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Recent evidence highlighted the importance of white matter tracts in typical and atypical
behaviors. White matter dynamically changes in response to learning, stress, and
social experiences. Several lines of evidence have reported white matter dysfunction in
psychiatric conditions, including depression, stress- and anxiety-related disorders. The
mechanistic underpinnings of these associations, however, remain poorly understood.
Here, we outline an integrative perspective positing a link between aberrant myelin
plasticity and anxiety. Drawing on extant literature and emerging new findings, we
suggest that in anxiety, unique changes may occur in response to threat and to safety
learning and the ability to discriminate between both types of stimuli. We propose that
altered myelin plasticity in the neural circuits underlying these two forms of learning
relates to the emergence of anxiety-related disorders, by compromising mechanisms of
neural network synchronization. The clinical and translational implications of this model
for anxiety-related disorders are discussed.
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INTRODUCTION

Myelination in vertebrates, represents a successful mechanism of adaptation to the development of
complex behaviors, requiring increased speed of axonal conduction. While in some invertebrates
fast transmission is achieved by decreasing resistance due to axonal expansion, in craniates and
jawed fish the insulation provided by myelin allows axons of similar caliber to increase their
speed of communication by several hundred folds (Tomassy et al., 2016). Oligodendrocytes
(OLs) are the myelin-forming cells of the central nervous system (CNS). They derive from
oligodendrocyte progenitor cells (OPCs), which continue to proliferate and differentiate into new
OLs throughout life (Dimou et al., 2008; Zhu et al., 2011; Young et al., 2013; Hill et al., 2018).
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The insulating properties of myelin are essential for saltatory
axonal conduction. However, in higher-order organisms, the
myelin sheath is not a static cellular compartment but is rather
a dynamic membrane, capable of providing metabolic supports
to axons in conditions of elevated energetic demands (Nave,
2010; Saab and Nave, 2017). Finally, recent findings have defined
the formation and remodeling of new myelin in response to
experience and learning as key contributors to physiological
brain function and behavior (Liu et al., 2012; Makinodan et al.,
2012; Gibson et al., 2014; Mckenzie et al., 2014; Hughes et al.,
2018; Mitew et al., 2018; Bonnefil et al., 2019; Geraghty et al.,
2019; Swire et al., 2019; Pan et al., 2020; Steadman et al., 2020).
Yet, the functional significance of myelinating OLs concerning
psychological adaptation remains poorly understood. Here, we
first discuss the concept of myelin plasticity and review evidence
that it occurs in response to social experiences and in the
context of learning of motor and non-motor skills, including
learning about threat. We then review literature related to
white matter alterations in psychiatric disorders, with a focus
on stress- and anxiety-related disorders. Finally, we discuss
emerging evidence supporting associations between altered
myelin plasticity in circuits regulating threat and safety learning
and the ability to discriminate between threat and safety stimuli
as purported anxiogenic mechanisms and outline key clinical and
translational implications.

WHITE MATTER AND MYELIN PLASTICITY
IN RESPONSE TO SOCIAL EXPERIENCE
OR LEARNING

The concept of myelin plasticity includes diverse types of
cellular processes such as de novo myelin formation and
remodeling of pre-existing myelin. De novo myelination refers
to the differentiation of local resident OPCs into myelin-
forming OLs and/or wrapping of previously unmyelinated
axons or axonal segments (Tomassy et al., 2014; Hill
et al., 2018). Myelin remodeling refers to changes in the
number of wraps around myelinated axons or in the length
of myelinated segments between two nodes of Ranvier
(i.e., internodal length).

Myelin plasticity was initially reported in studies addressing
exposure to social stressors both in humans and in animal
models. One of the initial studies conducted in human
children exposed to severe childhood neglect identified reduced
thickness of the corpus callosum area in these individuals
compared to controls (Teicher et al., 2004; Mehta et al.,
2009). Maternal deprivation in rodents, early weaning, and
social deprivation during the critical period of adolescence
also resulted in defective myelination detected in juvenile mice
(Kodama et al., 2008; Makinodan et al., 2012; Yang et al.,
2017). The effect of social stress was not limited to a critical
developmental period, as adult mice exposed to chronic variable
stress, social isolation or social defeat, also altered the OL
transcriptome, and decreased myelin thickness in the medial
prefrontal cortex (mPFC; Liu et al., 2012, 2018; Bonnefil
et al., 2019). Together, these studies provide clear evidence

of a link between myelination of specific brain regions and
social experience.

