
Cross-Platform Data Processing:
Use Cases and Challenges

Zoi Kaoudi and Jorge-Arnulfo Quiané-Ruiz

Qatar Computing Research Institute, HBKU
Doha, Qatar

{zkaoudi, jquianeruiz}@hbku.edu.qa

Abstract—There is a zoo of data processing platforms which
help users and organizations to extract value out of their data.
Although each of these platforms excels in specific aspects, users
typically end up running their data analytics on suboptimal
platforms. This is not only because choosing the right platform
among the myriad of big data platforms is a daunting task, but
also due to the fact that today’s data analytics are moving beyond
the limits of a single platform. Thus, there is an urgent need for
cross-platform data processing, i.e., using more than one data
processing platform to perform a data analytics task. Despite the
need, achieving this is still a dreadful process where developers
have to get intimate with many systems and write ad hoc scripts
for integrating them. This tutorial is motivated by this need. We
will discuss the importance of supporting cross-platform data
processing in a systematic way as well as the current efforts to
achieve that. In particular, we will introduce a classification of
the different cases where an application needs or benefits from
cross-platform data processing and the challenges of each case.
Along with this classification, we will also present the efforts
known up to date to support cross-platform data processing. We
will conclude this tutorial with a discussion of several important
open problems.

I. THE CASE FOR SYSTEM-POLYGAMY

Since already several years ago, we have been witnessing
the emergence of applications that produce diverse and large
amounts of data. As a result, we have embarked on an endless
race to develop data processing platforms (platforms for short),
such as Spark and Giraph, that enable users and organizations
to extract value out of this diverse and big data asset [1]. Just
under the umbrella of NoSQL, there are reportedly over 200
different platforms1. Although each of these platforms excels
in different aspects in the design space, users typically end up
running their data analytics on suboptimal platforms. This is
because choosing the right platform among the myriad of big
data platforms is simply a daunting task. Furthermore, data
analytics are moving beyond the limits of a single platform,
which makes the task of choosing the right platform (or
platforms) much more difficult.

We are indeed observing an emergence of more and more
applications requiring several platforms to perform data ana-
lytics. For example, (i) IBM reported that North York hospital
needs to process 50 diverse datasets, which are on a dozen
different internal platforms [2], (ii) oil & gas companies need
to process large amounts of data they produce everyday [3],
e.g., a single oil company can produce more than 1.5TB

1http://db-engines.com

of diverse (structured and unstructured) data per day [4],
(iii) business intelligence typically require a single analyt-
ics pipeline composed of different processing platforms [5],
(iv) several data warehouse applications require aggregated,
projected, or selected data to be moved from a big data
platform, such as Hadoop or Spark, into a relational database
for further analysis [6], [7], and (v) airlines need to analyze
large datasets, which are produced by different departments
and reside on multiple data sources, in order to produce global
reports for decision makers [8]. These are just few examples
of emerging applications that use or can exploit the use of a
diversity of platforms for effectiveness or efficiency.

Moving Beyond One Single Platform. We call cross-
platform data processing the fact of requiring more than one
platform for performing a data analytics task. The task can be
from a very simple task, such as k-means clustering, to a very
complex data analytical pipeline, e.g., one that includes data
cleaning, preparation, feature extraction and model training.
Unfortunately, achieving cross-platform data processing is
quite challenging, because applications are typically tied to
one single platform. The common practice to support cross-
platform data processing is to develop several specialized
analytic applications on top of different platforms and write
ad-hoc programs (or scripts) to glue them all together. This
is not only a tedious and costly task, but it also requires
being intimate with the intricacies of the different platforms
to achieve high efficiency and scalability. Furthermore, users
need to manually combine results to draw a conclusion.
The research community has recently recognized the need
for a systematic solution that enables cross-platform data
processing [9], [10], [11], [12], [13]. The holy grail is to allow
users to write platform-agnostic queries while an intermediate
system decides on which platforms to execute each query with
the goal of minimizing its cost (e.g., runtime or monetary
cost). However, despite many current efforts [5], [14], [15],
[16], [12], [9], the road to make automatic cross-platform data
processing a reality is still way long!

