platform. On the contrary, it is
designed to work between applications and platforms (as
shown in Figure 1), helping applications to choose the right
platform(s) for a given task. Rheem is the first general-
purpose cross-platform system that shields users from the
intricacies of the underlying platforms and let them focus
only on the logic of their applications. We define the Rheem
data and processing models in the following.

Data Quanta. The Rheem data model relies on
data quanta, the smallest processing units from the input
datasets. A data quantum can express a large spectrum of
data formats, such as database tuples, edges in a graph, or
the full content of a document. This flexibility allows ap-
plications and users to define a data quantum at any gran-
ularity level, e.g., at the attribute level rather than at the
tuple level for a relational database. This fine-grained data
model allows Rheem to work in a highly parallel fashion, if
necessary, to achieve better scalability and performance.

Rheem Plan. Rheem accepts as input a Rheem plan:

https://github.com/rheem-ecosystem/xdb

a directed data flow graph whose vertices are Rheem op-
erators and whose edges represent data flows among the
operators. A Rheem operator is a platform agnostic data
transformation over its input data quanta, e.g., a Map oper-
ator transforms an individual data quantum while a Reduce
operator aggregates input data quanta into a single output
data quantum. Only Loop operators accept feedback edges,
which allows iterative data flows to be expressed. Users
or applications can refine the behavior of operators with a
UDF. Optionally, applications can also attach the selectiv-
ities of the operators through a UDF. Rheem comes with
default selectivity values in case they are not provided. A
Rheem plan must have at least one source operator, i.e., an
operator reading or producing input data quanta, and one
sink operator per branch, i.e., an operator retrieving or stor-
ing the result. Intuitively, data quanta are flowing from
source to sink operators, thereby being manipulated by all
inner operators. As our processing model is based on prim-
itive operators, Rheem plans are highly expressive. This is
in contrast to other systems that accept either declarative
queries [32,58] or coarse-granular operators [28].

Example 1. Figure 4(a) shows a Rheem plan for the
stochastic gradient descent algorithm (SGD). Initially,
the dataset containing the data points is read via a
TextFileSource operator and parsed using a Map operator
while the initial weights are read via a Collection source op-
erator. After the RepeatLoop operator, the weights are fed to
the Sample operator, where a set of input data points is sam-
pled. Next, Map(compute) computes the gradient for each
sampled data point. Note that as Map(compute) requires all
weights to compute the gradient, the weights are broadcasted
at each iteration to the Sample operator (denoted by the dot-
ted line). Then, the Reduce operator computes the sum and
count of all gradients. The next Map operator uses these
sum and count values to update the weights. This process is
repeated until the loop condition is satisfied. The resulting
weights are output in a collection sink.

Execution Plan. Given a Rheem plan as input, Rheem
uses a cost-based optimization approach to produce an exe-
cution plan by selecting one or more platforms to efficiently
execute the input plan. The cost can be any user-specified
cost, e.g., runtime or monetary cost. The resulting exe-
cution plan is again a data flow graph, where the vertices
are now execution operators. An execution operator imple-
ments one or more Rheem operators with platform-specific
code. For instance, the Cache Spark execution operator in
Rheem implements the Cache Rheem operator by calling
the RDD.cache() operation of Spark. An execution plan
may also comprise additional execution operators for data
movement (e.g., data broadcasting) or data reuse (e.g., data
caching). Additionally, each execution operator has at-
tached a UDF where its cost is specified. Rheem learns
such costs from execution logs using machine learning. We
discuss more details in Section 4.5.

Example 2. Figure 4(b) shows the SGD execution plan
produced by Rheem when Spark and JavaStreams are the
only available platforms. This execution plan exploits high
parallelism for the large dataset of input data points and
avoids the extra overhead incurred by big data processing
platforms for the smaller collection of weights. Note that
the execution plan also contains three execution operators
for transferring (Broadcast, Collect) and making data quanta
reusable across the platforms (Cache).

Map

GroupBy

Reduce Reduce

(b)(c)

(a)

(d) RHEEM operator
Spark execution operator
JavaStreams exec. op.

Map

GroupBy

(a) 1-to-1 mapping
(b) 1-to-n mapping
(c) n-to-1 mapping
(d) m-to-n mapping

Figure 5: Operator mappings.

Operator Mappings. To produce an execution plan,
Rheem relies on flexible m-to-n mappings to map Rheem
operators to execution operators. Supporting m-to-n map-
pings is particularly useful as it allows to map whole sub-
plans of Rheem operators to subplans of execution opera-
tors. Additionally, a subplan of Rheem (or execution) op-
erators can map to another subplan of Rheem (respectively
execution) operators. As a result, we can handle different
abstraction levels among platforms, e.g., to emulate Rheem
operators that are not natively supported by a specific plat-
form. This is not possible in other systems, such as [28].

Example 3. Figure 5 illustrates the mapping for the
Reduce Rheem operator. This operator directly maps to the
Reduce Spark execution operator via a 1-to-1 mapping (map-
ping (a)). However, it does not have a direct mapping to a
JavaStreams execution operator. Instead, it maps to a set of
Rheem operators (GroupBy and Map) via a 1-to-n mapping
(mapping (b)) and vice-versa (n-to-1 mapping (c)). In turn,
this set of Rheem operators maps to a set of JavaStreams
execution operators (GroupBy and Map) via an m-to-n map-
ping (mapping (d)).

Data movement. Data flows among operators via com-
munication channels (or simply channels). A channel can be
any internal data structure within a data processing plat-
form (e.g., RDD for Spark or Collection for JavaStreams),
or simply a file. In the case of two execution operators of
different platforms connected within a plan, it is necessary
to convert the output channel of one to the input channel
of the other (e.g., from RDD to Collection). These conver-
sions are handled by conversion operators, which in fact are
regular execution operators. For example, we can convert
a Spark RDD channel to a JavaStreams Collection channel
using the SparkCollect operator (see Figure 4(b)). We repre-
sent the space of data movement paths across all platforms
as a channel conversion graph, where the channels form its
vertices and the conversion operators form its directed edges
connecting one source channel to a target channel. Unlike
other approaches [28,32], developers do not need to provide
conversion operators for all combinations of source and tar-
get channels. It is thus much easier for developers to add
new platforms to Rheem.

Extensibility. We designed Rheem to address extensi-
bility as a first-class citizen rather than as “nice-to-have”
feature. Users add new Rheem and execution operators by
merely extending or implementing few abstract classes/in-
terfaces. Rheem provides template classes to facilitate the
development for different operator types. Users also add op-
erator mappings by simply implementing an interface and
specifying a graph pattern that matches the Rheem oper-
ator. As a result, users can plug a new platform by pro-
viding: (i) its execution operators and their mappings; and
(ii) the communication channels that are specific to the new
platform (e.g., RDDChannel for Spark). Users neither have
to modify the Rheem code nor integrate the newly added
platform with all the already supported platforms.

