A deep building science dive on windows: new opportunities and technologies.

Spring Camp 2022
Presented by: Jeff Baker, M.A.SC., P.Eng.
WESTLab Canada
April 25, 2022

- Fenestration Heat Transfer
 - OU-factor
 - OSolar Heat Gain Coefficient (SHGC)
 - OTotal Product Results
- OLabels don't tell the whole story
- OHOT 2000 Input
- New Technologies

U-factor

- National Fenestration Rating Council (NFRC) definition
- The heat transfer per time per area and per degree of temperature difference.
- The U-factor multiplied by the interior-exterior temperature difference and by the projected fenestration product area yields the total heat transfer through the fenestration product due to conduction, convection, and long-wave infra-red radiation.

- Solar Heat Gain Coefficient (SHGC)
 - National Fenestration Rating Council (NFRC) definition
 - The ratio of the solar heat gain entering the space through the fenestration product to the incident solar radiation. NFRC rates SHGC at normal incidence.
 - OThe SHGC includes both the directly transmitted energy, and the absorbed energy that is transmitted through the product.

- For heat transfer analysis the window is broken into three regions
- Frame
- Edge-of-Glass
- Centre-of Glass

U-factor

- O Choice of Low-emissivity coating
 - Lower emissivity of the coating results in a lower center-of-glass U-factor
- Gas fill
 - Argon gas is the most common fill gas used
 - Krypton has been used but the cost increase of krypton has taken it out of reach for the window market
 - Air is used when the glass unit can not be filled with a gas

OSHGC

- Choice of Low-emissivity coating
 - OThere are two types of lowemissivity or low-e coatings available on the market
 - O Pyrolytic
 - Hard coating resulting in a high solar gain coating
 - OSputter multiple types
 - O High Solar Gain or Single Silver
 - Medium Solar Gain or Double Silver
 - O Low Solar Gain or Triple Silver

O U-factors – center-of-glass for double-glazed glass units with argon fill

O U-factors – center-of-glass for triple-glazed glass units with argon fill

Clear-Air-Clear-Air-Clear High SG-Arg-Clr-Arg-High SG Medium SG-Arg-Clr-Arg-High SG Low SG-Arg-Clr-Arg-High SG

U=0.31 BTU/hr*ft²*F

 $U=0.75 \text{ W/m}^2\text{K}$

U=0.13 BTU/hr*ft²*F

 $U=0.73 \text{ W/m}^2\text{K}$

U=0.13 BTU/hr*ft²*F

U=0.72 W/m²K

U=0.13 BTU/hr*ft²*F

OSHGC

- OLow-e coatings are designed to control the amount of solar gain that will pass through the coating
- Sputter coatings
 - OHigh-Solar Gain or single-silver coatings
 - OMedium-Solar Gain or double-silver coatings
 - OLow-Solar Gain or triple-silver coatings

O SHGC – center-of-glass for double-glazed glass units with argon fill

O SHGC – center-of-glass for triple-glazed glass units with argon fill

Clear-Air-Clear-Air-Clear

High SG-Arg-Clr-Arg-High SG

SG

Medium SG-Arg-Clr-Arg-High SG Low SG-Arg-Clr-Arg-High SG

- Edge-of-Glass Heat Transfer
 - U-factor
 - OLow-e coating
 - Gas fill
 - OSpacer system
 - Thermally improved spacer or warm edge spacers
 - **O**SHGC
 - OEqual to the center-of-glass SHGC

- Frame Heat Transfer
 - U-factor
 - OFrame Material
 - O Wood, PVC, Fiberglass, Thermally-Broken Aluminum
 - OFrame Design
 - OMaterial choices, Frame Height
 - OSpacer system
 - Thermally improved spacer or warm edge spacers
 - **O**SHGC
 - OVery small and is a function of the frame U-factor

- O Putting it all together
 - Frame
 - O Edge-of-Glass
 - Centre-of Glass
- O Total product U-factor
- Total product SHGC

- OLabels Don't Tell the Whole Story
- Windows are rated at a model size
- Example model sizes
 - OCasement 600 x 1500 mm
 - OHorizontal Slider 1500 x 1200 mm
 - OVertical Slider 1200 x 1500 mm
 - OFixed 1200 x 1500 mm

Windows – Total Product Results Model Size Casement

Option	U-factor (W/m²K)	SHGC
Double Glazed - Clear- Argon-High Solar Gain, warm edge spacer	1.51	0.51
Double Glazed - Medium Solar Gain-Argon-Clear, warm edge spacer	1.47	0.27
Double Glazed - Low Solar Gain-Argon-Clear, warm edge spacer	1.43	0.20
Triple Glazed - High Solar Gain-Argon-Clear-Argon-High Solar Gain, warm edge spacer	0.94	0.42
Triple Glazed - Medium Solar Gain-Argon-Clear-Argon-High Solar Gain, warm edge spacer	0.92	0.25
Triple Glazed - Low Solar Gain-Argon-Clear-Argon-High Solar Gain, warm edge spacer	0.91	0.18