White matter plasticity was reported to be modulated also
in response to motor and non-motor learning. Myelination
of distinct neural pathways in children, for instance, follows
a stereotyped sequence that coincides with the development
of important motor milestones, such as sitting, crawling,
and then walking (Aubert-Broche et al., 2008; Tomassy
et al., 2016). Learning how to juggle in adulthood increased
myelination of subcortical white matter at the right posterior
intraparietal sulcus, which was detected as increased fractional
anisotropy (FA) in MRI (Scholz et al., 2009). The inverse
relationship between the extent of white matter changes and
age of training was assessed by the analysis of FA at the
posterior midbody/isthmus of the corpus callosum in piano
players, which revealed greater connectivity and sensorimotor
synchronization performance in those who learned earlier
rather than later in life (Steele et al., 2013). Non-motor
learning was similarly associated with changes in white
matter. For example, in children aged 3 months to 4 years,
the myelin volume fraction in the frontal and temporal
cortices showed a positive correlation with predicted language
abilities, which strengthened with age (O’Muircheartaigh et al.,
2014). In subjects learning a second language as adults,
systematic, learning-dependent changes were also observed
in the white matter tracts associated with traditional left
hemisphere language areas and their right hemisphere analogs
(Schlegel et al., 2012).

Animal studies repeatedly demonstrate life-long myelin
plasticity in response to motor and non-motor learning. For
instance, learning a novel motor skill in rats resulted in higher
FA in the subcortical white matter of the sensorimotor cortex
and increasedmyelin protein expression after training (Sampaio-
Baptista et al., 2013). The necessity of myelin plasticity for skill
acquisition andmemory consolidation was further demonstrated
using transgenic mice. Impairing new myelin synthesis by
conditional ablation of the lineage-specific transcription factor
Myrf, prevented de novo myelination during training and
impaired new motor skill acquisition while retaining intact
general motor function (Mckenzie et al., 2014). Similarly,
preventing the formation of newOLs andmyelin impaired spatial
memory formation and water maze performance (Pan et al.,
2020; Steadman et al., 2020).

Additional studies support a role for OL lineage cells in
memory consolidation. Impaired formation of new myelin
via lineage-specific ablation of the transcription factor Myrf
did not affect contextual freezing immediately after learning,
but rather impaired memory retrieval (Pan et al., 2020;
Steadman et al., 2020), thereby suggesting that generation
of new OLs was required for fear memory consolidation.
It was also reported that memory consolidation required
the occurrence of rhythmic oscillatory communication to
synchronize activity across brain regions (Pajevic et al.,
2014), which was impaired in the Myrf conditional knockout
mice (Steadman et al., 2020), thereby highlighting the
functional relevance of myelination for learning-induced
synchronized activity.
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MYELIN AND WHITE MATTER
ALTERATIONS IN STRESS- AND
ANXIETY-RELATED DISORDERS

The importance of myelin plasticity in response to external
conditions and shaping behavioral consequences led to the
concept that myelination of white matter tracts regulating
learning about threat may be altered in pathologies characterized
by behavioral maladaptation and are associated with changes in
brain function. Magnetic resonance imaging (MRI) allows for the
indirect measurement of brain connectivity, both functionally
(fMRI) and structurally (diffusion MRI; Figure 1). Parameters