Python Rheem StudioJava Scala REST RheemLatin

RHEEM

Executor

Spark  
Driver Monitor

Progressive  
Optimizer

…

execution plan

(2)

(3)

(5)

RHEEM plan

(4)cost model

Cost
Learner

ML4all

Data Processing Platforms

Java  
Driver

(1)

Cross-Platform
Optimizer

BigDansing Xdb

JavaStreams SparkPostgreSQL Flink GiraphGraphChi

Figure 6: Rheem’s ecosystem and architecture.

4. RHEEM INTERNALS
In this section, we give the details of the Rheem internals.

Figure 6 depicts the Rheem ecosystem, i.e., the Rheem
core architecture together with three main applications built
on top of it. Users provide a Rheem plan to the system
(Step (1) in Figure 6), using Java, Scala, Python, REST,
RheemLatin, or Rheem Studio API (yellow boxes in Fig-
ure 6). The cross-platform optimizer compiles the Rheem
plan into an execution plan (Step (2)), which specifies the
processing platforms to use; the executor schedules the re-
sulting execution plan on the selected platforms (Step (3));
the monitor collects statistics and checks the health of the
execution (Step (4)); the progressive optimizer re-optimizes
the plan if the cardinality estimates turn out to be inaccu-
rate (Step (5)); and the cost learner helps users in building
the cost model offline. In the following, we explain each
of these components using the pseudocode in Algorithm 1,
which shows the entire data processing pipeline.

4.1 Optimizer
The cross-platform optimizer (Line 1 in Algorithm 1) is

responsible for selecting the most efficient platform for ex-
ecuting each single operator in a Rheem plan. One might
think of a rule-based optimizer for selecting the right plat-
forms to perform a given Rheem plan. However, while a
rule-based optimizer could determine how to split and exe-
cute a plan, e.g., based on its processing patterns [32,58], it
is neither practical nor effective. First, by setting rules, one
may make only very simplistic decisions based on the dif-
ferent cardinality and complexity of each operator. Second,
the cost of a task on any given platform depends on many
input parameters, which hampers a rule-based optimizer’s
effectiveness as it oversimplifies the problem. Third, as new
platforms and applications emerge, maintaining a rule-based
optimizer becomes cumbersome.

We thus pursue a more flexible cost-based approach: we
split a given Rheem plan into subplans and determine the
best platform for each subplan so that the total plan cost
is minimized. Figure 4(b) shows how the Rheem plan of
Figure 4(a) was split into two subplans to be executed in
JavaStreams and Spark. Below, we give the four main phases
of the optimizer, namely plan inflation, cardinality and cost
estimation, data movement planning, and plan enumeration.
Technical details about these can be found in [39].

At first, the optimizer passes the Rheem plan through
an inflation phase. That is, it applies a set of operator
mappings as described in Section 3. The optimizer then
annotates the inflated plan with the cost of each execu-
tion operator. Rheem represents cost estimates as inter-
vals with a confidence value, which allows it to perform on-
the-fly re-optimization as we will see in Section 4.4. The

Algorithm 1: Cross-platform data processing

Input: Rheem plan rheemPlan

1 exPlan← Optimize(rheemPlan)
2 monitor← StartMonitor(exPlan)
3 finished← ExecuteUntilCheckpoint(exPlan,monitor)
4 while ¬finished do
5 updated← UpdateEstimates(exPlan,monitor)
6 if updated then exPlan← ReOptimize(exPlan)
7 finished← ResumeExecution(exPlan,monitor)

cost (e.g., wallclock time or monetary cost) of an execution
operator depends on (i) its resource usage (CPU, memory,
disk, and network) and (ii) the unit costs of each resource
(e.g., how much one CPU cycle costs). While the unit costs
depend on hardware characteristics, the resource usage of
each execution operator depends on its input cardinality.
Next, the optimizer looks for the best way to move data
quanta among execution operators of different platforms.
As noted earlier, we model the problem of finding the most
efficient communication path among execution operators as
a graph problem, which we proved to be NP-hard. Our solu-
tion to this problem relies kernelization and can discover all
ways to connect execution operators of different platforms
via a sequence of communication channels. After the best
data movement strategy is found, the optimizer attaches the
data movement cost to the inflated plan. At last, it deter-
mines the optimal way of executing a Rheem plan based on
the cost estimates of its inflated plan. For this, it must con-
sider the previously computed data movement costs as well
as the start-up costs of data processing platforms. Thus, in-
stead of taking a simple greedy approach that neglects data
movement and platform start-up costs, we follow a princi-
pled approach: we use an enumeration algebra together with
a lossless pruning technique. Our pruning technique is guar-
anteed to not prune a subplan that is part of the optimal
execution plan. As a result, the optimizer can output the
optimal execution plan without an exhaustive enumeration.

4.2 Executor
The executor receives an execution plan from the opti-

mizer to run it on the selected data processing platforms
(Lines 3 and 7 in Algorithm 1). For example, the optimizer
selected the Spark and JavaStreams platforms for our SGD
example in Figure 4(a). Overall, the executor follows well-
known approaches to parallelize a task over multiple com-
pute nodes, with only few differences in the way it divides
an execution plan. In particular, it divides an execution
plan into stages. A stage is a subplan where (i) all its exe-
cution operators are from the same platform; (ii) at the end
of its execution, the platforms need to give back the execu-
tion control to the executor; and (iii) its terminal operators
materialize their output data quanta in a data structure,
instead of being pipelined into the next operator.

In our SGD example of Figure 4(b), the executor divides
the execution plan into six stages as illustrated in Figure 7.
Note that Stage3 contains only the RepeatLoop operator as
the executor must have the execution control to evaluate
the loop condition. This is why the executor also separates
Stage1 from Stage5. Then, it dispatches the stages to the
relevant platform drivers, which in turn submit the stages as
a job to the underlying platforms. Stages are connected by
data flow dependencies so that stages with no dependencies

Map
parse

TextFile
Source

Cache

Collection
Source RepeatLoop

Map
compute

Reduce
sum & count

Map
update

Collection
Sink

Stage1

Stage2 Stage3

Stage5

Stage6

optimization
checkpoint

Spark execution operator JavaStreams execution operator Dependency

Broadcast

Stage4

Collect

Sniffer

Multiplex

Socket
Sink

Map
metadata

Collection
Sink

AuxiliarySample

Figure 7: Stage dependencies for SGD.

(e.g., Stage1 and Stage2) are dispatched first in parallel and
any other stage is dispatched once its input dependencies
are satisfied (e.g., Stage3 after Stage2).