Tutorial’s Goal & Outline. In this tutorial, we have three
objectives: introduce the different use cases of cross-platform
data processing, present the challenges and current efforts
to support it, and discuss a research agenda for achieving
automatic and efficient cross-platform data processing. In
detail, we will start by introducing a classification for the



Store A

Platform X Platform Y

Application
subquery 1 subquery 2

data  
access

data  
access

query 

(b) Opportunistic Cross-Platform
Store A

Platform X Platform Y

Application
subquery 1 subquery 2

data  
movementdata  

access

query 

(c) Mandatory Cross-Platform
Store A

Platform X Platform Y

Application

data  
access

data  
access

query 

(a) Platform Independence
Store A

Platform X Platform Y

Application
subquery 1 subquery 2

data  
access

query 

(d) Polystore

data  
access

Store B

or

Fig. 1. Cross-platform use cases.

different cases where an application needs support for cross-
platform data processing. We will show that, surprisingly, most
of us have required more than once support for cross-platform
data processing even without noticing it. We will present
the different existing systems that support cross-platform data
processing and classify them using the proposed classification.
Especially, we will discuss the approaches and algorithms of
each of these works and list their benefits and limitations.
We will then highlight the crucial research areas that have
not yet been exploited to achieve efficient cross-platform data
processing. In the remainder of this document, we present the
different parts in which this tutorial will be structured.

Targeted Audience. The intended audience consists of re-
searchers and developers who are keen to know how cross-
platform data processing is essential for today’s applications,
but are also seeking ways to speed-up their applications in an
easy and systematic manner.

II. CROSS-PLATFORM USE CASES

Overall, we identify four different cases where an applica-
tion needs support for cross-platform data processing:

• Platform-independence: applications might require to
switch platforms according to the input datasets and/or
queries in order to achieve higher performance than when
using one single platform (Figure 1(a)). Hive and Mahout
are just two clear examples of systems suffering from the
lack of platform independence. The community had to
implement two other new systems (SparkSQL and MLlib)
on top of Spark in order to have the counterparts of these
two Hadoop-based systems.

• Opportunistic cross-platform: applications might benefit
from using multiple platforms throughout a single query
(Figure 1(b)). An example that clearly shows the benefits
of exploiting multiple platforms to perform one single
query is ML4ALL [17]: It significantly decreases run-
times of machine learning algorithms by simultaneously
using both a Java standalone program and Spark.

• Mandatory cross-platform: applications might also re-
quire to use multiple platforms because the platform
where the data resides, e.g., PostgreSQL, cannot perform
an incoming query, e.g., a machine learning task (Fig-
ure 1(c)). A data warehouse is a typical example of this

case [7], where data must be imported from external sys-
tems, such as Hadoop, in order to run complex analytics.

• Polystore: applications might require to use multiple
platforms because the input data is stored on multiple
data stores and hence a query must be divided accordingly
(Figure 1(d)). The Data Civilizer [18] system is a clear
example of a system requiring polystore capabilities: It
is a data discovery and integration system that operates
over hundreds or thousands of different data sources.

We will start this tutorial by introducing these four different
cross-platform use cases and discuss the importance of each
one with real applications. In particular, we will contrast cross-
platform data processing with parallel, distributed, federated,
and mediator database systems, such as Garlic[19], [20],
TSIMMIS [21] and Interbase [22], in order to highlight its
uniqueness. In the remainder of this tutorial, we will delve
into the details of each of these cross-platform use cases and
discuss the different efforts to support each of these.

III. PLATFORM INDEPENDENCE

Applications are usually tied to one specific platform. This
can be a roadblock for organizations and individuals for three
main reasons. First, as new and more efficient platforms
become available, developers need to re-implement existing
applications on top of faster platforms. For example, Spark
SQL [23] and MLlib [24] are the Spark counterparts of
Hive [25] and Mahout [26] which were implemented on top
of Hadoop. Of course, migrating an application from one
platform to another is a time-consuming and costly task and
is not always a viable choice. Second, for different inputs
of a specific query (or for different incoming queries), a
different platform may be the most efficient one. Thus, one
cannot determine the best platform statically. For instance,
running a specific query on a big data platform for very
large datasets is often more beneficial than running it on a
single-node platform, such as a DBMS. In contrast, for smaller
datasets, running the same query on a single-node platform
might be much faster due to little overhead costs. In fact,
several applications in companies and organizations run on two
different processing platforms, such as the machine learning
system of IBM [27]. Figure 1(a) illustrates this case: an
incoming query can run on two different platforms, depending



on its own and the input dataset characteristics, for efficiency
or effectiveness reasons.

