
(\checkmark) Preliminary Specifications

() Final Specifications

Module	15.6"FHD Color TFT-LCD
Model Name	
Note	LED backlight with driving circuit design

Ver	Version and Date		Old Description	New Description	Remark
0.0	2015/05/15	All	1st Edition for Customers		

1. Handling Precautions

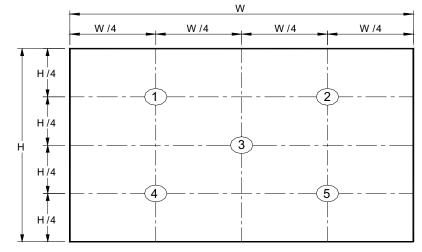
- 1) Since front polarizer is easily damaged, please be cautious and not to scratch it.
- 2) Be sure to turn off power supply when inserting or disconnecting from input connector.
- 3) Wipe off water drop immediately. Long contact with water may cause discoloration or spots.
- 4) When the panel surface is soiled, wipe it with absorbent cotton or soft cloth.
- 5) Since the panel is made of glass, it may be broken or cracked if dropped or bumped on hard surface.
- 6) To avoid ESD (Electro Static Discharde) damage, be sure to ground yourself before handling TFT-LCD Module.
- 7) Do not open nor modify the module assembly.
- 8) Do not press the reflector sheet at the back of the module to any direction.
- 9) In case if a module has to be put back into the packing container slot after it was taken out from the container, do not press the center of the LED light bar edge instead, press at the far ends of the LED light bar edge softly. Otherwise the TFT Module may be damaged.
- 10) At the insertion or removal of the Signal Interface Connector, be su contract to rotate nor tilt the Interface Connector of the TFT Module.
- 11) TFT-LCD Module is not allowed to be twisted & bent even force is added on module in a very short time. Please design your display product well to avoid external force applying to module by end-user directly.
- 12) Small amount of materials without flammability grade are used in the TFT-LCD module. The TFT-LCD module should be supplied by power complied with requirements of Limited Power Source (IEC60950 or UL1950), or be applied exemption.
- 13) Severe temperature condition may result in different luminance, response time and lamp ignition voltage.
- 14) Continuous operating TFT-LCD display under few temperature environment may accelerate lamp exhaustion and reduce luminance dramatically.
- 15) The data on this specification sheet is applicable when LCD module is placed in landscape position.
- 16) Continuous displaying fixed pattern may induce image sticking. It's recommended to use screen saver or shuffle content periodically if fixed pattern is displayed on the screen.

2. General Description

G156HTN02.0 is a Color Active Matrix Liquid Crystal Display composed of a TFT LCD panel, a driver circuit, and LED backlight system. The screen format is intended to support the 16:9 FHD, 1920(H) x1080(V) screen and 16.2M colors (RGB 6-bits+2FRC data driver) with LED backlight driving circuit.

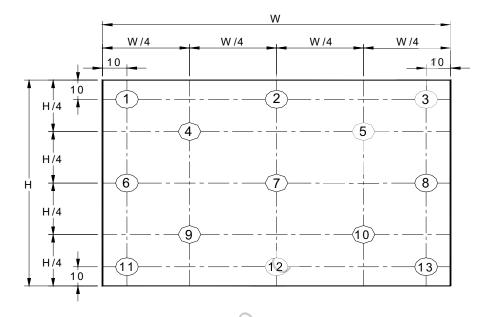
G156HTN02.0 is designed for a display unit of industrial machine.

2.1 General Specification


The following items are characteristics summary on the table at 25 °C condition:

Items	Unit		Specifications						
Screen Diagonal	[inch]	15.6"							
Active Area	[mm]	344.16(H) x 1	93.59(∨)						
Pixels H x V		1920 x 3(RGB) x 1080						
Pixel Pitch	[mm]	0.17925 x 0.1	7925						
Pixel Format		R.G.B. Vertico	al Stripe						
Display Mode		TN Mode, No	ormally White						
White Luminance (Center) (ILED=50mA,Note: ILED is LED current)	[cd/m ²]	400 Typ. 320 Min.							
Luminance Uniformity		TBD (5 points	, Max.)						
Contrast Ratio		500:1 (Typ.)							
Response Time	[ms]	8 (Typ.)/ 16 (Max.)							
Nominal Input Voltage VDD	[Volt]	+3.3 (Typ.)							
LCD Power Consumption	[Watt]	3.76 W (Max.)							
LED Power Consumption	[Watt]	10.6 W (Max.)						
Weight	[Grams]	TBD (Max.)							
			Min.	Typ.	Max.				
Physical Size	[mm]	Length	363.3	363.8	364.3				
Without bracket.	[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[Width	215.4	215.9	216.4				
		Thickness	8.8	9.3	9.8				
Electrical Interface		Two channe	LVDS						
Surface Treatment		Anti-glare (H	aze=25%)						
Support Color		16.2M Colors	(RGB 6-bits +	-2FRC)					
Temperature Range Operating Storage (Non-Operating)	[ºC] [ºC]	-10 to +70 -20 to +70							

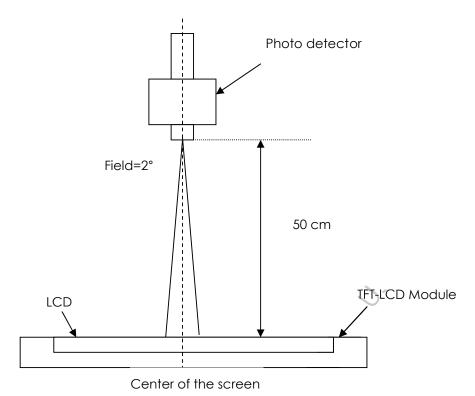
2.2 Optical Characteristics


H\Y`cdh]WU``W\UfUWhYf]gh]WgUfY`aYUgifYX`ibXYf`ghUV`Y`WcbX]h]cbgUhi&) °C (Roca` HYadYfUhifYŁ`.

ltem		Unit	Conc	litions	Min.	Тур.	Max.	Note
7 YbhfU``@ra] <i>±e</i> 981)\$a		WX#a &			' &\$	(\$\$!!!	%ž(ž)
J]Yk]b[`5			<cf]ncbhu`` 7 F`1`%\$`</cf]ncbhu`` 	fF][\hŁ f@YZtŁ	*\$ *\$	+\$ +\$!!! !!!	(~;
ן אזן כ	J		J Y fh]WU`` 7 F '1 '%\$``	flddYfŁ fleckYfŁ	())\$	*\$!!! !!!	(ž-
@ra]bUbWYib	17c fa 1mm) ⁻ Do	c]bhg	!!!	!!!	H68	%ž″ž(
	ווון הושעו		% [•] D	c]bhg	!!!	!!!	H68	&ž'ž(
7 c bhfUghiF	7cbhfUghiFUh]c				(\$\$) \$\$	ļ	(Ž*
7 fc ggʻHJ	7 fc gg HJ`_				!!!	!!!	((Ž +
FYgdcbgY [°] I	- j a Y	a gYW	F]g]b[Ž	[∵:U``]b[!!!	,	% *	(Ž,
	FYX	FI			H68	H68, C	X H6 8	
	FIA	Fm			H68	H68	H68	
	; fYYb	; 1			H68	168	H68	
7 c`cf`# 7 ∖fca UhjWjhmi	, 1110	; m			H68	7)148	H68	
7 ccX]bUhYg		61	7 - 9	%'%	H68	Н68	H68	(
	6`i Y	6m			H68	H68	H68	
		ΚI			H68	ł\$"" %	H68	
	K \]hY	Кm			Н68	ł\$''' &-	H68	
BHG7		I			ļ	+&	ļ	

Note 1: 5 points position (Ref: Active area)

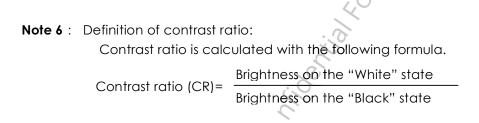
Note 2: 13 points position (Ref: Active area)



Note 3: The luminance uniformity of 5 or 13 points is defined by dividing the maximum luminance values by the minimum test point luminance