Data Exploration. As data exploration is a key piece in
the field of data science, the executor optionally allows appli-
cations to run in an exploratory mode where they can pause
and resume the execution of a task at any point. Achieving
this in a cross-platform setting is very challenging, because
most platforms, such as Spark, Flink, Giraph, Postgres, and
Hadoop, do not support pausing task computations at all –
let alone resuming a task from an intermediate state. Thus,
the challenge resides in enabling the underlying platforms to
support data exploration efficiently. Rheem achieves this by
injecting sniffers into execution plans and attaching auxil-
iary execution plans. A sniffer is an execution operator that
duplicates intermediate results and sends them to an aux-
iliary execution plan. For example, the user would like to
keep track of the weights at each iteration of SGD and thus a
sniffer is necessary right after updating the weights (Stage5
in Figure 7). The sniffer sends the weights to an auxiliary
plan that is responsible for reporting them back to the user
(the socket sink operator in Figure 7). This auxiliary plan is
also responsible for computing and storing additional meta-
data for efficient task resumption (the map and collection
sink operators of the auxiliary plan in Figure 7). When re-
suming a task, the executor performs the task by re-using as
much as possible from the previously computed metadata.
For instance, if the user pauses the SGD task at iteration i
and resumes it later on, the executor fetches the previously
computed weights of iteration i and resumes the task.

4.3 Monitor
Recall that the cross-platform optimizer operates in a set-

ting that is characterized by high uncertainty. For instance,
the semantics of UDFs and data distributions are usually
unknown because of the little control over the underlying
platforms. This uncertainty can cause poor cardinality and
cost estimates and hence can negatively impact the effective-
ness of the optimizer [42]. To compensate this uncertainty,
Rheem registers the execution of a plan with the monitor
(Line 2 in Algorithm 1). The monitor collects light-weight
execution statistics for the given plan, such as data cardi-
nalities and operator execution times. It is also aware of
lazy execution strategies used by the underlying platforms
and assigns measured execution time correctly to operators.
Rheem uses these statistics to improve its cost model and
re-optimize ongoing execution plans in case of poor cardi-

nality estimates. Additionally, the monitor is responsible for
checking the health of the execution. For instance, if it finds
a large mismatch between the real output cardinalities and
the estimated ones, it pauses the execution plan and sends
it to the progressive optimizer.

4.4 Progressive Optimizer
To mitigate the effects of bad cardinality estimates,

Rheem employs a progressive query optimization approach.
The key principle is to re-optimize the plan whenever the
cardinalities observed by the monitor greatly mismatch the
estimated ones [45]. Applying progressive query optimiza-
tion in our setting comes with two main challenges. First,
we have only limited control over the underlying platforms,
which makes plan instrumentation and halting executions
difficult. Second, re-optimizing an ongoing execution plan
must efficiently consider the results already produced.

We tackle these challenges by using optimization check-
points. An optimization checkpoint tells the executor
to pause the plan execution in order to consider a re-
optimization of the plan beyond the checkpoint. The pro-
gressive optimizer inserts optimization checkpoints into exe-
cution plans wherever (i) cardinality estimates are uncertain
(having a wide interval or low confidence) or (ii) the data
is at rest (e.g., a Java collection or a file). For instance,
the optimizer inserts an optimization checkpoint right after
Stage1 as the data is at rest because of the Cache operator
(see Figure 7). When the executor cannot dispatch a new
stage anymore without crossing an optimization checkpoint,
it pauses the execution and gives the control to the pro-
gressive optimizer. The latter gets the actual cardinalities
observed so far by the monitor and re-computes all cardi-
nalities from the current optimization checkpoint (Line 5 in
Algorithm 1). In case of a mismatch, it re-optimizes the
remaining of the plan (from the current optimization check-
point) using the new cardinalities (Line 6). It then gives the
new execution plan to the executor, which resumes the ex-
ecution from the current optimization checkpoint (Line 7).
Rheem can switch between execution and progressive opti-
mization any number of times at a negligible cost.

4.5 Cost Model Learner
Profiling operators in isolation might be unrealistic when-

ever platforms optimize execution across multiple operators,
e.g., by pipelining. Indeed, we found cost functions derived
from isolated benchmarking to be insufficiently accurate.
We thus take a different approach.

Learning the Cost Model. Recall that each execution
operator o is associated with a number of resource usage
functions (rmo , where m is CPU, memory, disk, or network).
For instance, the cost function to estimate the CPU cy-
cles required by the JavaFilter operator is rCPU

JavaFilter :=
cin×(α+β)+δ, where parameters α and β denote the num-
ber of required CPU cycles for each input data quantum in
the operator itself and in its UDF, and parameter δ describes
some fixed overhead for the operator start-up and schedul-
ing. We then multiply each of these resource usage functions
rmo with the time required per unit (e.g., msec/CPU cycle)
to get the time estimate tmo . The total cost estimate for
operator o is defined as: fo = tCPU

o + tmem
o + tdisko + tnet

o .
However, obtaining the parameters for each resource, such
as the α, β, δ values for CPU, is not trivial. We, thus, use

execution logs to learn these parameters in an offline fash-
ion and model the cost of individual execution operators as
a regression problem. Note that the execution logs contain
the runtimes of execution stages (i.e., pipelines of opera-
tors as defined in Section 4.2) and not of individual op-
erators. Let ({(o1, C1), (o2, C2), . . . (on, Cn)}, t) be an exe-
cution stage, with oi, 0 < i ≤ n, where oi are execution
operators, Ci are input and output true cardinalities, and
t is the measured execution time for the entire stage. Fur-
thermore, let fi(x, Ci) be the total cost function for execu-
tion operator oi with x being a vector with the parameters
of all resource usage functions (e.g., CPU cycles, disk I/O
per data quantum). We are interested in finding xmin =
arg minx loss

(
t,
∑n

i=1 fi(x, Ci)
)
. Specifically, we use a rel-

ative loss function defined as loss(t, t′) =
(
|t−t′|+s

t+s

)2
, where

t′ is the geometric mean of the lower and upper bounds of
the cost estimate produced by

∑
fi(x, Ci) and s is a regu-

larizer inspired by additive smoothing that tempers the loss
for small t. Note that we can easily generalize this optimiza-
tion problem to multiple execution stages: we minimize the
weighted arithmetic mean of the losses of multiple execu-
tion stages. In particular, we use as stage weights the sum
of the relative frequencies of the stages’ operators among
all stages, so as to deal with skewed workloads that contain
certain operators more often than others. Finally, we apply
a genetic algorithm [47] to find xmin. In contrast to other
optimization algorithms, genetic algorithms impose only few
restrictions on the loss function to be minimized. Hence, our
cost learner can deal with arbitrary cost functions. Apply-
ing this technique allows us to calibrate the cost functions
with only little additional effort.

Logs Generation. Clearly, the more execution logs are
available, the better Rheem can tune the cost model. Thus,
Rheem comes with a log generator. It first creates a set
of Rheem plans by composing all possible combinations
of Rheem operators forming a particular topology. We
found that most data analytic tasks in practice follow three
different topologies: pipeline (e.g., batch tasks), iterative
(e.g., ML tasks), and merge (e.g., SPJA tasks). It then gen-
erates all possible executions plans for the previously created
set of Rheem plans. Next, it creates different configurations
for each execution plan, i.e., it varies the UDF complexity,
output cardinalities, input dataset sizes, and data types.
Once it has generated all possible plans with different con-
figurations, it executes them and logs their runtime.