In this part of the tutorial, we will delve into the details of
platform independence by giving concrete examples from real
applications. In addition, we will demonstrate with experimen-
tal results how platform independence can speed-up execution.
We will then present systems that already support platform
independence both domain-specific such as [27], [17], and
general-purpose [15], [28], [9].

IV. OPPORTUNISTIC CROSS-PLATFORM

There are cases where applications can be executed on one
single platform, but using multiple platforms would benefit
in performance (or monetary cost). For instance, users can
run a gradient descent algorithm, such as SGD, on top of
Spark relatively fast. Still mixing it with a standalone Java
program significantly increases performance. This approach is
the execution counter-part of polyglot persistence [29], where
different types of databases are combined to leverage their
individual strengths. However, supporting opportunistic cross-
platform data processing is not only time consuming but also
developers must know (i) a priori all the situations where it
is beneficial to use multiple platforms and (ii) how exactly to
use them (i.e., which part of the query to run on a specific
platform). Obviously, in most cases, spotting these opportuni-
ties is very hard, if not impossible. Even worse, similarly to
the platform independence case, one usually cannot spot such
opportunities statically. Figure 1(b) depicts the opportunistic
cross-platform case: one single incoming query is divided
into two subqueries with the only goal of decreasing its total
execution time (or monetary cost).

In this part of the tutorial, we will discuss the challenges
of the opportunistic cross-platform data processing and some
solutions that have been proposed for dealing with them. For
instance, Rheem [15] provides an optimizer to automatically
discover the platforms that each subquery has to be run on
for obtaining maximum performance. Similar systems that go
towards this direction include Ires [9] and Musketeer [16]. We
will delve into the details of such systems and emphasize their
differences and limitations.

V. MANDATORY CROSS-PLATFORM

In other cases, applications need to go beyond the function-
alities offered by the platform on which the data is stored.
This is because there is no platform that can fit all the
data analytics spectrum (following the one-size-does-not-all
dictum). Imagine for example that a dataset is stored on a
relational database and a user needs to perform a clustering
query. Doing so inside the relational database might simply
be disastrous in terms of performance. Thus, the user needs
to move the data out of the relational database. For example,
she might move the data to HDFS in order to use Spark [30],
which is known to be efficient for iterative queries. A similar
situation occurs in complex data analytics applications with
disparate subqueries. As an example, an application might
extract a graph from a text corpus to perform subsequent

graph analytics on. This might require using both a text and a
graph analytics system. The required integration of platforms
is tedious, repetitive, and particularly error-prone. Currently,
developers of such applications write ad-hoc programs or
scripts to move the data out of the database and integrate
different platforms. Figure 1(c) illustrates this case: one single
incoming query must be divided into two subqueries as the
platform, where its input data is, cannot perform it entirely.

In this third part of the tutorial, we will investigate efforts
that have been made on this direction such as MapReduce-
based integration systems [31], [6]. In particular, we will
discuss the importance of achieving mandatory cross-platform
data processing in a systematic manner.

VI. POLYSTORE

In many current applications, datasets are produced by dif-
ferent sources and on different formats (data lakes). Datasets
in data lakes reside natively on their format and hence on
different storage platforms, such as DBMSs, document stores,
key-value stores, and pure file systems. Oil & gas [3], [4],
health care [2], airline [8] industries, and business intelli-
gence [5] are just few examples of such scenarios. In these
cases, users often not only perform tedious, time-intensive,
and costly data migration, but also integration tasks for ana-
lyzing the data. Therefore, supporting the execution of queries
over multiple data stores systematically is very important.
Figure 1(d) shows this polystore case: one single incoming
query is divided into two subqueries because its data is stored
on two different storage engines.

In this part of the tutorial, we will elaborate on use cases that
require or already use such cross-platform data processing. In
addition, we will discuss the features and limitations of poly-
store systems such as [32], [33]. For instance, BigDawg [32]
provides a declarative language that enables users to specify
where to run their subqueries via its Scope and Cast com-
mands. Although this facilitates the task of integrating several
platforms, users still must determine the platforms to run each
part of their queries.

VII. RESEARCH AGENDA

Although supporting cross-platform data processing is cru-
cial in today’s applications, the road to establish it in an
automatic and efficient way contains many open research
problems. In the last part of the tutorial, we will highlight
the research areas that have not been exploited yet and draw
a research agenda with the open problems. We list only few
of them in the following:

(i) Automatic integration with new platforms. A cross-
platform system must keep up with new platforms that
appear or existing ones that get updated. Achieving this
with very little effort or even with no effort at all is a
very challenging task.

