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Abstract
Neural cellular automata (Neural CA) are a recent framework used to model biological phenomena emerging from multicellular
organisms. In these systems, artificial neural networks are used as update rules for cellular automata. Neural CA are end-to-end
differentiable systems where the parameters of the neural network can be learned to achieve a particular task. In this work, we
used neural CA to control a cart-pole agent. The observations of the environment are transmitted in input cells while the values of
output cells are used as a readout of the system. We trained the model using deep-Q learning where the states of the output cells
were used as the Q-value estimates to be optimized. We found that the computing abilities of the cellular automata were maintain-
ed over several hundreds of thousands of iterations, producing an emergent stable behavior in the environment it controls for
thousands of steps. Moreover, the system demonstrated life-like phenomena such as a developmental phase, regeneration after
damage, stability despite a noisy environment, and robustness to unseen disruption such as input deletion.
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Introduction

One of the most remarkable feats of life is the developmental pro-
cess leading to the emergent complexity of the human brain from a
single cell. The field of neurodevelopment (i.e., the development
of the nervous system) has been investigating this problem for
decades. These studies led to the discovery of the intricate mecha-
nisms by which gradients of chemicals and local cell interactions
shape the differentiation of pre-neural cells and the organization
of their connections [1]. Even after the brain is considered fully
grown, its developmental process does not stop. New neurons are
formed continuously until death, and the shape and the strength of
their connections change. Such neural plasticity is influenced by
the sensory inputs received by the individual and is considered to
be at the root of the emergence of intelligence. In addition to the
ability to cope with a changing environment, plasticity provides

remarkable robustness. For example, after a stroke, the neural net-
work reorganizes in a new architecture to preserve motor function
[2]. It can also adapt to sensory deprivation to extract the most
information from the remaining senses. This is the case in blind
individuals: the processing of auditive information can be partially
deferred to the visual cortex, improving their sound localization
abilities [3].

Neural plasticity can be considered as a part of the whole mech-
anism governing homeostasis of both shape and function. This
conceptual proximity is also justified by biological evidence such as
the discovery of the role of electrical activity during morphogen-
esis. In particular, the same ion channels are used both for local
communication between non-neuronal cells during embryogenesis
and in the neurons to carry action potentials [4]. More generally,
there seems to exist a continuum between the phenomena we usu-
ally call growing, learning, and computing. Each of these abilities
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may be considered a different aspect of the same underlying self-
organizing system.

Moreover, there is evidence that the DNA does not encode precise
details of the resulting neural network. There is an information
gap between the size of the DNA and the complexity of the neural
network, generally referred to as a genomic bottleneck [5]. The
DNA only specifies the local behavior of cells through the shape
of the proteins it encodes. The neural network is then a structure
that emerges through these local interactions and yields useful
biological processing of the inputs received by the senses [6].

Despite the crucial role of growth in the emergence of intelli-
gence, modern advances in artificial neural networks mainly focus
on the handcrafted design of static maps of neural connections.
During the phase called learning—that is in fact quite far from the
biological sense of this word [5] —the connections of this architec-
ture are optimized to reduce the error on the task to solve.

Some effort has been made to include an automatic process to in-
crementally design neural network architectures. These techniques
include the use of genetic algorithms [7][8] or the introduction of a
growing phase in artificial neural networks [9] [10]. Nonetheless,
in these works, the process is a tool for navigating the topological
parameter space, rather than treating the learning as a develop-
mental problem.

The developmental problem has also been addressed as an in-
dependent task. In this case, the goal is to model the phenomena
of morphogenesis observed in living organisms. Successful ap-
proaches used cellular automata along with artificial neural net-
works implementing local rules. They were able to produce complex
patterns from localized interactions [11] [12].

More radical approaches tried to develop an artificial substrate
where life-like phenomena could emerge in an open-ended en-
vironment [13] [14]. Despite their great promise, we are still far
from recreating the whole evolution process that gives rise to intel-
ligence.

In this work, we attempt at bridging the gap between growth
and computation by using neural cellular automata (neural CA) [12].
Neural CA are spatially distributed systems composed of cells that
interact through local interaction. Their update rule consists of an
artificial neural network and thus can be optimized through clas-
sical and efficient gradient descent-based techniques. Even if the
learning process is still happening through a procedure exterior
to the system, the local rules encode both the developmental pro-
cess—the transformation from a random grid to a configuration
suitable for computation—and the information processing itself.
We found that the cells were able to transmit and combine in a
meaningful way the information from input cells to output cells
used as a readout. The system demonstrates long-term stability
and robustness to noise and damage. We illustrate these abilities
on a simple control task as a proof of concept. Despite the fact that,
in its current form, the system cannot compete with traditional
techniques in terms of learning efficiency, this approach is justified
by the future opportunities it opens. We discuss the potential future
work in the last section of the paper.