5. RHEEM INTERFACES
Rheem provides a set of native APIs for developers to

build their applications. These include Java, Scala, Python,
and REST. Examples of using these APIs can be found in
the Rheem repository6. The code developers have to write
is fully agnostic of the underlying platforms. Still, in case
the user wants to force Rheem to execute a given operator
on a specific platform, she can invoke the withTargetPlatform

method. Similarly, she can force the system to use a specific
execution operator via the customOperator method, which
further enables users to employ custom operators without
having to extend the API.

Although the native APIs are quite popular among de-
velopers, many users are not proficient using these APIs.

6
https://github.com/rheem-ecosystem/rheem-benchmark

Thus, Rheem also provides two APIs that target non-expert
users: a data-flow language (RheemLatin) and a visual IDE
(Rheem Studio). We explain these interfaces using our SGD
example from Figure 4. However, for the sake of explana-
tion, before going into the details of these two interfaces, we
first show how one can implement SGD on Rheem using one
of its native APIs. The salient feature of all these APIs is
that they are all platform-agnostic. It is Rheem that figures
out on which platform to execute each of the operators.

5.1 Platform-Agnostic Native API
Let us explain how users can code their applications using

one of the native APIs of Rheem. We use the Scala API
and our SGD running example (see Listing 1)7.

1 val context = new RheemContext(new Configuration)
2 .withPlugin(Spark. basicPlugin)
3 .withPlugin(JavaStreams.basicPlugin)
4 val plan = new PlanBuilder(context)
5 val points = plan. readTextFile (”hdfs://myData.csv”)
6 .map(parsePoints)
7 val finalWeights = plan. loadCollection (createRandomWeights())
8 . repeat(50, { weights =>
9 points .sample(sampleSize).withBroadcast(weights)

10 .map(computeGradient())
11 .reduce(+)
12 .map(updateWeights())
13 }). collect ()

Listing 1: SGD task using the Scala API.

First, a user creates the Rheem context, where she speci-
fies the available platforms (Lines 1-3): Spark and JavaS-
treams in this example. She then initializes her Rheem
plan with this context (Line 4). Eventually, she creates
the graph of Rheem operators that defines the SGD task
(Lines 5-13). Note that Rheem plans must have at least
one source operator (Line 5), i.e., an operator reading or
producing input data quanta, and one sink operator per
branch (Line 13), i.e., an operator retrieving or storing the
result. Recall that a Rheem plan must have at least one
source operator (Line 5) and one sink operator per branch
(Line 13). Also, observe that this code is fully agnostic of the
underlying platforms. Still, in case the user wants to force
Rheem to execute a given operator on a specific platform,
she can invoke the withTargetPlatform method. Similarly, she
can force the system to use a specific execution operator
via the customOperator method, which further enables users
to employ custom operators without having to extend the
API. For clarity reasons, we did not include the UDF im-
plementations in Listing 1.

5.2 RheemLatin
Rheem provides a data-flow language (RheemLatin) for

users to specify their tasks [44]. Our goal is to provide
ease-of-use to users without compromising expressiveness.
RheemLatin follows a procedural programming style to nat-
urally fit the pipeline paradigm of Rheem. This is similar
to the R language, which is quite popular among data scien-
tists. It draws its inspiration from PigLatin [48] and hence it
has PigLatin’s grammar and supports most PigLatin’s key-
words. In fact, one could see it as an extension of PigLatin
for cross-platform settings. For example, users can specify
the platform for any part of their queries. More importantly,

7The complete source code of this task is available online:
https://github.com/rheem-ecosystem/rheem-benchmark.

https://github.com/rheem-ecosystem/rheem-benchmark
https://github.com/rheem-ecosystem/rheem-benchmark

it provides a set of configuration files whereby users can add
new keywords to the language together with their mappings
to Rheem operators. As a result, users can easily adapt
RheemLatin for their applications. Listing 2 illustrates how
one can express our SGD example with RheemLatin.

1 import ’/sgd/udfs. class ’ as taggedPointCounter;
2 lines = load ’hdfs://myData.csv’;
3 points = map lines −> {taggedPointCounter.parsePoints(lines)};
4 weights = load taggedPointCounter.createWeights();
5 final weights = repeat 50 {
6 sample points = sample points −> {taggedPointCounter.getSample()}

with broadcast weights;
7 gradient = map sample points −>

{taggedPointCounter.computeGradient()};
8 gradient sum count = reduce gradient −> {gradient.sumcount()};
9 weights = map gradient sum −> {gradient sum count.average()} with

platform ’JavaStreams’;}
10 store final weights ’ hdfs://output/sgd’;

Listing 2: SGD task in RheemLatin.

The user starts by importing all her required UDFs
(Line 1). She then parses all the data points from the input
dataset (Lines 2 and 3) and initializes the weights (Line 4).
Next, she proceeds to perform the core of SGD: she takes
a sample of data points (Line 6), computes the gradient
for each sampled data point (Line 7), updates the weights
(Lines 8 and 9), and repeats the process 50 times (Line 5).
She can also repeat such a core process until convergence
by using WhileLoop instead of Repeat. Optionally, she can
specify the platform for any part of her query. For instance,
she might know that updating the weights on each itera-
tion is a lightweight computation and hence might specify
to use JavaStreams (Line 9). She finishes by storing the final
weights on HDFS (Line 10).

5.3 Rheem Studio
Although the native APIs and RheemLatin cover a large

number of users, some might still be unfamiliar with pro-
gramming and data-flow languages. Also, some other users
may simply desire to speed up the process of composing
their data analytic tasks. To this end, Rheem provides a
visual IDE (Rheem Studio) where users can compose their
data analytic tasks in a drag and drop fashion [44]. Fig-
ure 8 shows the Rheem Studio’s GUI. The GUI is composed
of four parts: a panel containing all Rheem operators, the
drawing surface, a console for writing RheemLatin queries,
and the output terminal. The right-side of Figure 8 shows
how operators are connected for an SGD plan. The studio
provides default implementations for any of the Rheem op-
erators, which enables users to run common data analytic
tasks without writing code. Yet, expert users can provide a
UDF by double-clicking on any operator.

Users can draw such a plan by simply dragging as many
Rheem operators as required from the left-side panel and
dropping them on the drawing surface. They consequently
connect the operators as required by their data analytic task.
The right-side of Figure 8 shows how operators are con-
nected for SGD. While connecting operators, the studio val-
idates such connections and gives feedback to users in case
that a connection cannot be established, e.g., the output
and input of two connected operators are of different data
types. Last but not least, the studio provides default imple-
mentations for any of the Rheem operators, which enables
users to run common data analytic tasks without writing a

zoom
 in

output window

R
H

EE
M

 o
pe

ra
to

rs
 p

an
el

RheemLatin console

drawing surface

TextFileSource

ParseMap

Sample

ComputeMap

Reduce

UpdateMap

wCollection

Repeat

LocalSink

Figure 8: SGD task in the Rheem Studio.

single line of code. Yet, expert users can provide a UDF by
double-clicking on any operator.