δ _{w5} =	_	Maximum Brightness of five points
	_	Minimum Brightness of five points
δ _{W13}	_	Maximum Brightness of thirteen points
	-	Minimum Brightness of thirteen points

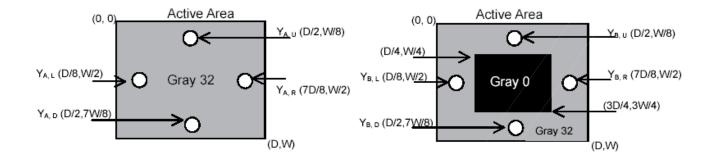
Note 4: Measurement method


The LCD module should be stabilized at given temperature for 30 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 30 minutes in a stable, windless and dark room, and it should be measured in the center of screen.

Note 5 : Definition of Average Luminance of White (YL):

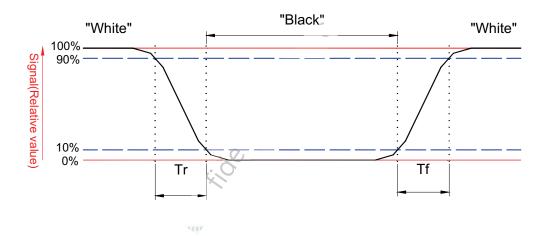
Measure the luminance of gray level 63 at 5 points , $Y_L = [L_1] + L_2 + L_3 + L_4 + L_5] / 5$

L (x) is corresponding to the luminance of the point X at Figure in Note (1).


Note 7 : Definition of Cross Talk (CT)

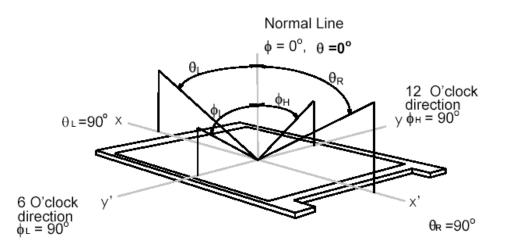
 $CT = | Y_B - Y_A | / Y_A \times 100 (\%)$

Where


Y_A = Luminance of measured location without gray level 0 pattern (cd/m₂)

 Y_B = Luminance of measured location with gray level 0 pattern (cd/m₂)

Note 8: Definition of response time:


The output signals of BM-7 or equivalent are measured when the input signals are changed from "Black" to "White" (falling time) and from "White" to "Black" (rising time), respectively. The response time interval between the 10% and 90% of amplitudes. Refer to figure as below.

9 of 28

Note 9. Definition of viewing angle

Viewing angle is the measurement of contrast ratio >10, at the screen center, over a 180° horizontal and 180° vertical range (off-normal viewing angles). The 180° viewing angle range is broken down as follows; 90° (θ) horizontal left and right and 90° (Φ) vertical, high (up) and low (down). The measurement direction is typically perpendicular to the display surface with the screen rotated about its center to develop the desired measurement viewing angle.

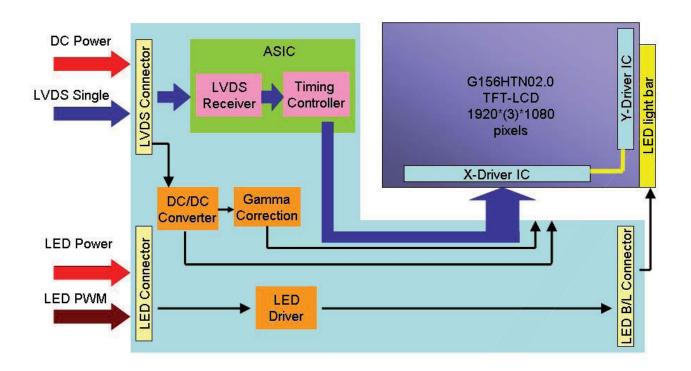
Crosstalk above for viewing angle under 3D mode is defined as below; Crosstalk_Left(%) = L_{black}R_{white} / L_{white}R_{black}

Where

Crosstalk_Left(%) means left eye crosstalk;

Lblack means left eye black signal;

R_{white} means right eye white signal;


 $\boldsymbol{L}_{\boldsymbol{white}}$ means left eye white signal;

Rblack means right eye black signal;

Right eye crosstalk is defined by analogy.