Related works

The idea that a controller can emerge from a self-organizing sys-
tem is not new. One of the most studied examples concerns the gait
transition in animals i.e. going from walking to running when the
velocity of the motion increases. The different limb coordination
strategies observed during each gait do not seem to be the result of
a control plan transmitted by the brain. Instead, this phenomenon
has been described as a phase transition in the self-organizing sys-
tem composed of the bones, nerves, and muscles used for locomo-
tion [15]. This has notably been modeled by coupled differentiable
equations describing mechanical dynamics and neural oscillators
to reproduce walking motion [16].

Other techniques such as dynamic neural fields have also been
used. Their dynamics have been theoretically described in [17]. This
enables the design of systems that exploit their emerging patterns
of activation for human-robot interaction [18].

More generally, it has been argued that there exists close prox-
imity between goal-directed behavior relying on feedback loops
where the agent tries to adjust its action to minimize the distance
to its desired state and the dynamics of self-organizing systems.
These two models could be different ways of thinking about the
same processes [19].

Goal-directed cellular automata

The artificial design of self-organizing systems has been strongly
focused on cellular automata (CA) because of their simplicity and
their general abilities. CA have been historically introduced to ad-
dress general questions about multicellularity in life: how can com-
plex shapes be created from a single cell, maintained, and then
replicated?

While the first works focused on handcrafted rules to create
self-replicating systems [20], more recent projects complexified
the rules updating the cell states. To search among the wide rule
spaces, genetic algorithms have been frequently used to find CA
that exhibited a predefined behavior. This enables the design of CA
that robustly grows a shape, in effect exhibiting homeostasis [21].
Another work was able to develop a targeted shape and maintain it
despite damage [22].

Instead of a classical look-up table, some works used update
rules implementing more complex algorithms. These types of up-
date rules were used as a generalization of evolvable circuits [23]
to design CA that performs tasks broader than the historical goal
of CA [24]. As in this case, CA have been used more generally not
only for questions related to shape but also for useful decentralized
computation [25].

To improve the search with genetic algorithms and favor evolv-
ability, some works used variable genotype size [26]. Other works
also included developmental function in the CA rules in order to
approach the fuzzy, one-to-many, function that maps a genotype
and an environment to a phenotype. This was done through the
addition of self-modifying abilities in the code of each cell, leading
to the creation of self-replicating systems [27].

Neural cellular automata

Precedent works used evolved neural networks to create CA that
grow desired shapes [11]. Then, the introduction of neural CA [12]
allowed the optimization of the neural networks used as update
rules using the language of differentiable programming instead of
genetic algorithms.

This model adds further elements to the questions for which
the CA were created. Neural CA enable the creation of self-repairing
systems that can grow complex shape from a single cell in 2D [12]
or in 3D [28], and regeneration of functional bodies such as soft
robots [29]. Beyond investigating homeostasis of shape, neural CA
have also been used for decentralized pattern recognition [30] as
well as texture synthesis [31].

Method

The pole balancing task

The cart-pole problem is a commonly used toy problem in the re-
inforcement learning community. In this environment, an agent
controls a cart-pole system. It can observe the pole angle and its
angular velocity, the cart position, and its linear velocity. Based
on these observations, the agent must decide whether to apply a
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Figure 1. The cart-pole environment. The top arrow represents the angular velocity
of the pole, the bottom arrow, the velocity of the cart.

force on the left or the right of the cart in order to maximize reward,
i.e. the time spent with the pole up and the cart in the center. The
simulation ends if the cart hits a wall or if the pole falls. We chose
this problem because of its low number of inputs and outputs that
allow the use of a small-sized grid and an easy experimentation
environment.

We used the implementation of this environment provided by
the OpenAI gym library1. We modified the reward function to favor
agents that stay in the center. This modification made the behavior
of avoiding walls emerge faster because the short-term maximiza-
tion of the reward was aligned with its long-term maximization.
We made the choice to change the reward function to speed up the
training and to provide easier experimentation and replication. The
reward given at time step t is given by the equation (1) where x is
the position of the cart, L is the length of the track. In the center
(x = 0), the agent receives 1, the maximum reward, while if it is on
the edges of the track (x± L), the agent receives 0, the minimum
reward.

rt =

 cos
(
xπ
2L

)2
if t is not a final step

–100 else.
(1)

Cell state

There are 3 types of cells in a grid: the intermediate, the input, and
output cells.

The state of each cell is composed of 6 channels. The first is the
information channelwhere meaningful input and output informa-
tion transit. The third is identifying the inputs: it is equal to 1 in the
input cells, 0 elsewhere. The fourth similarly identifies the outputs.
The remaining three are hidden channels.

The state of the input cells cannot be changed, the information
channel transmits the observation from the environment, and the
other channels except the output identifier are set to 1. The values
of the information channel of the output cells are used as the output
of the system to be optimized to solve the task.

The meaning of each channel and the different types of cells are
represented in the figure 2.

