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ABSTRACT

Interactive Data Exploration (IDE) systems are technologies that fa-
cilitate the understanding of large datasets by providing high level
easy-to-use operators. Compared to traditional querying systems,
where users have to express each query, IDE systems allows users
to perform expressive data exploration following the click-select-
execute paradigm. Today, there exists no full-fledged evaluation
framework for operator-enabled IDE. Most previous works are
based on either logging user actions implicitly to compute quanti-
tative metrics or running user studies to collect explicit feedback.
Hence, there is a pressing need to articulate an evaluation frame-
work that collects and compares quantitative human feedback along
with system and data-centric evaluations. In this paper, we develop
VALIDE, a preliminary design of a unified framework consisting
of a methodology and metrics for IDE systems. VALIDE combines
research from database benchmarking and human-computer inter-
action and will be demonstrated with a real IDE system.

1 INTRODUCTION

Recent decades have seen a tremendous rise in the availability of
very large datasets ranging from healthcare to sports and social
media. This has been accompanied by a rise in data exploration
stakeholders with varying expertise in computer science. The field
of astrophysics research is no exception. The Sloan Digital Sky Sur-
vey (SDSS) is an example of astronomical database commonly used
in the astrophysics community explored using SQL [8]. SQL-based
IDE systems require users to spend enormous time in training, for-
mulating and refining queries, and utilizing different means for
visualizing data samples. To address that, new operator-enabled
IDE systems have been developed that do not require users to be
familiar with SQL [6, 11, 15, 20, 27]. IDE operators are important
tools that provide different data access modalities such as filtering
data, finding subsets and supersets, and looking for similar and
dissimilar items. However, there exist no framework that performs
an end-to-end evaluation of such operator-enabled IDE systems.
In this paper, we develop VALIDE (eVALuation of IDE systems), a
general-purpose evaluation framework for IDE and illustrate its
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applicability using one such operator-enabled system, dora the ex-
plorer [27]. However, evaluating an IDE systemmust address three
key dimensions: data, system, and human. The data dimension as-
sesses the ability of the system to allow users to find dispersed data
in a very large dataset. The system dimension reflects performance
such as query execution time. The human dimension captures user
interactions and perception with the system during the exploration
session.

VALIDE is a unified framework that investigates three key di-
mensions of an IDE system – data, system, and human. To explore
each dimension, we design dedicated metrics. A ‘data’ metric quan-
tifies recovered ‘data’ during an exploration session via measuring
the closeness of user discovered and system recommended datasets
to some ground truth. A ‘system’ metric quantifies the performance
of the front-end and back-end of an IDE system. A ‘human’ metric
characterizes the human interactions with the IDE system quanti-
tatively. Quantitative human metrics generally refer to quantifiable
human actions during data exploration. We further classify human
metrics as – Human System Interactions orHSI (e.g. the time spent
by a user to complete a data exploration task) and Human Self
Evaluations or HSE (e.g. the feeling of accomplishment reported
by the user on 5-point Likert scale). Compared to other work, our
study collects both types of human metrics and computes them
from user sessions by performing factorial design [17, 28]. The
goals of VALIDE can be summarized as follows:

(1) Goal# 1: Analyze data, system&humanmetrics in an operator-
enabled IDE system using robust statistical techniques for
human data collection,

(2) Goal# 2: Design a generic framework for IDE evaluation with
high level operators (or querying methods),

(3) Goal# 3: Develop an end-to-end methodology that consists
of training & testing subjects, collecting both human quanti-
tative metrics (HSI and HSE), and cross-checking them,

(4) Goal# 4: Demonstrate human-centric evaluation by applying
it on an operator-enabled IDE system.

1.1 Challenges and Contributions

VALIDE distinguishes itself by capturing essential aspects of user
perception of an IDE system (e.g. Mental Demand 1), which are not
captured with other metrics [9, 28, 32]. Consider a data exploration
session, where an astrophysicist is interested in finding a specific
set of galaxies. From the session, the derived data, system and HSI

metrics revealed that the astrophysicist was able to recover all data
subsets of interest, with minimal query execution delays, and a few

1refers to the amount of work where the execution of a specific task requires that
subject performmental processes, such as thinking, deciding, calculating, remembering,
analyzing, searching, observing, to mention few [31].

https://doi.org/10.1145/3546930.3547509
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exploration steps. But, before launching the IDE task, the astro-
physicist may have to put a lot of effort getting familiarized with
the IDE system. Hence, the results from data, system, HSI metrics
may favor the use of new functionalities (e.g., expressive opera-
tors), but the astrophysicist’s perception may not be positive. Also,
as compared to previous studies which have fragmented usage of
data, system, human - HSI, HSE metrics, VALIDE tries to create a
unified generic framework with humans in the loop. Therefore, the
first challenge lies in capturing user perception of the IDE system.
Previous researchers addressed the evaluation of IDE systems e.g.
cross-filtering using slider, by calculating data, system, and HSI

metrics [28]. They evaluate IDE based on workloads and interac-
tions, but fail to capture important aspects such as mental demand
and perceived controllability. The second challenge is how to make
sound observations from surveys, given that human behavior is
unpredictable and simply reporting averages is bound to produce
errors and outliers. We propose to make use of factorial design, a
method that is widely adopted in studies involving human partici-
pants [9]. The third challenge lies in verifying feedback, as human
subjects are prone to bias, e.g. when asked about their quality of
work [16]. To address that, we propose to cross-check self-reported
feedback (HSE metrics) with human exploration activity (HSI met-
rics).