FIGURE 1 | Imaging brain connectivity. Two widely used imaging techniques
to assess connectivity are functional magnetic resonance (fMRI; left) and
diffusion tensor imaging (DTI; right). fMRI indirectly measures neural activity
between two or more regions through statistical analysis of correlated
changes in the blood oxygen level-dependent MRI signal (Buxton, 2009). In
contrast, DTI measures structural connectivity or the organization of white
matter tracts running between neural regions. Fractional anisotropy (FA),
derived from DTI, indicates the degree to which water molecules preferentially
diffuse along one direction. Because myelin restricts water molecules to
diffuse mainly along the direction of axonal bundles, higher FA values are
often interpreted as indicating greater myelination or organization of white
matter tracts (Thomason and Thompson, 2011).

that are characteristically measured are FA, which indicates the
degree to which water molecules preferentially diffuse along
one direction. Because myelin restricts water molecules to
diffuse mainly along the direction of axonal bundles, higher FA
values are often interpreted as indicating greater myelination or
organization of white matter tracts (Thomason and Thompson,
2011). Complementary diffusion values, such as radial, axial,
and mean diffusivities, provide additional information related
to the integrity, caliber, and myelination of white matter
(Song et al., 2003).

The uncinate fasciculus is an important white matter tract
connecting brain regions regulating the threat response (e.g.,
amygdala) with those regulating behavior (e.g., PFC; Figure 2),
and its myelination follows a characteristic developmental
trajectory during adolescence, reaching stability in young
adulthood (Lebel and Beaulieu, 2011; Thomason and Thompson,
2011). Early in life, excitatory signals have been shown to emerge
from the amygdala directed to the PFC, while later in life,
inhibitory signaling from the PFC to the amygdala favors
emotional regulation (Ghashghaei et al., 2007; Cressman et al.,
2010). While functional connectivity studies do not indicate the
direction of influence, a valence switch from positive to negative
PFC-amygdala fMRI correlations during normal development
supports the existence of this developmental pattern
(Gee et al., 2013).

The progressive increase of FA in the uncinate fasciculus,
in young healthy subjects, reflects effective myelination of
this tract and results in facilitated communication between
PFC and amygdala (Kim and Whalen, 2009; Tromp et al.,
2012). In contrast, decreased FA in the uncinate fasciculus
was reported in subjects with anxiety-related traits and was
suggestive of disrupted or inefficient myelination (Westlye et al.,
2011). Importantly, a reduction in structural connectivity, as
indicated by reduced bilateral FA in both uncinate fasciculi
was consistently detected among individuals with a generalized
anxiety disorder (Tromp et al., 2012), and also in children

FIGURE 2 | The uncinate fasciculus is a characteristic trajectory connecting the prefrontal cortex (PFC) and amygdala. MRI tractography depicts the uncinate
fasciculus overlain on transverse (left) and sagittal (right) T1 weighted sections. The color bar scales the tract by fractional anisotropy (FA) values.
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exposed to socioemotional deprivation (Eluvathingal et al.,
2006). Decreased FA and radial diffusivity were also detected in
the left uncinate fasciculus of affected monozygotic adolescent
twins with anxiety disorders compared to unaffected siblings
(Adluru et al., 2017), collectively suggesting compromised
communication between PFC and amygdala in such individuals
(Yavas et al., 2019).

While altered connectivity between the amygdala and PFC
has been well documented in several stress and anxiety-
related disorders (Tromp et al., 2012), pathological inflammatory
demyelination of the septo-fornical area, has also been reported
in multiple sclerosis patients with high anxiety, and suggested to
contribute to its pathogenesis (Palotai et al., 2018).

However, the alteration of white matter microstructure
involved in anxiety-related personality traits is not restricted
to corticolimbic pathways. For example, harm avoidance
in adult subjects was positively associated with radial and
mean diffusivity, not only in the uncinate fasciculus but
also in the anterior thalamic radiation, corpus callosum,
parahippocampal cingulum, corticospinal tract, and inferior and
superior longitudinal fasciculi (Westlye et al., 2011; Lu et al.,
2018). Reduced FA was also detected in the medial and posterior
portions of the corpus callosum of children with post-traumatic
stress disorder (PTSD; Jackowski et al., 2008), and altered
inter-hemispheric frontal, frontal-limbic, or frontal-temporal
connectivity was identified as a potential marker of vulnerability
to anxiety in young healthy subjects (Yang et al., 2019) and
symptomatic anxiety in patients with late-life depression (Li
et al., 2020). Finally, it is conceivable that anxiety may lead to
elevated blood pressure, a condition that has been associated
with scattered ischemic or micro-hemorrhagic white matter
lesions occurring in bloodshed regions in older subjects (Iadecola
et al., 2016). While this association is unlikely to account for
the changes in FA as discussed above, it is worth mentioning
that hypertensive patients with dislipidemia showed decreased
spectroscopic signal for N-acetylaspartic-acid (NAA), thereby
suggesting that associated comorbidities may interfere with
the process of new myelin synthesis in white matter tracts
(Chiappelli et al., 2019).