Input encoding

We use redundancy in the inputs: each of the 4 physical observa-
tions of the environment is linked to 2 input cells. Because we have
4 types of observation, there are

(4
2
)

= 6 possible pairs of observa-

1 https://gym.openai.com/

tions. Once the input cells are arranged in a circle, there are 4 ∗ R
pairs of neighbors, where R is the amount of redundancy. We chose
R = 2, this way, every pair of observations is present as a pair of
neighbor input cells. This argument was introduced because we
hypothesized that the closer two input cells are, the easier it will be
to combine the information. Thus, we thought that this choice of
position could improve the opportunity for information combina-
tion. Furthermore, redundancy could also provide more robustness:
if an input cell is damaged, the information it holds is also contained
in an undamaged input cell somewhere else.

Note that the type of information contained in the input is not
directly provided. To know which observation each input cell en-
codes, the CA must rely on the spatial position of the inputs or the
value of the information channel.

The value of each observation is scaled by a constant factor be-
fore being transmitted to the input cell. The choice of the factor
corresponding to each observation was chosen to get similar ranges
of values in the information channel.

Cell position

The 8 inputs are arranged on a circle to form an octagonal shape
(dotted line) on a 32x32 grid with zeros at the boundaries as shown
in figure 3. The two output cells are offset by 2 cells from the center
of the octagon. We chose this configuration to ensure an almost
equal distribution of the distance between each input and output.
We hypothesized that the closer an input cell is to an output cell,
the more the input will influence the output. The position of the
input cell was then chosen to avoid any bias toward some inputs.

Model

Except for the design of the cell states, the neural CA architecture we
used is similar to the one described for the self-classifying MNIST
task [30]. The perception layer is composed of 20 learnable 3x3x6
filters, and the single hidden layer counts 30 units. In total, our
model has 1854 learnable parameters.

As in the original model, the update rule is stochastic: at each
step, each cell has a 0.5 probability of being updated. This choice is
made to avoid temporal synchronization that relies on a centralized
clock. The figure 4 summarizes the architecture of our model.

Training procedure

Our model can be abstracted as a black-box function that takes in-
puts (that will be fed to the information channel of input cells) and
transforms them into outputs (the information channel of output
cells). This function is differentiable with respect to its param-
eters (the neural network used as the update rule) and thus can
be optimized with classical gradient descent techniques. In this
case, we used the Adam optimizer [32] provided by the TensorFlow
library2. This choice was made as this is also the optimizer success-
fully applied to neural CA in [12] and [30]. We did not perform any
optimization of the training procedure (optimizer choice, hyperpa-
rameters, learning algorithm, etc) as this was beyond the scope of
this paper. Our main aim was to provide a proof of concept.

Algorithm

To tackle the cart-pole problem, we used Deep Q-learning [33]
where the usual artificial neural network is seamlessly replaced by
a neural CA. The deep Q-learning algorithm aims at approaching
the expected reward given a state and an action. More precisely, the

2 https://www.tensorflow.org/

https://gym.openai.com
https://www.tensorflow.org/
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Figure 2. The role of the different channels and types of cells. Each cell is composed of a 6-dimensional vector, each dimension is called a channel. Different channels have
different behaviors: some are fixed (in red) others can change according to the update function (in black). Moreover, channels depend on the cell type. Input cells have only
constant channels except for their information channel that is defined by the observation of the environment. Excluding the identifier channels, intermediate cells are free to
evolve and can influence neighboring cells. While output cells are similar to intermediate cells, they can be identified by the output identifier channel and the value of their
information channel is used as a Q-value estimate.

Figure 3. The position of input (in red) and output cells (in yellow).

function to be learned is given by equation (2) where t is the index
of the current time-step. st is the current state and at the action to
evaluate. rt is the reward and γ is a discount factor.

Q(st, at) = E[rt+1 + γrt+2 + γ2rt+3 + ...|st, at] (2)

To keep the CA values in the information channel in a range
coherent with the other cells, we scale the outputs of the CA by a
factor of 100 to get the Q-value estimates. The reason for the scaling
is that the Q-value can be as low as -100 and as high as 1+γ+γ2 +... =

1
1–γ if the agent gets a reward of 1 for an infinite number of steps.
In practice, we used γ = 0.95 so the higher bound of the Q-value is
20. The factor 100 was chosen to bound the prediction (in the case
where they are close to the Q-value) to [–1, 0.2]: this is coherent
with the overflow loss that penalizes values outside [–5, 5], while
keeping some margin.

Loss function

The loss function for the task is the L2 loss between the output
and the target. To achieve long-term stability, we added a penalty
for cells that have channel values out of bound [-5,5]. Note that

excepted this overflow condition, the states of the intermediate
cells are not directly optimized, they are free to evolve insofar as
their influence on the outputs reduces the error. The formula used
to compute the loss is given in equation (3) where N is the size of
the grid, λ is a parameter to control the amount of overflow penalty,
and clip is a function for limiting the values to the threshold interval
[-5,5].