3. Functional Block Diagram

The following diagram shows the functional block of the 15.6 inch Color TFT-LCD Module:

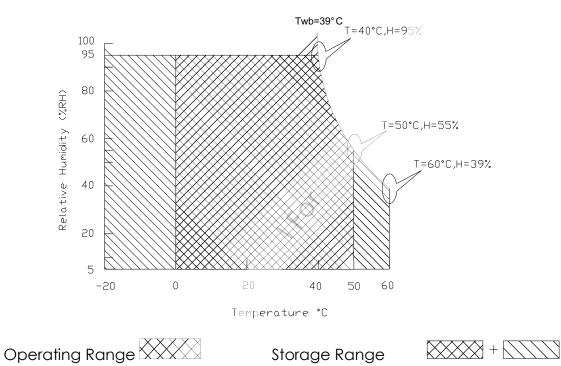
4. Absolute Maximum Ratings

An absolute maximum rating of the module is as following:

4.1 Absolute Ratings of TFT LCD Module

ltem	Symbol	Min	Max	Unit	Conditions
Logic/LCD Drive	Vin	-0.3	+5.0	[Volt]	Note 1,2

4.2 Absolute Ratings of Environment


Item	Symbol	Min	Max	Unit	Conditions
Operating Temp.	TOP	0	+50	[°C]	Note 4
Operation Humidity	HOP	8	95	[%RH]	Note 4
Storage Temperature	TST	-20	+60	[°C]	Note 4
Storage Humidity	HST	5	95	[%RH]	Note 4

Note 1: At Ta (25°C)

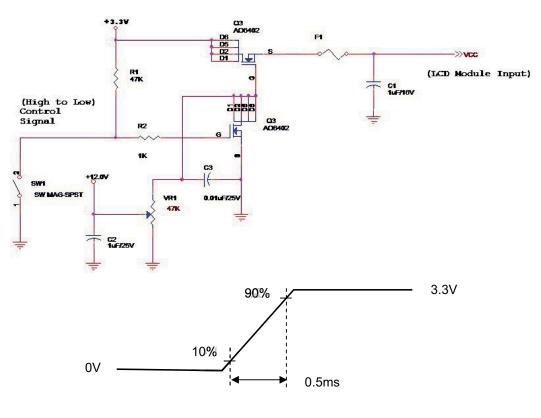
Note 2: Permanent damage to the device may occur if exceed maximum values

Note 3: LED specification refer to section 5.2

Note 4: For quality performance, please refer to AUO IIS (Incoming Inspection Standard)

5. Electrical Characteristics

5.1 TFT LCD Module


5.1.1 Power Specification

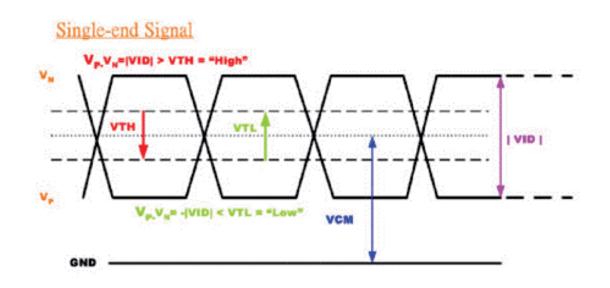
Input power specifications are as follows;

The power specification are measured under 25° C and frame frequency under 60Hz

Symble	Parameter	Min	Тур	Max	Units	Note
VDD	Logic/LCD Drive Voltage	3.0	3.3	3.6	[Volt]	
PDD	VDD Power	-	3.14	3.76	[Watt]	Note 1
IDD	IDD Current	-	950	1140	[mA]	Note 1
IRush	Inrush Current	-	-	TBD	[mA]	Note 2
VDDrp	Allowable Logic/LCD Drive Ripple Voltage	-	-	TBD	[mV] p-p	

Note 1: Maximum Measurement Condition : Red Pattern **Note 2:** Measure Condition

Vin rising time


5.1.2 Signal Electrical Characteristics

Input signals shall be low or High-impedance state when VDD is off.