THE IMPORTANCE OF THREAT AND
SAFETY DISCRIMINATION IN ANXIOGENIC
MECHANISMS OF STRESS- AND
ANXIETY-RELATED DISORDERS

In addition to disruptions in threat learning, growing evidence
suggests that anxiety disorders are characterized by impaired
threat/safety discrimination, resulting in generalized fear
that is typically associated with a proliferation of avoidance
behaviors that incapacitate daily function and have a negative
impact on mental health (Lissek et al., 2009; Sep et al., 2019).
Disrupted discrimination derives from several learning
processes gone awry: overly strong conditioning to threat,
as well as underdeveloped defensive response suppression to
non-threatening stimuli. Combined, overactive communication
patterns characteristic of making associations between cues

and threatening outcomes, and underactive patterns of
communication that are characteristic of fear suppression
towards non-threatening cues, leads to generalized fear and
anxiety (Jovanovic et al., 2010, 2012). Therefore, proper
discrimination learning depends on the development and
maintenance of connected functional circuits that can support
both fear acquisition and fear suppression.

Safety learning is integrally linked to fear learning.
Non-threatening neutral cues or safety cues that signal the
explicit absence of threat, when learned, become conditioned
inhibitors of fear (Pavlov, 1927; Rescorla, 1988). An effective
safety cue can also be positively reinforcing because it signals
the active lack of threat, and therefore carries motivational and
rewarding properties. For example, when presented with a safety
cue, animals show increased instrumental responding, such
as more vigorous bar pressing for a reward (Hendry, 1967),
and stronger conditioned place preference for the area where
the safety cue was presented (Rogan et al., 2005). Therefore,
learning about non-threatening or safe stimuli is likely to engage
a set of regions that are overlapping but distinct from those
involved in fear conditioning, and can include circuits that
engage the processing of reward (Luo et al., 2018). Although
the hippocampal-amygdala-prefrontal network is active during
threatening and non-threatening cues, the cell populations
involved and modes of communication between these regions
are different during these two types of learning (Sangha et al.,
2013, 2014; Mayer et al., 2018; Ng et al., 2018). Therefore,
encoding modes within and communication between areas are
both crucial to maintain accurate and updated information to
appropriately dial anxiety, and myelin dysregulation in this
circuit has been associated with fear generalization and PTSD
(Jovanovic et al., 2010; Fani et al., 2012).

CIRCUIT-LEVEL COMMUNICATION THAT
SCULPTS THREAT-SAFETY
DISCRIMINATION LEARNING

At the circuit level, inter-regional communication underlies
the ability to discriminate between threat and safety and is
manifested by oscillations that reflect fluctuating membrane
potentials in groups of neurons due to incoming inputs from
distal sites and local firing (Buzsáki et al., 2013; Akam and
Kullmann, 2014; Pesaran et al., 2018). Theta (4–12 Hz) and
gamma (30–120 Hz) rhythms are the two main types of
oscillations related to discrimination learning. The oscillatory
communication patterns between distal sites shift as different
regions are exposed to cues that are paired or unpaired with
aversive experience (Lesting et al., 2011; Likhtik et al., 2014;
Stujenske et al., 2014; Ciocchi et al., 2015; Karalis et al., 2016;
Padilla-Coreano et al., 2019).