Loss = L2(outputs, target)+

λ

N2

N∑
i,j=1

6∑
chan=1

(clip(Gridi,j,chan, –5, 5) – Gridi,j,chan)2 (3)

Robustness

Damage

To increase the robustness of the system, we damage half of the
grids present in the pool. Damage consists of a circle of the grid
replaced by uniform random values in [-1,1], as shown in black in
figure 5. Note that damage impacts all the channels that can be
modified and that inputs are not affected by damage while outputs
are.

Noise

Before applying each update, we perturbed it with uniform noise.
Taking inspiration from what was done in [30], we used a noisy
update to favor a long-term stabilization of the cell states. In total,
the system has three layers of noise: the stochastic update where
half of the cells are randomly chosen not to be updated, the damage
of the grid, and the random perturbation of the values of the update.

Neural CA training

As introduced in [12] we used pool sampling for the states of the
neural CA during training to learn persistent behavior.

As described in the deep-Q learning algorithm, we alternate
phases where we explore the environment by letting the neural
CA controls the cart-pole agent and by taking random actions; and
training the neural CA using the target values based on the rewards
stored in the memory of the agent.
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Perception
20 3x3x6 learnable filters

+

Stochastic
update

Step N Step N+1
DenseDense ReLU

20 30 66

ReLU

Figure 4. The architecture of our model. Positive values are depicted in red, negative in blue. Green objects identify the learnable parameters of the model.

Figure 5. A damaged grid is shown on the information channel. The shape of the
damaged region is an irregular circle due to rasterization effects.

Environment exploration
To get a stable long-term behavior of the cart-pole agent we did
not use a fixed horizon for the environment. Instead, we use pool
sampling also for the states of the cart-pole, as done for the neural
CA grids.

The probability of taking a random action is given by the param-
eter ϵ that is decreased during the training of the agent, as in the
original deep-Q learning algorithm. The exploration of the envi-
ronment begins by sampling a grid from the grid pool, a cart-pole
state from the pool of environment states. Then we let the neural
CA, starting from the sampled grid, evolve for a random number of
steps from 50 to 60. After we choose the action that corresponds to
the greatest output of the neural CA, we obtain a new environment
state. We put the grid back in the grid pool and sample a new one.
We repeat this operation for K environment steps.

If the environment ends, we reset the environment to reach the
end of the K steps. After the K steps, the state of the cart-pole is
committed in the pool of environment states. We also randomly
replace grids by the initial state to be sure that the neural CA always
keeps the knowledge of how to start from a raw grid. The procedure
is illustrated in the figure 6 and its pseudocode can be found in the
algorithm 1.

Training
Between each exploration phase, we sample several batches of tran-
sitions (ot, at, rt, ot+1)—where ot is the observation at time t, at the
action taken, and rt the reward received—from the memory of the
agent that was stored during the exploration phases. We train the
neural CA according to the expression of the target value and the
error to optimize given by the deep-Q learning algorithm (equa-

tion (5)). Then, each transition is matched with a neural CA grid
randomly sampled among the pool of grids that we let evolve for
50 to 60 steps. We next compute the loss on the final state of the
grid, according to the formula (5) where yi is the target value for a
given transition at time j sampled from the memory of the agent,
and Q(oj, aj;θ) is the output of the neural CA for an action aj and an
observation oj. θ are the parameters of the update rule to be opti-
mized. We perform a gradient step on a batch composed of 16 such
grids. As described in [12], back-propagation through time is used
to compute the gradient of the loss with respect to the parameters of
the update rule. The pseudocode of the training phase is described
in the algorithm 2. The exploration and training procedure are used
in the algorithm 3 that describes the full optimization process of
the neural CA.

• yj =
{
rj if j is a final step
rj + γ ∗ maxa′Q(oj+1, a′;θ) else.

(4)

• TaskLoss = (yj – Q(oj, aj;θ))2 (5)

The training procedure runs for around 15k gradient descent
steps and 3k environment steps. The training took between 20 min-
utes and 1 hour on a GeForce GTX 1080 Ti GPU. We used a learning
rate of 5e-3 that decays to 5e-4 and then to 5e-5 after respectively
1000 and 10000 steps. Note that the hyperparameters used in the
training were not optimized and we mainly aimed at solving the
task, not necessarily in an efficient way.

Model initialization

We found that when trained directly for the task, the model was
trapped in a local minimum where it outputted constant values,
no matter the state of the inputs. We think that this is because
there need to be iterated applications of the update rule on each of
the intermediate cells between the inputs and outputs to transmit
and modify the information. This repeated use of a neural network
makes the gradient vanish, as observed in vanilla Recurrent Neural
Networks [34].

To solve this problem, we first trained the neural CA on an easier
task: both outputs were optimized to compute the mean of the
inputs. We found that it was able to learn with a reasonably low
error after several thousand gradient descent steps.