Signal electrical characteristics are as follows;

Parameter	Condition	Min	Max	Unit
VTH	Differential Input High Threshold (Vcm=+1.2V)		100	[mV]
VTL	Differential Input Low Threshold (Vcm=+1.2V)	-100		[mV]
VID	Differential Input Voltage	100	600	[mV]
V _{CM}	Differential Input Common Mode Voltage	1.125	1.375	[V]

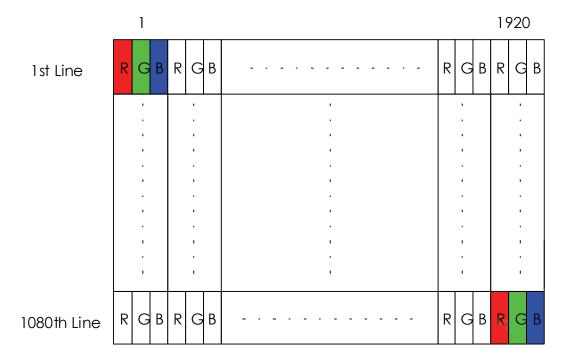
Note 1: LVDS Signal Waveform

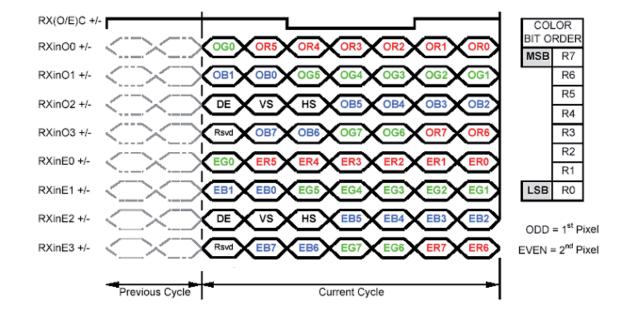
5.2 Backlight Unit

5.2.1 LED characteristics

Parameter	Symbol	Min	Тур	Max	Units	Condition
Backlight Power Consumption	PLED	-	-	10.6W	[Watt]	(Ta=25℃), Note 1
LED Life-Time	N/A	-	50,000	-	Hour	(Ta=25℃), Note 2

Note 1: Calculator value for reference P_{LED} = VF (Normal Distribution) * IF (Normal Distribution) / Efficiency **Note 2:** The LED life-time define as the estimated time to 50% degradation of initial luminous.


5.2.2 Backlight input signal characteristics


Parameter	Symbol	Min	Тур	Max	Units	Remark
LED Power Supply	VLED	10.8	12.0	13.2	[Volt]	
LED Enable Input High Level		2.5	-	5 🔪	[Volt]	
LED Enable Input Low Level	VLED_EN	-	-	20.8	[Volt]	Define as
PWM Logic Input High Level		2.5	×	5	[Volt]	Connector Interface
PWM Logic Input Low Level	VPWM_EN	-02		0.8	[Volt]	(Ta=25℃)
PWM Input Frequency	FPWM	200	-	15K	Hz	
PWM Duty Ratio	Duty	5	-	100	%	

6. Signal Interface Characteristic

6.1 Pixel Format Image

Following figure shows the relationship of the input signals and LCD pixel format.

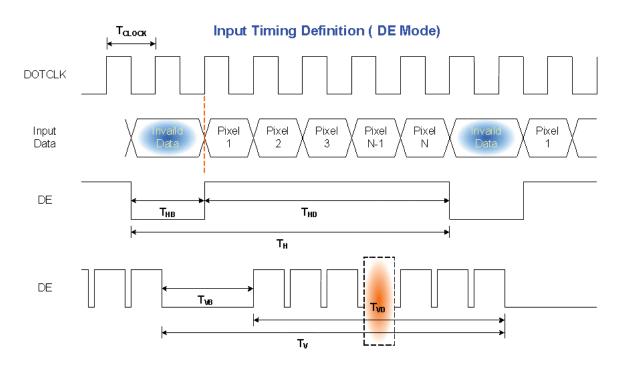
6.2 The Input Data Format

6.3 Signal Description

The module using one LVDS receiver SN75LVDS82(Texas Instruments). LVDS is a differential signal technology for LCD interface and high speed data transfer device. LVDS transmitters shall be SN75LVDS83(negative edge sampling). The first LVDS port(RxOxxx) transmits odd pixels while the second LVDS port(RxExxx) transmits even pixels.