6. EXAMPLES OF RHEEM PLANS
We now provide in detail three examples of how users can

implement their tasks using the Scala native API and the
RheemLatin interface. For this, we consider three popular
data analytic tasks: WordCount (a well-known aggregate
task), K-means (a very representative iterative task), and
PolyJoin (a common task over difference data sources).

Users start their Rheem plans in Scala with a preamble
that defines the context and the platforms to be used, as
shown in Listing 3. For the sake of presentation, we do not
include this preamble in our Scala code examples below.

1 val context = new RheemContext(new Configuration)
2 .withPlugin(Spark. basicPlugin)
3 .withPlugin(JavaStreams.basicPlugin)
4 val plan = new PlanBuilder(context)

Listing 3: Preamble in the Scala API.

WordCount is an aggregate task that computes the fre-
quency with which each word appears in a dataset. Listing 4
shows the RheemLatin query for this task: Line 1 imports
all the required UDFs, Line 2 loads the input data; Lines 3
and 4 parse the words and convert them into records; Line 5
computes the frequency of each word; and Line 6 stores the
final word count on disk. Note that users naturally define
the flow of their analytical tasks with RheemLatin. Alterna-
tively, users can implement this task using one of the native
APIs of Rheem. Listing 5 shows the Scala code for this task.
Similar to the RheemLatin query, the Scala code keeps the
plan composition simple.

1 import ’/wordcount/udfs.class ’ as wordcount;
2 lines = load ’hdfs://myWords.txt’;
3 words = flatmap lines −> { wordcount.splitWords() };
4 tuples = map words −> { wordcount.convert2Tuple() };
5 adds = reduce tuples −> { wordcount.getWord() }, tuples −> {

wordcount.reduce() };
6 store adds ’/output/wordcount’;

Listing 4: Word Count task in RheemLatin.

K-means is a widely used ML task for clustering data
points together according to their similarity. We show the
RheemLatin query in Listing 6. In contrast to the Word-
Count task, this task is iterative (Lines 4–7). We observe

1 val words = plan. readTextFile (”hdfs://myWords.csv”)
2 .flatMap(. split (”\\W+”))
3 .map(word => (word.toLowerCase, 1))
4 .reduceByKey(. 1, (c1, c2) => (c1. 1, c1. 2 + c2. 2))
5 . collect ()

Listing 5: Word Count task using the Scala API.

that defining loops in RheemLatin is quite similar to cod-
ing in a high-level language (e.g., Scala), which makes it
intuitive for most users. Listing 7 shows its counterpart in
Scala.

1 lines = load ’hdfs://myPoints.txt ’ ;
2 points = map lines −> kmeans.parsePoints();
3 centroids = load ’hdfs:// myInitialCentroids . txt ’ ;
4 final centroids = repeat centroids AS current centroid for 50 {
5 distance = map points −> kmeans.selectNearestCentroid() with

broadcast current centroid ;
6 centroids sum = reduce distance −> kmeans.reduce();
7 new centroids = map centroids sum −> kmeans.average(); }
8 store final centroids ’ hdfs:///output/kmeans’;

Listing 6: K-means task in RheemLatin.

1 val points = plan. readTextFile (”hdfs://myPoints.csv”)
2 .map(createPoints)
3 val initialCentroids =

plan. loadCollection (Kmeans.createRandomCentroids(k))
4 val finalCentroids = initialCentroids . repeat(iterations , {

currentCentroids =>
5 val newCentroids = points.mapJava(
6 new SelectNearestCentroid,
7)
8 .withBroadcast(currentCentroids , ” centroids ”)
9 .reduceByKey(.centroidId , +)

10 .map(.average newCentroids})
11 finalCentroids . collect ()

Listing 7: K-means task using the Scala API.

PolyJoin is a common task in polystore scenarios,
i.e., joining several datasets from different data sources. In
this case, we consider the TPC-H Q5 and assume that: the
region, suppliers, and customer relations are on Postgres; the
nations relations is on the local file system; and the orders
and lineitem relations are on HDFS. Despite the complexity
of this query, we observe that the RheemLatin query (List-
ing 8) and the Scala (Listing 9) are still simple as they follow
the logical flow of the task itself. Lines 1-7 in Listing 8 load
the dataset, Lines 8-12 select and project the required tu-
ples, and Lines 13-22 join the resulted tuples before making
the group-by in Line 23.

7. RHEEM VS. MUSKETEER
We experimentally compare Rheem with its closest com-

petitor, Musketeer [32]. More experiments concerning the
optimizer can be found in [40].

Setup. We ran our experiments on a cluster of 10 machines.
Each node has one 2 GHz Quad Core Xeon processor, 32 GB
main memory, 500 GB SATA hard disks, a 1 Gigabit network
card and runs 64-bit platform Linux Ubuntu 14.04.05. In
Rheem we used the following platforms: Java’s Stream li-
brary (JavaStreams), Spark 1.6.0 (Spark), Flink 1.3.2 (Flink),
GraphX 1.6.0 (GraphX), Giraph 1.2.0 (Giraph), a Java graph
library (JGraph), and HDFS 2.6.0 to store files. We used all
these platforms with their default settings and configured

1 import ’/ polyjoin /udfs. class ’ as polyjoin ;
2 region = load ’ postgres:///tpch/region’ ;
3 suppliers = load ’ postgres:///tpch/ suppliers ’ ;
4 customers = load ’postgres:///tpch/customers’;
5 nations = load ’ file :///nations ’ delimiter ’ | ’ ;
6 orders = load ’hdfs:///orders ’ delimiter ’ | ’ ;
7 lineitems = load ’hdfs:/// lineitems ’ delimiter ’ | ’ ;
8 region filter = filter region [1] == ’ASIA’;
9 region project = map region filter −> { polyjoin.projectRecord(0, 1) };

10 suppliers project = map suppliers −> { polyjoin.projectRecord(0, 3) };
11 customers project = map customers −> { polyjoin.projectRecord(0, 3) };
12 order filter = filter orders −> { polyjoin.isBetween(4,

’1994−01−01’, ’1995−01−01’) };
13 join1 = join nation [2], region project [0];
14 map join1 = map join1 −> { polyjoin.tuple2Record(0, 0, 0, 1) };
15 join2 = join map join1 [0], customers project [1];
16 map join2 = map join2 −> { polyjoin.tuple2Record(0, 0, 0, 1, 1, 0) };
17 join3 = join map join2 [2], order filter [0];
18 map join3 = map join3 −> { polyjoin.tuple2Record(0, 0, 0, 1, 1, 0) };
19 join4 = join map join3 [2], lineitems [0];
20 map join4 = map join4 −> { polyjoin.tuple2Record(0, 0, 0, 1, 1, 2, 1,

5, 1, 6) };
21 join5 = join map join4 −> { polyjoin.record2Tuple(2, 0) },

suppliers project −> { polyjoin.record2Tuple(0, 1) };
22 map join5 = map join5 −> { polyjoin.tuple2Record(0, 1, 0, 3, 0, 4) };
23 groupBy = groupby map join5[0];
24 store groupBy ’/output/polyjoin ’ ;

Listing 8: PolyJoin task in RheemLatin.