This initialization enables the neural CA to learn to stabilize the
states of the cells, make an information link from input to output,
and a linear combination of the input values at the output cells.
This procedure is similar to what is used in curriculum learning
[35] where an easy subset of the task is learned before tackling
the whole problem. Here we did not use a sub-task as a starting
point but a different task that shared common requirements. This
initialization phase appears essential in the experiments we con-
ducted. However, we do not think that this is specific to the task
to be learned. This can be seen as a general "warm-up" phase to
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Pool of gridsPool of environment states

Pool
Sampling

Take random action 
with ε probability

Transmit the 
observations to 
the input cells

N  neural CA steps

Take the action 
corresponding to the 

greater output cell value

Environment step 1 Environment step 2 Environment step K

Pool
Committing

Pool
Sampling

Pool
Committing

Figure 6. The procedure for the exploration phase. We match cart-pole states and grids randomly sampled from two independent pools. This provides a way to simulate
long-term dynamics both for the cart-pole environment and for the neural CA. In practice, we used K=2.

learn how to connect input and output cells.
The whole training procedure can be reproduced online in a

Google Colab notebook3.

Results

From estimating Q-values to stable behavior

To get a persistent control of the cart-pole agent, we begin by trans-
mitting the observation of the current state in the input cells. We
let the neural CA evolve for a random number of steps between 50
and 60. We take the action corresponding to the maximum out-
put value and we input the new observation to the neural CA. The
grid is initialized with uniform random values and the same grid
is used during the whole simulation. After training, the cart-pole
controller with neural CA is tested for how long the pole can remain
balanced. Moreover, we verify its resistance to damage, noise, and
input deletion.

Our model was able to solve the cart-pole problem and achieve
long-term stability of both the pole balancing and of the states of
the CA. It was able to balance the pole for more than 10k simulation
steps. Detailed performance evaluation can be found in table 1.

Resulting neural CA

Beyond performance, it is interesting to visualize the activities of
the neural CA during the control of the cart-pole agent.

In figure 8, we observe that the first 50 steps lead to a precise
spatial organization of the grid and, in figure 7, this phase corre-
sponds to the stabilization of the output values. Once stabilized,
this global shape will not change during the whole run. This can
be thought as the developmental part of the neural CA. This phase
can be seen in the videos on the interactive version of this preprint
available at https://avariengien.github.io/self-organized-control/.

3 https://colab.research.google.com/github/aVariengien/self-organized-
control/blob/main/code/Towards-self-organized-control-notebook.ipynb

Then, during the remaining part of the simulation, the spatial
activity is changing in phase with the physical observations, as
shown in figure 9. This is the computing phase. Even if the two
phrases seem to exist in the different models we found, the exact
organization of the grid differs significantly, as visible in figure
10. It is exciting to see that a wide variety of shapes emerges from
optimizing for the same function!

Note that the output values are always really close to one another.
Since the pole is in a balanced state, the difference between the
expected reward after going left or right is small. Going left then
right or going right then left will not yield a great difference in total
reward.

Robustness abilities

During training, the neural CA has always at least 50 steps between
the update of the inputs, where damage can occur, and the readout
of the output values. During testing, we also experimented with
a more challenging type of damage we called uniformly distributed
damagewhere at each CA step the grid has a constant probability of
being damaged.

Because this type of damage was more difficult to cope with,
we decreased the damage frequency: on average, the CA receives
one damage every 4 input updates with uniformly distributed dam-
age and one every 2 input updates with the damage used during
training.

The performance of the neural CA with different perturbations
is summarized in the table 1. The score denotes the number of
environment steps before the pole falls, or the cart hits a wall. In
each situation, we computed the mean score on 100 independent
runs, as well as the standard deviation. To ease the analysis, we
conducted the experiments of this section only on a single model,
nonetheless, the main conclusions generalize to the other models.

Resistance to damage

We found that the neural CA was able to maintain its shape and its
function despite frequent damage. In the figure 11 we can observe

https://colab.research.google.com/github/aVariengien/self-organized-control/blob/main/code/Towards-self-organized-control-notebook.ipynb
https://avariengien.github.io/self-organized-control/
https://colab.research.google.com/github/aVariengien/self-organized-control/blob/main/code/Towards-self-organized-control-notebook.ipynb
https://colab.research.google.com/github/aVariengien/self-organized-control/blob/main/code/Towards-self-organized-control-notebook.ipynb
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Figure 7. On the left, the states of the neural CA. For the information channel, negative values are in blue, positive in red while the hidden channel is represented as RGB
values. Bottom right: the plot of the output values of the neural CA. The vertical dotted lines denote when the action that has the maximum expected reward is taken by
the cart-pole agent. Green triangle: "push left" action, orange triangle: "push right" action. Videos of the cart-pole agent and the neural CA in action are available at
https://avariengien.github.io/self-organized-control/

.

Figure 8. The state of the grid during the 50 first phase. The information channel is displayed on the top. Negative values are in blue, positive in red while the hidden channels
(on the bottom) are represented as RGB values. We observe an evolution of the grid from a disorganized state to a precise, stable pattern.