For instance, during retrieval of differential fear conditioning,
presentations of aversive stimuli lead to increased strength
and theta synchrony in the basolateral amygdala (BLA) and
in the PFC, relative to presentations of the non-threatening
stimulus (Likhtik et al., 2014; Karalis et al., 2016). Furthermore,
when fear is suppressed during retrieval of non-aversive stimuli,
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theta oscillations in the PFC predict BLA theta rhythms,
suggesting that information from PFC to BLA is transferred via
oscillatory theta band activity (Likhtik et al., 2014; Figure 3).
Likewise, when a fear-conditioned cue becomes less aversive
after extinction learning, communication in the theta band

decreases between these regions, and PFC theta oscillations
organize BLA activity (Lesting et al., 2011; Davis et al., 2017;
Rahman et al., 2018), suggesting that theta-encoded information
transfer from the PFC to the BLA (carried by the uncinate
fasciculus) may be a common signature of fear inhibition across

FIGURE 3 | Circuit-level synchrony is required for discrimination of threat from non-threat. (A) Under conditions of well-myelinated tracts, medial prefrontal cortex
(mPFC)-basolateral amygdala (BLA) communication via white matter tracts during successful discrimination of threat from non-threat is characterized by high
theta-range synchrony selectively during the aversive CS+ (gray), and high gamma-range synchrony selectively during the discriminated non-aversive CS− (green).
Parvalbumin positive (PV) interneurons in the mPFC are posited to contribute to gamma oscillations-based, fast communication during discrimination. (B) Top,
Examples of synchrony in CS+ evoked (gray bar) theta signals of the mPFC and BLA (gray lines). Bottom, examples of synchrony in CS− evoked gamma signals of
the mPFC and BLA (green lines). (C) During poor fear discrimination and compromised myelination, theta synchrony in the mPFC-BLA circuit increases
non-selectively to threatening and non-threatening cues (gray), and gamma-synchrony during the non-threatening cues is diminished. The direct communication
between these circuits occurs via the Uncinate Fasciculus tract in humans. (D) The same as in (C) but demonstrating non-specific theta-synchrony, and lower
gamma synchrony in this circuit during poor discrimination of the CS−.
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several learning paradigms. Notably, in animals that generalize
fear after discrimination learning, theta oscillations remain high
in the PFC-BLA pathway during aversive and non-aversive
stimuli, without a predominance of theta-information transfer
from the PFC to the BLA (Likhtik et al., 2014). Thus, similar
PFC-BLA processing of threat and non-threat are signature
characteristics of fear generalization.

Gamma oscillations develop along with the maturation
of inhibitory signaling and depend on the myelination of
Parvalbumin (PV+) GABAergic inhibitory interneurons (Traub
et al., 1996; Fries, 2009; Sohal et al., 2009; Hu et al., 2014;
Strüber et al., 2015), which are extensively myelinated in an
activity-dependent manner (Stedehouder and Kushner, 2017;
Stedehouder et al., 2018, 2019). GABAergic activity and gamma
oscillations in the PFC are crucial for cue detection and encoding
(Courtin et al., 2014; Piantadosi and Floresco, 2014; Howe et al.,
2017). While the role of gamma rhythm in fear learning is still
the subject of active investigation (Headley and Paré, 2013),
fear suppression to non-threat is associated with an increase in
gamma-range synchrony in communication among cortical and
subcortical regions (Figure 3; Stujenske et al., 2014; Concina
et al., 2018). We, therefore, propose that good discrimination
between threat and non-threat requires optimal myelination of
PV+ interneurons, manifesting in regional gamma synchrony.
We further posit that aberrant myelination coupled with
impaired white matter integrity of the PFC-BLA connection may

result in decreased gamma rhythm, loss of discrimination, and
lead to fear generalization.