Windows – Size Specific U-factor

U-factor	Window Width (mm)						
Window							
Height (mm)	300	450	600	750	900	1050	1200
600	1.520	1.513	1.509	1.507	1.505	1.504	1.503
750	1.525	1.514	1.508	1.505	1.502	1.501	1.500
900	1.528	1.514	1.508	1.503	1.501	1.499	1.497
1050	1.530	1.515	1.507	1.503	1.499	1.497	1.496
1200	1.532	1.515	1.507	1.502	1.499	1.496	1.494
1350	1.533	1.515	1.507	1.501	1.498	1.495	1.493
1500	1.534	1.516	1.506	1.501	1.497	1.495	1.493
1650	1.535	1.516	1.506	1.501	1.497	1.494	1.492
1800	1.536	1.516	1.506	1.500	1.496	1.494	1.491
SHGC			Win	dow Width (m	nm)		
Window							
Height (mm)	300	450	600	750	900	1050	1200
600	0.336	0.407	0.443	0.465	0.479	0.489	0.497
750	0.352	0.427	0.465	0.487	0.502	0.513	0.521
900	0.362	0.440	0.479	0.502	0.518	0.529	0.537
1050	0.370	0.450	0.489	0.513	0.529	0.540	0.549
1200	0.376	0.457	0.497	0.521	0.537	0.549	0.558
1350	0.380	0.462	0.503	0.528	0.544	0.556	0.564
1500	0.384	0.467	0.508	0.533	0.549	0.561	0.570
1650	0.387	0.470	0.512	0.537	0.553	0.565	0.574
1800	0.389	0.473	0.515	0.540	0.557	0.569	0.578

Windows – Size Matters

Casement Window	U-factor		SHGC			
Example	Small	Medium	Large	Small	Medium	Large
	300x600 mm	600x1500 mm	1200x1800 mm	300x600m m	600x1500 mm	1200x1800 mm
Double – High Solar	1.52	1.51	1.49	0.34	0.51	0.58
Double – Medium Solar	1.51	1.47	1.44	0.18	0.27	0.31
Double – Low Solar	1.51	1.43	1.42	0.14	0.20	0.23
Triple – High Solar	1.09	0.94	0.87	0.28	0.42	0.47
Triple – Medium Solar	1.08	0.92	0.85	0.16	0.25	0.28
Triple – Low Solar	1.07	0.91	0.84	0.12	0.18	0.21

Windows - HOT2000 Input

Code Editor

Legacy User Defined Code

Overall Window Characteristics Code

Code Label Description Glazing Type Double/double with 1 coat Overall Thermal Resistance Resistivity Frame Height SHGC RSI/R-Value Window Type Low-E Coating Fill Gas Argon Clear Clear Soft Coat Hard Coat Tint + Hard Coat

Windows – HOT2000 vs. NFRC U-factors and SHGC

- U-Factors and SHGC values
 - Calculated at three sizes from NFRC and the three HOT2000 window codes
 - OCasement Window
 - **O**300 x 600 mm
 - ○600 x 1500 mm (NFRC model size)
 - ○1200 x 1800 mm

Windows - HOT2000 vs. NFRC U-factors

31

- O Code Editor can not handle low solar gain low-e, over predicts U-factor for high and medium solar gain low-e
- Legacy predicts U-factor very well, but the input data is not readily available
- Overall, under predicts U-factor slightly, but the input data is more readily available

Windows - HOT2000 vs. NFRC SHGC

32

- O Code Editor can not handle low solar gain low-e, under predicts SHGC for high and medium solar gain low-e
- Legacy predicts SHGC very well, but again the input data is not readily available
- Overall predicts the SHGC well especially for triple glazed windows and the data is readily available.

Windows – HOT2000 vs. NFRC SHGC

- Consider abandoning the window code editor as the prediction of the current low-e glass options is not handled very well
- Consider using the Overall Window Characteristic code for creating window codes in HOT2000
- O Push the window industry to provide access to the data for the Legacy User Defined code
- NRCan could work with the fenestration industry to develop a better means of getting window performance input data

- New technology being considered by the fenestration industry
 - OUltra triples three low-e coating
 - Vacuum glazing and hybrid vacuum
 - Aerogel in glass units
 - OFrame Design

- New technology being considered by the fenestration industry
 - O Ultra triples three low-e coating

O Window modeling techniques are available now, but Legacy input would be the only option in HOT2000

- New technology being considered by the fenestration industry
 - Vacuum glazing and hybrid vacuum glazing
 - OClaims of U-factor center-of-glass under 0.60 W/m²K even lower in a hybrid
 - NFRC working on a rating for vacuum glazing

- New technology being considered by the fenestration industry
 - Aerogel in glass units

- O Potential for very low center-of-glass U-factors
- O No modelling approach at this time
- O NFRC will need to work on the modeling when these products become available

- New Frame Design NRCan Research Project
 - O Window design elements reviewed in this study
 - Frame Material (new or additional materials)
 - OPercent Frame Area (less frame area)
 - O Number of Glass Layers (minimum triple glazed IGU)
 - OGas Fill (preferably argon, but krypton if required)
 - Overall IG Unit Thickness (optimized for spacer and gas choice)
 - OSpacer System Type (lower conductance spacers)

Design Elements Needed to Achieve U-factor performance

U-factor Range (W/m²K)	Window Design Elements Needed
1.05-0.95	3 to 4 elements
0.94-0.83	4 to 5 elements
0.82-0.65	5 to 6 elements

- OFenestration Ratings vs Fenestration Performance
 - ORatings are for labels to compare one product to another
 - Fenestration performance data will be needed on any new technology to allow for the full energy efficiency improvements to be modelled in the building

Questions

Jeff Baker WESTLab Canada jeff@westlab.net