No damage Damage after input update Uniformly distributed damage

No noisy update 13273 ± 11905 2598.19 ± 2241 391.6 ± 283
With noisy update 1296.3 ± 899 739.7 ± 473 345.7 ± 214

Table 1. Performance of the cart-pole agent with several types of perturbation. The score is the number of time steps the cart-pole stays balanced
without hitting walls. The scores are averaged on 100 runs and are notedmean ± standard deviation.

https://avariengien.github.io/self-organized-control/
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Figure 9. The state of the grid and of the environment in 3 situations, taken from the same run. The information channel is displayed on the top. Negative values are in blue,
positive in red, while the hidden channels (on the bottom) are represented as RGB values. We observe that the global pattern of the grid remains highly similar. However,
subtle variations around input cells are visible, as the ones highlighted in the circular enlargements of a grid region, on the top right of the grids.

Figure 10. The stable spatial organization of the grid for 3 independently trained neural CA. The information channel is displayed on the top. Negative values are in blue, positive
in red, while the hidden channels (on the bottom) are represented as RGB values. Their dynamics can be observed in videos available at https://avariengien.github.io/self-
organized-control/

.

https://avariengien.github.io/self-organized-control/
https://avariengien.github.io/self-organized-control/
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Figure 11. A slide sequence of grids during the recovery from damage. The information channel is displayed on the top. Negative values are in blue, positive in red, while the
hidden channels (on the bottom) are represented as RGB values. On the left is the state of the cart-pole during the damage and the evolution of the output values of the neural
CA. We can observe that the grid recovers its structure. Moreover, a temporary perturbation of the output value can be observed on the plot on the bottom left. Videos of the
recovery can be found at https://avariengien.github.io/self-organized-control/

.

how the grid recovers its shape after damage. Although damage can
lead to great perturbations in the output values and so to random
actions, the agent is still able to stabilize the pole for several hundred
steps.

Moreover, the neural CA was not trained to recover from uni-
formly distributed damage, this explains the greater diminution in
the average score visible in the table 1.

Resistance to noise

The amount of noise added to each update is often of the same order
as the difference between the two outputs when the pole is in a
balanced state. This is why we observe in the figure 12 the green
and orange curves are subject to stochastic variations that lead
them to cross many times between each readout. The policy that
controls the cart-pole agent is thus heavily randomized. Despite the
noisy update, the neural CA can produce a probability distribution
of actions such that a stable behavior emerges.

Resistance to input deletion

One of the particularities of this neural CA model is its flexibility.
For instance, the number of inputs and outputs can vary without
changing the architecture. We only have to replace input or output
cells with intermediate ones.

We were interested in exploring this flexibility and whether our
model showed robustness to input deletion. Because observations
from the cart-pole environment are encoded redundantly, we tested
if it was able to exploit this particularity even if it was not trained
for this.

In the table 2, we can observe the consequences of deleting each
input. We computed the mean scores on 25 independent runs for
each input deletion. Each column corresponds to one observation
type, each row corresponds to the top or the bottom input cell en-
coding this observation being deleted (see figure 3 for the position
of the input cells).

The system seems to be dependent on a few input cells that se-
riously impair performances such as the top input cell encoding
for pole angle and the ones corresponding to the angular velocity,
while others seem not to significantly affect its abilities. We hy-
pothesize that even if it has not been directly trained to be robust

Figure 12. A neural CA controls a cart-pole agent with noisy updates. On the left is
the grid of the neural CA. For the information channel, negative values are in blue,
positive in red while the hidden channel is represented as RGB values. Bottom right:
the plot of the output values of the neural CA. The vertical dotted lines denote when
the action that has the maximum expected reward is taken by the cart-pole agent.
Green triangle: "push left" action, orange triangle: "push right" action. We can
observe more crossing of the plots of the output values due to the noisy update. The
neural CA has to compensate for the random perturbation of the output values.

to input deletion, the robustness to damage and noise includes also
adaptation to unseen perturbation.

It seems that the inputs corresponding to the cart position do
not disturb the control abilities. So we experimented with how
the system will react to sensory deprivation by removing these
two input cells such that the system has no longer access to this
observation. It is still able to maintain the pole balanced for several
thousand steps (score of 3926.7 ± 2383 on 25 runs without noise
and damage). The reconfiguration of the grid can be observed in
the figure 13.

Influence field visualization

In the videos showing neural CA and the environment side to side,
we can observe that the regions around input cells are producing
a dynamic pattern in phase with the movements of the cart-pole.

https://avariengien.github.io/self-organized-control/
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Cart position Cart velocity Pole angle Pole angular velocity

Top input deleted 814.1 ± 632 293.4 ± 144 53.6 ± 37 103.2 ± 30
Bottom input deleted 814.6 ± 608 168.2 ± 46 924.6 ± 601 267.2 ± 139

Table 2. Mean score and standard deviation of 25 independent runs after each input cell deletion. The CA were perturbed with damage after the
update (on average one every 2 cart-pole steps) and noisy update.