1 val regions : DataQuanta[Record] =
plan.readTable(”postgres:///tpch/region”)

2 .map(createRecord())
3 . filter ((r : Record) => r.getString(1) == ”ASIA”)
4 .map(projectRecord(, 0, 1))
5 val suppliers : DataQuanta[Record] =

plan.readTable(”postgres:///tpch/supplier”)
6 .map[Record](createRecord())
7 .map[Record](projectRecord(, 0, 3))
8 val customers: DataQuanta[Record] =

plan.readTable(”postgres:///tpch/customer”)
9 .map[Record](createRecord())

10 .map(projectRecord(, 0, 3))
11 val nations : DataQuanta[Record] = plan.readTextFile(” file :///nation”)
12 .map(createRecord())
13 val orders : DataQuanta[Record] = plan.readTextFile(”hdfs:///order”)
14 .map(createRecord())
15 . filter (isBetween(, 4, fromData, toDate))
16 val lineitems : DataQuanta[Record] =

plan.readTextFile(”hdfs:/// lineitem ”)
17 .map(createRecord())
18 nations
19 . join (getColumn(, 2), regions , getColumn(, 0))
20 .map(tuple2Record(, 0, 0, 0, 1))
21 . join (getColumn(, 0), customers, getColumn(, 1))
22 .map(tuple2Record(, 0, 0, 0, 1, 1, 0))
23 . join (getColumn(, 2), orders , getColumn(, 1))
24 .map(tuple2Record(, 0, 0, 0, 1, 1, 0))
25 . join (getColumn(, 2), lineitems , getColumn(, 0))
26 .map(tuple2Record(, 0, 0, 0, 1, 1, 2, 1, 5, 1, 6))
27 . join [Record, Tuple2[String , String]](record2Tuple (, 2, 0),

suppliers , record2Tuple (, 0, 1))
28 .map(tuple2Record(, 0, 1, 0, 3, 0, 4))
29 .groupByKey((r: Record) => r.getField(0))
30 . collect ()

Listing 9: PolyJoin task using the Scala API.

the maximum RAM of each platform to 20 GB. We dis-
abled the Rheem stage parallelization feature to have only
one single platform running at any time. We obtained all
the cost functions required by our optimizer as described
in Section 4.5. We considered the cross-community pager-
ank task (CrocoPR), because the authors reported this task
to be a case where Musketeer chooses multiple platforms.
Note that, for fairness reasons, we perform the data prepa-
ration part of CrocoPR (i.e., union the different communities

1

10

100

1000

10000

1 50 100

R
un

tim
e

(s
ec

)

Dataset size (%)

1

10

100

1000

10000

1 10 50 100
#iterations

 Musketeer RHEEM

688

21
202 298

1141 1555
300

60

731

57 58 58

2527 4939

Figure 9: Rheem outperforms Musketeer by more
than one order of magnitude.

pages) as a separate script for Musketeer. This is because its
language (Mindi) is not optimized for dealing with UDFs,
thereby it would be much slower to provide the data prepa-
ration as a UDF. In contrast, Rheem seamlessly performs
both parts (data preparation and page rank) as a single task.
We used the DBPedia pagelinks dataset (20 GB).

Results. Figure 9 shows the results in log scale when
varying the dataset sizes for 10 iterations and the number
of iterations for 10% of the dataset. Overall, we observe
the superiority of Rheem over Musketeer, especially as the
number of iterations increases: Rheem is up to 85 times
faster than Musketeer. Note that, in contrast to Musketeer,
Rheem keeps its runtime constant as the number of itera-
tions increases. This is because: (i) Musketeer, among other
things, checks dependencies, compiles and package the code,
and writes the output to HDFS at each iteration (or stage),
which comes with a high overhead; (ii) Rheem executes the
page rank part of the task (i.e., after the data preparation)
on JavaStreams, which allows it to perform each iteration
with almost zero overhead.

8. LIMITATIONS
As of now, Rheem does not support any stream processing

platforms. While users can easily supply new batch process-
ing platforms, stream processing requires to extend Rheem’s
core. We plan to do so by following the lambda architecture
paradigm [46]. In addition, Rheem currently relies on the
fault-tolerance of the underlying platforms and is, thus, sus-
ceptible to failures while moving data across platforms. We
plan to incorporate some basic fault-tolerance mechanism
at the cross-platform level. Other remaining issues include:
adding methods that speed up inter-platform communica-
tions, such as the one proposed in [33], integrating Rheem
with resource managers to incorporate changes in the avail-
ability of computing resources, and supporting simultaneous
execution of Rheem jobs.

9. RELATED WORK
The research and industry communities have proposed a

myriad of different data processing platforms [5, 8, 11, 18,
25, 59]. In contrast, we do not provide a data processing
platform but a novel system on top of them.

Cross-platform data processing has been in the spotlight
only very recently. Some works focus only on integrating dif-
ferent data processing platforms with the goal of alleviating
users from their intricacies [1, 2, 10, 12, 29]. However, they
still require expertise from users to decide when to use a spe-
cific data processing platform. For example, BigDAWG [29]
requires users to specify where to run tasks via its Scope and
Cast commands, which already require expertise from users.
Only few works share a similar goal with us [28,32,43,55,58].
However, they substantially differ from Rheem. Two main

differences are that they consider neither data movement
costs nor progressive task optimization techniques, although
both aspects are crucial in cross-platform settings. Addi-
tionally, each of these works differs from Rheem in various
ways. As Musketeer’s main goal is to decouple front-end lan-
guages (e.g., SQL and PigLatin) from the underlying plat-
forms [32], it is not as expressive and extensible as Rheem.
Furthermore, as it maps task patterns to specific underly-
ing platforms, it is not clear how one can efficiently map a
task when having similar platforms (e.g., Spark vs. Flink
or Postgres vs. MySQL). Similarly, in Myria [58], it is hard
to allocate tasks when having similar platforms because it
comes with a rule-based optimizer. Additionally, its rule-
based optimizer also makes it hard to maintain. IReS [28]
supports only 1-to-1 mappings between abstract tasks and
their implementations, which limits expressiveness and op-
timization opportunities. Moreover, it assumes direct data
movement paths between platforms, which is hard to main-
tain for many platforms. QoX focuses only on ETL work-
loads [55]. DBMS+ [43] is limited by the expressiveness of
its declarative language and hence it is neither adaptive nor
extensible. Other complementary works focus on improving
data movement across different platforms [33] or libraries
by using a common intermediate representation and execut-
ing the scripts in LLVM [49], but none of them address the
cross-platform optimization problem. Tensorflow [15] fol-
lows a similar idea, but for cross-device execution of machine
learning tasks and thus it is orthogonal to Rheem. In fact,
Rheem could use TensorFlow as an underlying platform.