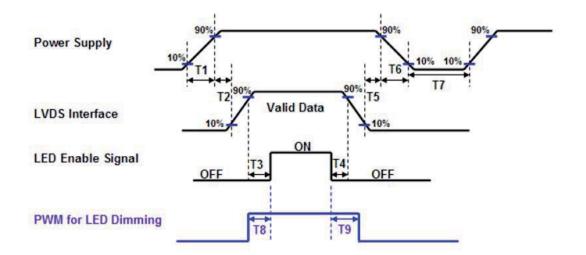
Pin	Signal	Description
1	REIN3+	+ LVDS differential data input (Even CH3)
2	REIN3-	- LVDS differential data input (Even CH3)
3	RECLKIN+	+ LVDS differential data input (Even CLK)
4	RECLKIN-	- LVDS differential data input (Even CLK)
5	REIN2+	+ LVDS differential data input (Even CH2)
6	REIN2-	- LVDS differential data input (Even CH2)
7	GND	Ground
8	REIN1+	+ LVDS differential data input (Even CH1)
9	REIN1-	- LVDS differential data input (Even CH1)
10	GND	Ground
11	REIN0+	+ LVDS differential data input (Even CH0)
12	REIN0-	- LVDS differential data input (Even CH0)
13	ROIN3+	+ LVDS differential data input (Odd CH3)
14	ROIN3-	- LVDS differential data input (Odd CH3)
15	ROCLKIN+	+ LVDS differential data input (Odd CLK)
16	ROCLKIN-	- LVDS differential data input (Odd CLK)
17	GND	Ground
18	ROIN2+	+ LVDS differential data input (Odd CH2)
19	ROIN2-	- LVDS differential data input (Odd-CH2)
20	ROIN1+	+ LVDS differential data input (Odd CH1)
21	ROIN1-	- LVDS differential data input (Odd CH1)
22	ROIN0+	+ LVDS differential data input (Odd CH0)
23	ROIN0-	- LVDS differential data input (Odd CH0)
24	GND	Ground
25	GND	Ground
26	GND	Ground
27	GND	Ground
28	VDD	+3.3V
29	VDD	+3.3V
30	VDD	+3.3V

6.4 Interface Timing (LVDS)


6.4.1 Timing Characteristics

Basically, interface timings should match the 1920x1080/ 60Hz manufacturing guide line timing.

Para	meter	Symbol	Min.	Тур.	Max.	Unit
Frame Rate		-	40	60	60	Hz
Clock frequency		1/ T _{Clock}	50	70.93	75	MHz
Horizontal Section	Period	Тн	1050	1065	1075	
	Active	T _{HD}	960			Tclock
	Blanking	Тнв	90	105	115	
	Period	T∨	1090	1110	1130	
Vertical Section	Active	T _{VD}	1080		Tline	
	Blanking	T∨B	10	30	50	


Note 1: DE mode only.

6.4.2 Timing Diagram

6.5 Power ON/OFF Sequence

LED on/off sequence is as follows. Interface signals are also shown in the chart.

Power Sequence Timing				
	Va			
Parameter	Min.	Max.	Units	
T1	0.5	10		
T2	60	70	_	
Т3	400	-		
T4	400	-		
T5	0	50	ms	
T6	0	10		
T7	500	-		
T8	10	180		
T9	10	180		

Note 1: If T4<400ms, The display garbage may occur. We suggest T4>400ms to avoid the display garbage.

Note 2: If T1 < 0.5ms, the inrush current may cause the damage of fuse. If T1 < 0.5ms, the inrush current I2t is under typical melt of fuse Spec., there is no mentioned problem.

7. Connector & Pin Assignment

Physical interface is described as for the connector on module. These connectors are capable of accommodating the following signals and will be following components.