Figure 13. A neural CA controls a cart-pole agent with two deleted input cells. On the
left, the neural CA grid. The input cells corresponding to the cart position have been
deleted and replaced by intermediate cells. No noise nor damage was added. On the
left is the grid of the neural CA. For the information channel, negative values are in
blue, positive in red while the hidden channel is represented as RGB values. Bottom
right: the plot of the output values of the neural CA. The vertical dotted lines denote
when the action that has the maximum expected reward is taken by the cart-pole
agent. Green triangle: "push left" action, orange triangle: "push right" action.

We develop a visualization tool to investigate the region of neural
CA that is influenced by a particular input. To this end, we com-
pared the evolution of the neural CA between a baseline case and
a case where a particular input was perturbed. We then computed
the relative mean of the difference for each of the cells in the grid,
according to the formula (6). This process is repeated on different
observations sampled from the environment and for several grids
to get consistent patterns.

The expression of the deviation used to quantify the influence
of a given input on the other cells is given in equation (6). The
norm is the L2 norm and is computed by treating each cell as a
6-dimensional vector. In practice, the mean was computed for 50
different observations, and for each observation, we used 4 inde-
pendent grids.

Deviation =
Mean(Norm(Gridbaseline – Gridperturbed))

Mean(Norm(Gridbaseline), Norm(Gridperturbed))
(6)

We used as a perturbation the multiplication by a random num-
ber between -1 and 1. This ensures that the input will not be out
of the range of the possible values while allowing for a sufficient
range to get interpretable visualization. We experimented with
different types of perturbation, the resulting visualizations were
similar. Each input cell is perturbed independently: its sister input
cell transmitting the same observation is not affected by the per-
turbation. The region of influence for each cell is visualized in the
figure 14 for 3 different models.

For the model 1, we can observe a localized influence of the input
cell with a tendency to be directed toward the right. We also discov-
ered that the inputs that cause the least performance loss if deleted
(see table 2) were the ones positioned on the right. We hypothesize
that the input cells on the right side of the grid had less influence on
the outputs because the CA learned a rule that can be summarized

as "propagate information toward the right". This is allowed by the
fact that information is redundant and that the majority of input
cells on the right hold the same observation as an input cell on the
left side. Because this propagation property seems also shared with
the models 2, 3 and other models we trained, we hypothesize that
the input cells placed on the left could hold the most useful com-
binations of information. Nonetheless, further experiments are
needed to characterize a global direction of propagation depending
on the position and on the nature of the input cells.

For the model 2, we observe a great amount of deviation even
without any perturbation. This makes it difficult to interpret the
results with perturbation. It seems that the influence of a given
input cannot be visible by the fact that the values of another cell are
affected, but in the way these values change.

The model 3 could be the intermediate between the two prece-
dents. It presents more deviation without perturbation, while still
exhibiting a clear increase in deviation localized around perturbed
inputs.

The conclusions that can be drawn from these visualizations are
still limited and must be taken carefully. This technique is shared
as an attempt to understand the underlying dynamics of the re-
sulting self-organizing system. We think that the development of
visualization tools could be a useful step to direct the future design
of self-organizing systems.

Discussion

In this work, we demonstrated that neural CA can be used as a differ-
entiable black-box function theoretically extending its applications
to the approximation of any functions. Here we demonstrated its
abilities in the context of Deep-Q learning. We used it to solve the
simple cart-pole problem. A direct future challenge would be to
apply it to more challenging tasks where the input and output di-
mensionality is much higher.

The computing abilities of the neural CA were maintained over
several hundreds of thousand iterations, producing an emergent
stable behavior in the environment it controls for thousands of steps.
Moreover, the system obtained demonstrated life-like phenomena
such as a developmental phase, regeneration after damage, stability
despite a noisy environment, and robustness to unseen disruption
such as input deletion. In the future, we could also experiment
with randomized input and output positions. This would add new
challenges: recognize the role of each input and output cell and then
create flexible pathways to transmit and combine information.

Even if the developmental phase and the computing phase used
the same rules, our system cannot adapt to new environments once
the training ends. Future works could explore the possibility of
adding plasticity abilities and useful memory of past events stored
in the states of the cells. This would mean that the neural CA could
recognize a particular situation, and adapt its computations ac-
cordingly. Moreover, we envision that even metaplasticity found in
biological neurons [36] could be achieved by neural CA.

Besides the biological plausibility of neural CA, their interest
also relies on the fact that they are a highly decentralized comput-
ing model. Neural CA could be executed efficiently on dedicated
hardware using locally connected microprocessors such as cellular
neural networks [37]. Other works explored exciting directions
such as framing reaction-diffusion mechanisms as neural CA [31]
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Figure 14. Visualization of the region of influence of each input cell. We plotted the decimal logarithm of the deviation between a standard input and a perturbed one. The
perturbed input cell is symbolized by a red cross, black dots identify the output cells. The natural deviation without any perturbation, due to the stochasticity of the system is
shown on the right.
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that would potentially lead to implementation using chemical com-
puting. Those reaction-diffusion systems could also be applied to
other tasks than shape homeostasis, such as control.