Furthermore, temporal precision is necessary for inter-
regional communication, when BLA gamma oscillations
are coupled to PFC theta oscillations during a successfully
discriminated non-threat (Stujenske et al., 2014), suggesting
that prefrontal input has a direct or indirect role in driving
gamma activity in the BLA (Rosenkranz and Grace, 2001;
Amano et al., 2010; Bukalo et al., 2015; Strobel et al., 2015;
Bloodgood et al., 2018). This faster oscillatory mode of cross-
regional communication is shaped by excitatory-inhibitory
interactions that require millisecond range timing of inhibitory
activity (Buzsáki and Wang, 2012; Courtin et al., 2014). Given
its role in speeding up communication, new myelin formation,
sheath integrity, and effective remodeling are likely to play an
integral role in sculpting inhibitory-excitatory dialogue during
discrimination learning.

MYELIN PLASTICITY AND
OLIGODENDROCYTE LINEAGE CELLS AS
REGULATORY MECHANISMS OF CIRCUIT
CONNECTIVITY

Based on the previously discussed evidence of changes in
white matter tracts in anxiety disorders, we posit that

FIGURE 4 | A proposed model for myelin plasticity in discrimination between threat and safety. Myelin remodeling mechanisms include thickening of existing myelin,
de novo myelination on unmyelinated axons, and adjusted internodal length, which could occur both on excitatory neurons and parvalbumin-positive (PV+)
interneurons. Such experience-dependent myelin remodeling allows inter-regional cue-specific theta-range synchrony and gamma-range synchrony to establish,
which is essential for successful threat and safety discrimination.
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disruptions in threat and safety discrimination are related to
defective mechanisms of cortical synchronization. Connectivity
determines the speed and timing of electrical activity transmitted
between relay points, leading to synchronous activation of neural
networks and rhythmic oscillations. A mathematical model
has predicted that a 1-ms conduction delay would interrupt
the phase by 30◦, significantly affecting signal amplitude and
phase coherence (Pajevic et al., 2014). Besides, myelination
may be the most effective way not only of modulating
conduction velocity, but also impacting self-organization of
brain oscillation and affecting cognitive performance (Mabbott
et al., 2006; Scantlebury et al., 2014; Bells et al., 2019;
Noori et al., 2020). In terms of threat and safety learning,
it will be important to take into consideration the fact that
myelination of glutamatergic neurons and PV+ GABAergic
interneurons (Stedehouder and Kushner, 2017; Stedehouder
et al., 2018, 2019) might bear important and unique functional
consequences on the overall activity of the neural networks
and consequent oscillations (Figure 4), with altered myelination
of PV+ interneurons, likely impacting gamma oscillations
and myelination of BLA-mPFC pyramidal tracts impacting
theta rhythms.

It is also important to notice that OL lineage cells are
capable of influencing neural activity and regulating circuit
function in manners that are independent of canonical models
of myelin plasticity and myelin remodeling. One example is
the role of transmembrane proteoglycan nerve-glia antigen 2
(NG2), which is expressed on the surface of OPCs and has been
proposed to act as a neuro-glial signal (Sakry et al., 2014) by
being cleaved in an activity-dependent manner and modulating
glutamate receptor activity in neighboring neurons (Sakry et al.,
2014). Myelinating OLs also regulate K+ homeostasis, due to
the expression of inward rectifying K+ channel, Kir4.1, and
OL-specific conditional ablation of this channel has been linked
to delayed recovery of white matter axons from repetitive
stimulation (Larson et al., 2018).

Taken together, we, therefore, posit that discrimination
between threatening and safe cues may rely on distinct modalities
of white matter plasticity or regulation of OL lineage cell function
to favor neuronal synchronization across neural networks. We
further predict that specific alterations of these mechanisms may
be related to the development of anxiety disorders.

CONCLUDING REMARKS

As reviewed above, studying myelination mechanisms in
circuits underlying anxious behavior and discrimination
learning represents an intriguing approach to understanding the
development of anxiety disorders and clarifying novel treatment
approaches. To test this framework, it will be important to
determine the effectiveness of interventions targeting learning
and discrimination processes and their underlying circuit
functioning in the treatment of stress- and anxiety-related
disorders. The key to this approach will be to understand the
multiple ways in which myelin and OL functioning and plasticity
contribute to these effects to inform the development of more
targeted behavioral interventions that reverse disruptions in
circuit-level functioning and ultimately improve management of
anxiety symptoms.
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