(ii) Cardinality and cost estimation. Setting the cardinalities
and cost of operators is a hard problem even in more
conventional environments, such as DBMSs [34]. An
interesting direction is to investigate machine learning



techniques (e.g., regression or even deep learning) for
estimating the cardinality and costs of operators.

(iii) Data movement. Optimizing data movement is a very
crucial aspect in a cross-platform setting where data has
to be moved constantly from one platform to another.
Although there has already been some initial works on
this, e.g., [35], there is still room for improvement. For
example, finding the right format for intermediate data
so that data movement is speeded up is an open problem.

(iv) Fault tolerance. While a cross-platform system can rely
on the underlying platforms to recover from failures
when executing queries on them, it is also crucial to be
able to recover from failures across platforms, e.g., when
data is being moved from one platform to another.

PRESENTERS

Zoi Kaoudi is a Scientist in the Qatar Computing Re-
search Institute (QCRI), HBKU. She has previously worked
in IMIS-ATHENA RC as a research associate and INRIA
as a postdoctoral researcher. She received her PhD from the
National and Kapodistrian University of Athens in 2011. She
has previously presented tutorials at ICDE 2013 and SIGMOD
2014. Her research interests include machine learning systems,
big data management, and distributed RDF query processing
and reasoning. Personal webpage: http://da.qcri.org/zkaoudi

Jorge Arnulfo Quiane-Ruiz is a Senior Scientist at the
Qatar Computing Research Institute (QCRI), HBKU. He has
previously worked in Saarland University and INRIA. He
received his PhD from University of Nantes in 2008. He has
previously presented tutorials at VLDB 2012 and received an
Excellent Presentation Award at VLDB 2014. His research
mainly focuses on efficient and scalable big data management.
Personal webpage: http://da.qcri.org/jquiane

Acknowledgments. We have studied the material on which
the tutorial is based while collaborating with many colleagues.
We would like to thank the entire RHEEM team2 for their feed-
back and support. Especially, we would like to thank Sebastian
Kruse and Sanjay Chawla for many insightful discussions.

REFERENCES

[1] M. Stonebraker and U. Çetintemel, ““One Size Fits All”: An Idea Whose
Time Has Come and Gone (Abstract),” in ICDE, 2005.

[2] IBM, “Data-driven healthcare organizations use big data analytics for
big gains,” White paper, http://goo.gl/AFIHpk.

[3] A. Hems, A. Soofi, and E. Perez, “How innovative oil and gas companies
are using big data to outmaneuver the competition,” Microsoft White
Paper, http://goo.gl/2Bn0xq, 2014.

[4] A. Baaziz and L. Quoniam, “How to use big data technologies to
optimize operations in upstream petroleum industry,” in 21st World
Petroleum Congress, 2014.

[5] A. Simitsis, K. Wilkinson, M. Castellanos, and U. Dayal, “Optimizing
Analytic Data Flows for Multiple Execution Engines,” in SIGMOD,
2012, pp. 829–840.

[6] D. J. DeWitt, A. Halverson, R. V. Nehme, S. Shankar, J. Aguilar-Saborit,
A. Avanes, M. Flasza, and J. Gramling, “Split query processing in
polybase,” in SIGMOD, 2013, pp. 1255–1266.

2http://da.qcri.org/rheem/about.html

[7] S. Shankar, A. Choi, and J.-P. Dijcks, “Integrating Hadoop
Data with Oracle Parallel Processing,” Oracle White Paper,
http://www.oracle.com/technetwork/database/bi-datawarehousing/
twp-integrating-hadoop-data-with-or-130063.pdf, 2010.

[8] “Fortune magazine,” http://fortune.com/2014/06/19/
big-data-airline-industry/.

[9] K. Doka, N. Papailiou, V. Giannakouris, D. Tsoumakos, and N. Koziris,
“Mix ’n’ match multi-engine analytics,” in IEEE BigData, 2016, pp.
194–203.

[10] D. Agrawal et al., “Road to Freedom in Big Data Analytics,” in EDBT,
2016, pp. 479–484.

[11] M. Stonebraker, “The case for polystores,” ACM SIGMOD Blog.
[Online]. Available: \url{http://wp.sigmod.org/?p=1629}

[12] M. Abadi et al., “TensorFlow: A System for Large-Scale Machine
Learning,” in OSDI, 2016, pp. 265–283.