Beyond the dissociation of the environment and the controller,
we could imagine a neural CA that could perform both shape home-
ostasis and controls the movement of this shape at the same time.
If a suitable physical implementation is found, such works could
give rise to new robotics and artificial devices with self-organizing
abilities that are for now reserved for the living world.

Additional experiments

In addition to the cart-pole balancing problem, we explored other
tasks and different variations of the neural CA model. Here is a short
list of the other tasks we tried that relate to problems solved by bio-
logical organisms. To keep this paper short, we chose to focus on a
single task, but videos of our additional results and the code to re-
produce them can be found at https://github.com/aVariengien/self-
organized-control/tree/main/code/AdditionalExperiments.

• Exploring an environment to find a target cell: In this task, new
cells can grow only next to already living cells. Each cell has an
energy value that controls its fire rate. The goal is, starting from
a single alive cell, to find a randomly placed target while using
in total the lowest amount of energy.

• Following a gradient: This task is similar to the previous but
we provide information for the position of the output. Each
cell possesses a read-only channel that is proportional to the
distance to the target. This way, the growth can be directed
toward the target cell instead of being limited to strategies of
random exploration.

• Computing Boolean functions: We experimented with comput-
ing simple Boolean functions such as XOR or its negation, NOT
XOR. The environment includes 2 input and 1 output cells. In ad-
dition to damage and noise, the position of the input and output
cells are randomized such that to solve the task, the cells must
communicate without relying on fixed positions.
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Algorithm 1 The exploration procedure to gather experiences of
the environment and store them in the memory of the agent. NCA
is the neural CA function that updates the grids, G is the pool of
grids, S the pool of states, D the agent memory and K the number
of environment steps to explore.

1: procedure EXPLORE(NCA, G, S, D, K)
2: Sample s1 from S
3: Set the environment E to state s1 and observe o1
4: for t=1 to K do
5: Sample GridBatch from G
6: N ← RandomInt(Stepmin, Stepmax)
7: for step = 1 to N do
8: GridBatch← NCA(GridBatch, ot) ▷ NCA compute a

neural CA step on a batch of grids.
9: end for

10: for grid in GridBatch do
11: With probability d, perform damage on grid
12: end for
13: Commit GridBatch back to G
14: Sample Grid from GridBatch
15: With probability ϵ select a random action at
16: Otherwise select at = argmaxaGridxa,ya,0
17: Execute at in E and observe reward rt and observation ot+1
18: Store the transition (ot, at, rt, ot + 1) in D
19: if t+1 is terminal then
20: Set E to an initial state and observe ot+1
21: end if
22: end for
23: end procedure

Algorithm 2 The implementation of the deep-Q learning algorithm
applied to neural CA. NCA is the neural CA function that updates
the grids, G is the pool of grids, D is the agent memory and R is the
number of transitions to sample in the agent memory to train the
NCA.

1: procedure TRAIN(NCA, G, D, R)
2: Sample R transitions (otj , atj , rtj , otj+1) from D of previous

time steps t0, ..., tR–1
3: for i = 0 to RB – 1 do
4: Arrange the transitions of time steps
ti∗B, ti∗B+1, ..., t(i+1)∗B–1 in a batch Ti

5: Sample GridBatchi,GridBatch′i from G
6: Match each transition (otk , atk , rtk , otk+1) from Ti to a
Gridk in GridBatchi and to a Grid′k in GridBatch′i

7: for k=1 to B do
8: for step = 1, RandomInt(Stepmin, Stepmax) do
9: Gridk ← NCA(Gridk, otk+1) ▷ To ease

the reading of the pseudocode, NCA can also be applied
to individual grids.

10: end for

11: yk ←
{
rtk if tk is a final step
rtk + γ ∗ maxaGridk,xa,ya,0 else.

12: for step = 1, RandomInt(Stepmin, Stepmax) do
13: Grid′k ← NCA(Grid′k, otk )
14: end for
15: TaskLossk ← (Grid′k,xatk

,yatk
– yk)2

16: Lossk ← TaskLossk + λ ∗ OverFlow(Grid′k)
17: end for
18: Compute the gradient Grad of∑Bk=1 Lossk with respect to

the parameters of NCA using BPTT
19: Update the parameters of NCA using Grad and a gradient-

descent based optimization
20: end for
21: end procedure

Algorithm 3 The full procedure to train a neural CA to perform a
reinforcement learning task.

1: Initialize the agent memory D empty
2: Initialize randomly the pool of grids GwithM batches of B grids
3: Initialize the pool of environment state S with L initial states
4: Initialize NCA
5: for iteration=1 to I do
6: EXPLORE(NCA,G,S, D,K)
7: TRAIN(NCA,G, D)
8: end for
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