7.1 TFT LCD Module

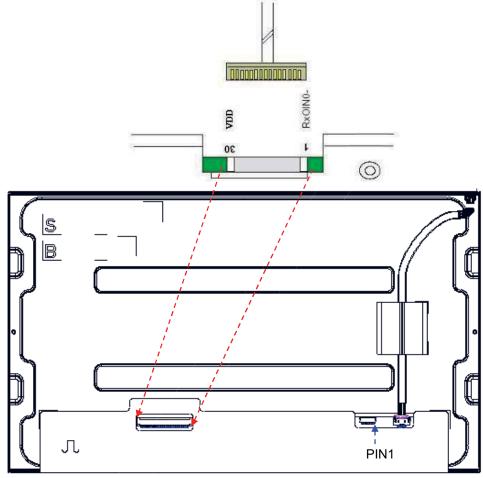
Connector Name / Designation	Interface Connector / Interface card
Manufacturer	HRS
Type Part Number	DF14H-30P-1.25H
Mating Housing Part Number	DF14H-30S-1.25C

7.1.1 Pin Assignment

Pin#	Signal Name	Pin#	Signal Name
1	REIN3+	2	REIN3-
3	RECLKIN+	4	RECLKIN-
5	REIN2+	6	REIN2-
7	GND	8	REIN1+
9	REIN1-	10	GND
11	REIN0+	12	REIN0-
13	ROIN3+	14	ROIN3-
15	ROCLKIN+	16	ROCLKIN-
17	GND	18	ROIN2+
19	ROIN2-	20	ROIN1+
21	ROIN1-	22	ROIN0+
23	ROIN0-	24	GND
25	GND	26	GND
27	GND	28	VÐD
29	VDD	30 🔨	VDD

7.2 Backlight Unit

Physical interface is described as for the connector on module. These connectors are capable of accommodating the following signals and will be following components.


Connector Name / Designation	LED Connector
Manufacturer	E&T
Type Part Number	3710K-Q10N-01R
Mating Housing Part Number	H113K-D10N-01B

Pin#	Symbol	Signal Name
1	VCC	+12V
2	VCC	+12V
3	VCC	+12V
4	VCC	+12V
5	GND	Ground
6	GND	Ground
7	GND	Ground
8	GND	Ground
9	ENABLE	LED enable pin
10	PWM	System PWM Single Input

7.2.1 LED Driver Connector Pin Assignment

Note1: Start from right side

Note2: Connector Illustration

8. Panel Reliability Test

8.1 Vibration Test

Test Spec:

- Test method: Non-Operation
- Acceleration: 1.5 G
- Frequency: 10 500Hz Random
- Sweep: 30 Minutes each Axis (X, Y, Z)

8.2 Shock Test

Test Spec:

- Test method: Non-Operation
- Acceleration: 220 G , Half sine wave
- Active time: 2 ms
- Pulse: X,Y,Z one time for each side

Items	Required Condition	Note
Temperature Humidity Bias	Ta= 40°C, 90%RH, 300h	
High Temperature Operation	Ta= 70°C , Dry, 300h	
Low Temperature Operation Ta= -10°C, 300h		
High Temperature Storage	Ta= 70°C, Dry, 300h	Note 1,2
Low Temperature Storage	Ta= -20°C, 300h	
Thermal Shock Test	Ta=-20°C to 60°C, Duration at 30 min, 100 cycles	
ESD	Contact : ±8 KV (TBD) Air : ±15 KV (TBD)	Note 1

8.3 Reliability Test

Note 1: According to EN 61000-4-2, ESD class B: Some perfermance degradation allowed.

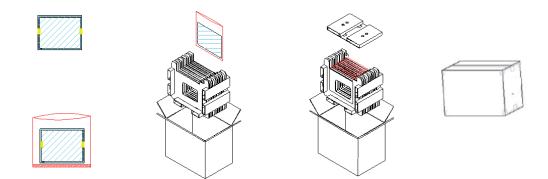
Self-recoverable. No data lost, No hardware failures.

Note 2:

- Water condensation is not allowed for each test items.
- Each test is done by new TFT-LCD module. Don't use the same TFT-LCD module repeatedly for reliability test.
- The reliability test is performed only to examine the TFT-LCD module capability.
- To inspect TFT-LCD module after reliability test, please store it at room temperature and room humidity for 24 hours at least in advance.
- No function failure occurs. Mula shall be ignored after high temperature reliability test

9. Shipping and Package

9.1 Shipping Label Format

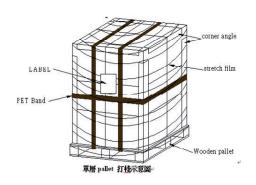

Note 1: For Pb Free products, AUO will add 🔊 for identification.