The research community has also studied the problem
of federating relational databases [54]. Garlic [22], TSIM-
MIS [23], and InterBase [21] are just three examples. How-
ever, all these works significantly differ from Rheem in that
they consider a single data model and simply push query
processing to where the data is. Other works integrate
Hadoop with an RDBMS [27,41], however, one cannot easily
extend them to deal with more diverse tasks and platforms.

10. CONCLUSION
Given today’s data analytic ecosystem, supporting cross-

platform data processing has become rather crucial in or-
ganizations. We have identified four different situations in
which an application requires or benefits from cross-platform
data processing. Driven by these cases, we built Rheem, a
cross-platform system that decouples applications from data
processing platforms to achieve efficient task execution over
multiple platforms. Rheem follows a cost-based optimiza-
tion approach for splitting an input task into subtasks and
assigning each subtask to a specific platform, such that the
cost (e.g., runtime or monetary cost) is minimized. Our
experience while building Rheem raised several interesting
questions that need to be addressed in the future, namely:
How can we (i) reduce the inter-platform data movement
costs? (ii) address the cardinality and cost estimation prob-
lem? (iii) efficiently support fault-tolerance across plat-
forms? (iv) add new platforms automatically? and (v) im-
prove data exploration in cross-platform settings?

11. REFERENCES
[1] Apache Beam. https://beam.apache.org.

[2] Apache Drill. https://drill.apache.org.

[3] Apache Flink. https://flink.apache.org.

https://beam.apache.org
https://drill.apache.org
https://flink.apache.org

[4] Apache Flume.
https://flume.apache.org/index.html.

[5] Apache HBase. http://hbase.apache.org/.

[6] Apache Hive: A data warehouse software for
distributed storage. http://hive.apache.org.

[7] Apache Mahout. http://mahout.apache.org.

[8] Apache Spark: Lightning-Fast Cluster Computing.
http://spark.incubator.apache.org/.

[9] Fortune magazine. http://fortune.com/2014/06/19/
big-data-airline-industry/.

[10] Luigi Project. https://github.com/spotify/luigi.

[11] PostgreSQL. http://www.postgresql.org/.

[12] PrestoDB Project. https://prestodb.io.

[13] Spark MLlib: http://spark.apache.org/mllib.

[14] Spark SQL programming guide.
http://spark.apache.org/docs/latest/

sql-programming-guide.html.

[15] M. Abadi et al. TensorFlow: A System for Large-Scale
Machine Learning. In OSDI, pages 265–283, 2016.

[16] D. Agrawal, L. Ba, L. Berti-Equille, S. Chawla,
A. Elmagarmid, H. Hammady, Y. Idris, Z. Kaoudi,
Z. Khayyat, S. Kruse, M. Ouzzani, P. Papotti, J.-A.
Quiané-Ruiz, N. Tang, and M. Zaki. Rheem: Enabling
Multi-Platform Task Execution. In SIGMOD, pages
2069–2072, 2016.

[17] D. Agrawal et al. Road to Freedom in Big Data
Analytics. In EDBT, pages 479–484, 2016.

[18] A. Alexandrov et al. The Stratosphere platform for
big data analytics. VLDB J., 23(6):939–964, 2014.

[19] A. Baaziz and L. Quoniam. How to use big data
technologies to optimize operations in upstream
petroleum industry. In 21st World Petroleum
Congress, 2014.

[20] M. Boehm, M. Dusenberry, D. Eriksson, A. V.
Evfimievski, F. M. Manshadi, N. Pansare,
B. Reinwald, F. Reiss, P. Sen, A. Surve, and
S. Tatikonda. SystemML: Declarative Machine
Learning on Spark. PVLDB, 9(13):1425–1436, 2016.

[21] O. A. Bukhres et al. InterBase: An Execution
Environment for Heterogeneous Software Systems.
IEEE Computer, 26(8):57–69, 1993.

[22] M. J. Carey et al. Towards Heterogeneous Multimedia
Information Systems: The Garlic Approach. In
RIDE-DOM, pages 124–131, 1995.

[23] S. S. Chawathe et al. The TSIMMIS Project:
Integration of Heterogeneous Information Sources. In
IPSJ, pages 7–18, 1994.

[24] M. Dallachiesa, A. Ebaid, A. Eldawy, A. K.
Elmagarmid, I. F. Ilyas, M. Ouzzani, and N. Tang.
NADEEF: a commodity data cleaning system. In
SIGMOD, pages 541–552, 2013.

[25] J. Dean and S. Ghemawat. MapReduce: Simplified
Data Processing on Large Clusters. Communications
of the ACM, 51(1), 2008.

[26] D. Deng, R. C. Fernandez, Z. Abedjan, S. Wang,
M. Stonebraker, A. K. Elmagarmid, I. F. Ilyas,
S. Madden, M. Ouzzani, and N. Tang. The Data
Civilizer System. In CIDR, 2017.

[27] D. J. DeWitt, A. Halverson, R. V. Nehme, S. Shankar,
J. Aguilar-Saborit, A. Avanes, M. Flasza, and
J. Gramling. Split query processing in polybase. In

SIGMOD, pages 1255–1266, 2013.

[28] K. Doka, N. Papailiou, V. Giannakouris,
D. Tsoumakos, and N. Koziris. Mix ’n’ match
multi-engine analytics. In IEEE BigData, pages
194–203, 2016.

[29] A. J. Elmore et al. A Demonstration of the BigDAWG
Polystore System. PVLDB, 8(12):1908–1911, 2015.

[30] W. Fan, F. Geerts, X. Jia, and A. Kementsietsidis.
Conditional Functional Dependencies for Capturing
Data Inconsistencies. ACM Transactions on Database
Systems (TODS), 33(2):6:1–6:48, 2008.

[31] R. C. Fernandez, D. Deng, E. Mansour, A. A. Qahtan,
W. Tao, Z. Abedjan, A. K. Elmagarmid, I. F. Ilyas,
S. Madden, M. Ouzzani, M. Stonebraker, and
N. Tang. A Demo of the Data Civilizer System. In
SIGMOD, pages 1639–1642, 2017.

[32] I. Gog et al. Musketeer: all for one, one for all in data
processing systems. In EuroSys, 2015.

[33] B. Haynes, A. Cheung, and M. Balazinska. PipeGen:
Data Pipe Generator for Hybrid Analytics. In SoCC,
pages 470–483, 2016.

[34] A. Hems, A. Soofi, and E. Perez. How innovative oil
and gas companies are using big data to outmaneuver
the competition. Microsoft White Paper,
http://goo.gl/2Bn0xq, 2014.

[35] IBM. Data-driven healthcare organizations use big
data analytics for big gains. White paper,
http://goo.gl/AFIHpk.

[36] Z. Kaoudi, J.-A. Quiane-Ruiz, S. Thirumuruganathan,
S. Chawla, and D. Agrawal. A Cost-based Optimizer
for Gradient Descent Optimization. In SIGMOD, 2017.