[13] S. Palkar, J. J. Thomas, A. Shanbhag, M. Schwarzkopt, S. P. Amaras-
inghe, and M. Zaharia, “A common runtime for high performance data
analysis,” in CIDR, 2017.

[14] H. Lim, Y. Han, and S. Babu, “How to Fit when No One Size Fits,” in
CIDR, 2013.

[15] D. Agrawal, L. Ba, L. Berti-Equille, S. Chawla, A. Elmagarmid,
H. Hammady, Y. Idris, Z. Kaoudi, Z. Khayyat, S. Kruse, M. Ouzzani,
P. Papotti, J.-A. Quiané-Ruiz, N. Tang, and M. Zaki, “Rheem: Enabling
Multi-Platform Task Execution,” in SIGMOD, 2016, pp. 2069–2072.

[16] I. Gog et al., “Musketeer: all for one, one for all in data processing
systems,” in EuroSys, 2015.

[17] Z. Kaoudi, J.-A. Quiane-Ruiz, S. Thurumuruganathan, S. Chawla, and
D. Agrawal, “A Cost-based Optimizer for Gradient Descent Optimiza-
tion,” in SIGMOD, 2017.

[18] D. Deng, R. C. Fernandez, Z. Abedjan, S. Wang, M. Stonebraker, A. K.
Elmagarmid, I. F. Ilyas, S. Madden, M. Ouzzani, and N. Tang, “The
Data Civilizer System,” in CIDR, 2017.

[19] M. J. Carey et al., “Towards Heterogeneous Multimedia Information
Systems: The Garlic Approach,” in RIDE-DOM, 1995, pp. 124–131.

[20] M. T. Roth and P. M. Schwarz, “Don’t Scrap It, Wrap It! A Wrapper
Architecture for Legacy Data Sources,” in VLDB, 1997, pp. 266–275.

[21] S. S. Chawathe et al., “The TSIMMIS Project: Integration of Heteroge-
neous Information Sources,” in IPSJ, 1994, pp. 7–18.

[22] O. A. Bukhres et al., “InterBase: An Execution Environment for Hetero-
geneous Software Systems,” IEEE Computer, vol. 26, no. 8, pp. 57–69,
1993.

[23] “Spark SQL programming guide,” http://spark.apache.org/docs/latest/
sql-programming-guide.html.

[24] “Spark MLlib: http://spark.apache.org/mllib.”
[25] “Apache Hive: A data warehouse software for distributed storage,” http:

//hive.apache.org.
[26] “Apache Mahout. http://mahout.apache.org.”
[27] M. Boehm, M. Dusenberry, D. Eriksson, A. V. Evfimievski, F. M.

Manshadi, N. Pansare, B. Reinwald, F. Reiss, P. Sen, A. Surve, and
S. Tatikonda, “SystemML: Declarative Machine Learning on Spark,”
PVLDB, vol. 9, no. 13, pp. 1425–1436, 2016.

[28] C. Chambers, A. Raniwala, F. Perry, S. Adams, R. R. Henry, R. Brad-
shaw, and N. Weizenbaum, “FlumeJava: easy, efficient data-parallel
pipelines,” in ACM Sigplan Notices, vol. 45, no. 6, 2010, pp. 363–375.

[29] P. J. Sadalage and M. Fowler, NoSQL distilled: A brief guide to the
emerging world of polyglot persistence. Addison-Wesley Professional,
2012.

[30] “Apache Spark: Lightning-Fast Cluster Computing,” http://spark.
incubator.apache.org/.

[31] J. LeFevre, J. Sankaranarayanan, H. Hacigümüs, J. Tatemura, N. Poly-
zotis, and M. J. Carey, “MISO: souping up big data query processing
with a multistore system,” in SIGMOD, 2014, pp. 1591–1602.

[32] A. J. Elmore et al., “A Demonstration of the BigDAWG Polystore
System,” PVLDB, vol. 8, no. 12, pp. 1908–1911, 2015.

[33] “Apache Drill,” https://drill.apache.org.
[34] V. Leis et al., “How good are query optimizers, really?” Proc. VLDB

Endow., vol. 9, no. 3, pp. 204–215, 2015.
[35] B. Haynes, A. Cheung, and M. Balazinska, “PipeGen: Data Pipe

Generator for Hybrid Analytics,” in SoCC, 2016, pp. 470–483.