Note 2: For RoHS compatible products, AUO will add RoHS for identification.

Note 3: For China RoHS compatible products, AUO will add 6 for identification.

Note 4: The Green Mark will be presented only when the green documents have been ready by AUO Internal Green Team.

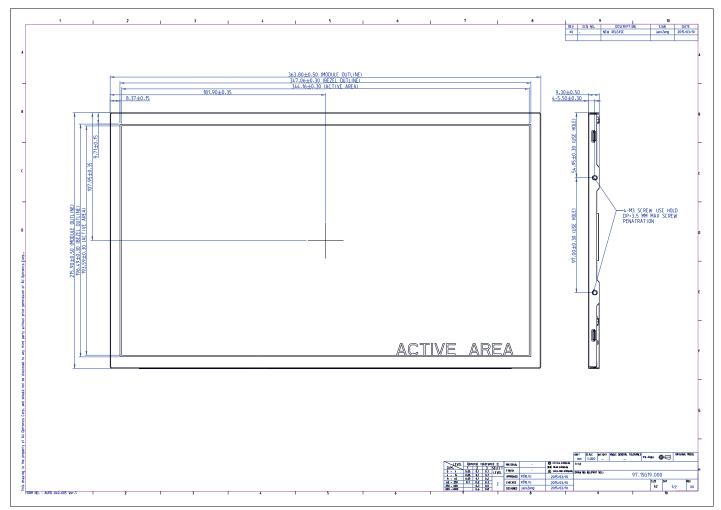
9.2 Carton Package

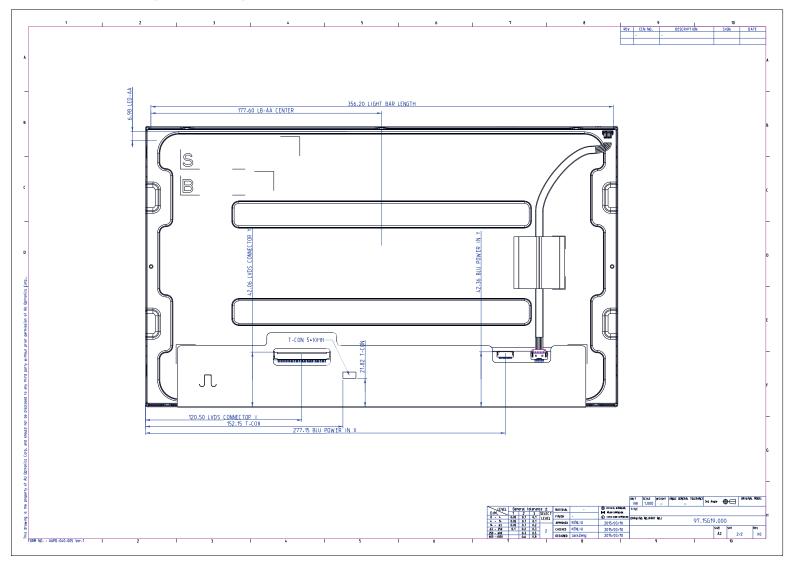


Max capacity : 16 TFT-LCD module per carton Max weight: 16.3 kg per carton Outside dimension of carton: 450mm(L)*375mm(W)*319mm(H) Pallet size : 1150 mm * 910 mm * 132mm

Box stacked

Module by air : (2 *3) *4 layers , one pallet put 24 boxes , total 384pcs module Module by sea : (2 *3) *4 layers+(2 *3) *1 layers , two pallet put 30 boxes , total 480pcs module Module by sea_HQ : (2 *3) *4 layers+(2 *3) *2 layers , two pallet put 42 boxes , total 576 pcs module


9.3 Shipping Package of Palletizing Sequence



10 .Mechanical Characteristics

10.1 LCM Outline Dimension (Front View)

10.2 LCM Outline Dimension (Rear View)

'UII'