[37] Z. Khayyat, I. F. Ilyas, A. Jindal, S. Madden,
M. Ouzzani, P. Papotti, J. Quiané-Ruiz, N. Tang, and
S. Yin. BigDansing: A System for Big Data Cleansing.
In SIGMOD, pages 1215–1230, 2015.

[38] Z. Khayyat, W. Lucia, M. Singh, M. Ouzzani,
P. Papotti, J. Quiané-Ruiz, N. Tang, and P. Kalnis.
Lightning Fast and Space Efficient Inequality Joins.
PVLDB, 8(13):2074–2085, 2015.

[39] S. Kruse, Z. Kaoudi, J.-A. Quiané-Ruiz, S. Chawla,
F. Naumann, and B. Contreras-Rojas. RHEEMix in
the Data Jungle – A Cross-Platform Query Optimizer.
arXiv: 1805.03533
https://arxiv.org/abs/1805.03533, 2018.

[40] S. Kruse, Z. Kaoudi, J.-A. Quiané-Ruiz, S. Chawla,
F. Naumann, and B. Contreras-Rojas. RHEEMix in
the Data Jungle – A Cross-Platform Query Optimizer.
arXiv: 1805.03533
https://arxiv.org/abs/1805.03533, 2018.

[41] J. LeFevre, J. Sankaranarayanan, H. Hacigümüs,
J. Tatemura, N. Polyzotis, and M. J. Carey. MISO:
souping up big data query processing with a multistore
system. In SIGMOD, pages 1591–1602, 2014.

[42] V. Leis et al. How good are query optimizers, really?
Proc. VLDB Endow., 9(3):204–215, 2015.

[43] H. Lim, Y. Han, and S. Babu. How to Fit when No
One Size Fits. In CIDR, 2013.

[44] J. Lucas, Y. Idris, B. Contreras-Rojas, J.-A.
Quiané-Ruiz, and S. Chawla. Cross-Platform Data
Analytics Made Easy. In ICDE, 2018.

[45] V. Markl, V. Raman, D. Simmen, G. Lohman,

https://flume.apache.org/index.html
http://hbase.apache.org/
http://hive.apache.org
http://mahout.apache.org
http://spark.incubator.apache.org/
http://fortune.com/2014/06/19/big-data-airline-industry/
http://fortune.com/2014/06/19/big-data-airline-industry/
https://github.com/spotify/luigi
http://www.postgresql.org/
https://prestodb.io
http://spark.apache.org/mllib
http://spark.apache.org/docs/latest/sql-programming-guide.html
http://spark.apache.org/docs/latest/sql-programming-guide.html
http://goo.gl/2Bn0xq
http://goo.gl/AFIHpk
https://arxiv.org/abs/1805.03533
https://arxiv.org/abs/1805.03533

H. Pirahesh, and M. Cilimdzic. Robust query
processing through progressive optimization. In
SIGMOD, pages 659–670, 2004.

[46] N. Marz and J. Warren. Big Data: Principles and best
practices of scalable realtime data systems. Manning,
2015.

[47] M. Mitchell. An introduction to genetic algorithms.
MIT press, 1998.

[48] C. Olston, B. Reed, U. Srivastava, R. Kumar, and
A. Tomkins. Pig Latin: A Not-so-foreign Language for
Data Processing. In Proceedings of the 2008 ACM
SIGMOD International Conference on Management of
Data, SIGMOD ’08, pages 1099–1110, 2008.

[49] S. Palkar, J. J. Thomas, A. Shanbhag,
M. Schwarzkopt, S. P. Amarasinghe, and M. Zaharia.
Weld: A Common Runtime for High Performance
Data Analysis. In CIDR, 2017.

[50] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J.
DeWitt, S. Madden, and M. Stonebraker. A
Comparison of Approaches to Large-Scale Data
Analysis. In SIGMOD, pages 165–178, 2009.

[51] J.-A. Quiané-Ruiz and Z. Kaoudi. Cross-Platform
Query Processing. In ICDE (tutorial), 2018.

[52] P. J. Sadalage and M. Fowler. NoSQL distilled: A
brief guide to the emerging world of polyglot
persistence. Addison-Wesley Professional, 2012.

[53] S. Shankar, A. Choi, and J.-P. Dijcks. Integrating

Hadoop Data with Oracle Parallel Processing. Oracle
White Paper, http://www.oracle.com/technetwork/
database/bi-datawarehousing/

twp-integrating-hadoop-data-with-or-130063.

pdf, 2010.

[54] A. P. Sheth and J. A. Larson. Federated Database
Systems for Managing Distributed, Heterogeneous,
and Autonomous Databases. ACM Computing
Surveys, 22(3):183–236, 1990.

[55] A. Simitsis, K. Wilkinson, M. Castellanos, and
U. Dayal. Optimizing Analytic Data Flows for
Multiple Execution Engines. In SIGMOD, pages
829–840, 2012.

[56] M. Stonebraker. The Case for Polystores.
http://wp.sigmod.org/?p=1629, 2015.

[57] D. Tsoumakos and C. Mantas. The Case for
Multi-Engine Data Analytics. In Euro-Par, pages
406–415, 2013.

[58] J. Wang, T. Baker, M. Balazinska, D. Halperin,
B. Haynes, B. Howe, D. Hutchison, S. Jain, R. Maas,
P. Mehta, D. Moritz, B. Myers, J. Ortiz, D. Suciu,
A. Whitaker, and S. Xu. The Myria Big Data
Management and Analytics System and Cloud
Services. In CIDR, 2017.

[59] F. Yang, J. Li, and J. Cheng. Husky: Towards a More
Efficient and Expressive Distributed Computing
Framework. PVLDB, 9(5):420–431, 2016.

http://www.oracle.com/technetwork/database/bi-datawarehousing/twp-integrating-hadoop-data-with-or-130063.pdf
http://www.oracle.com/technetwork/database/bi-datawarehousing/twp-integrating-hadoop-data-with-or-130063.pdf
http://www.oracle.com/technetwork/database/bi-datawarehousing/twp-integrating-hadoop-data-with-or-130063.pdf
http://www.oracle.com/technetwork/database/bi-datawarehousing/twp-integrating-hadoop-data-with-or-130063.pdf
http://wp.sigmod.org/?p=1629

	1 Introduction
	2 Cross-Platform Processing
	2.1 Platform Independence
	2.2 Opportunistic Cross-Platform
	2.3 Mandatory Cross-Platform
	2.4 Polystore

	3 Rheem Model
	4 Rheem Internals
	4.1 Optimizer
	4.2 Executor
	4.3 Monitor
	4.4 Progressive Optimizer
	4.5 Cost Model Learner

	5 Rheem Interfaces
	5.1 Platform-Agnostic Native API
	5.2 RheemLatin
	5.3 Rheem Studio

	6 Examples of Rheem Plans
	7 Rheem vs. Musketeer
	8 Limitations
	9 Related Work
	10 Conclusion
	11 References