2 RELATEDWORK

Our research work builds upon existing work related to evaluation
of IDE for large datasets.

IDE evaluation with system metrics: A commonly observed
evaluation method for an IDE system involves applying Transaction
Processing Performance Council (TPC) suites [2]. Depending upon
the specific workload type and application requirements, a type of
TPC suite is selected. Applied metrics primarily focus on capturing
response time and quality of results [18]. Eichmann et al [10] ar-
gue that TPC is useful for data exploration systems that produce
static workloads and propose a method to evaluate dynamic work-
loads. Another study [7] improves upon this by generating dynamic
workloads from simulated agents (developed from pre-recorded
user exploration sessions) and addition of new metrics that capture
response time and quality of results. The goal of these studies is
to evaluate the query processing engines, but they do not include
understanding user perception in IDE.

IDE evaluation with system & human metrics: Rahman et
al. [28] categorizes evaluation metrics used for an IDE system into
system and human metrics. The former mainly focus on capturing
response time (e.g., time delays in query scheduling and process-
ing), while the latter focus on quantifying human behavior (e.g.
exploration duration) and satisfaction by deploying user surveys.
This study demonstrates the application of these metrics to evalu-
ate different IDE querying interfaces by human subjects. A similar
study by Jiang et al. [14] evaluates user experience by using unique
system metrics that characterize the effect of the workload, created
by the interactive system mechanism, on response time. Although
both studies [14, 28] outline various methods for evaluating query-
ing interfaces for an IDE system, they calculate simple statistics (e.g,
mean, count, etc.) to assess human behavior and derive conclusions.
Such methods are prone to errors as human behavior is noisy and
needs a more robust statistical modeling methodology. Closer to

Table 1: The NASA-TLX questionnaire used in our study for

understanding user perception in IDE.

Type Question

Feeling of Accomplishment (Q1) How successful were you in accomplishing what
you were asked to do?

Effort Required (Q2) How hard did you have to work to accomplish the
task?

Mental Demand (Q3) How mentally demanding was the task?
Perceived Controllability (Q4) How discouraged, irritated, stressed, and annoyed

were you?
Temporal Demand (Q5) How hurried or rushed was the pace of the task?

our research is the work performed by Abouzied et al [3] and Liu et
al [21]. Abouzied et al [3] introduce an IDE querying tool that sim-
plifies the specification of complex SQL queries by allowing users
to directly manipulate the query or apply auto-correction. However,
this study performs evaluation using human metrics by applying
ANOVA analysis to model human data only and does not include
system or data metrics. Liu et al [21] introduce a query interface
for non-technical database users. The evaluation process consists
of recruiting participants without SQL background. Certain HSI

metrics were derived along with participant opinions using feed-
back. Here again, the analysis involved calculating simple statistics
(e.g, count) to evaluate human behavior and derive conclusions.

Therefore, to the best of our knowledge, previous works on IDE
evaluation mainly focus on either system or human metrics (HSI).
Out of them, very few implement a robust statistical analysis to
derive conclusions [28]. None of these studies develops a generic
and unified evaluation framework that employs data, system and
human metrics and analyzes them together.

3 VALIDE FRAMEWORK

This section summarizes the generic experiment design andmethod-
ology of VALIDE (Goals# 2 and # 3 in Section 1). In Section 5 we
show how it is deployed on a specific system.

3.1 Design of Use Cases

The first step is to define a training and a testing use case. Training
use case allows participants to get familiarize with the IDE sys-
tem, whereas test use case requires participant to perform an IDE
task without external assistance. The train and test use cases must
be mutually exclusive cases and commonly observed real-world
scenarios designed in collaboration with an expert.

3.2 Design of Study

Our study follows a 2×2 factorial design and “between subjects”,
so as to mitigate the “learning effect” [16]. Factorial design is a
widely adopted experimental design for understanding the effect of
a set of independent variables or factors on dependent variables.
The experimenter first holds other factors at constant level while
varying the factors under consideration. Then the experimenter
assigns participants to various groups containing factors under con-
sideration at certain values. This allows to model human behavior
based on only the factors under consideration and, thus no other
factors can interfere with the analysis [17].
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3.3 Deriving Human Quantitative Metrics

The National Aeronautics and Space Administration-Task Load
Index (NASA-TLX) is a widely used tool for understanding human
perception related to a given task through a set of carefully designed
questions [1]. In this work, we adapt NASA-TLX as shown in Table 1.
Each question allows to derive a HSE metric on a Likert scale
between 1 (unfavorable) and 5 (favorable).

Another way to derive human quantitative metrics is by logging
various user interactions, defined as HSI metrics in Section 1. This
allows to characterize the human behavior quantitatively using
the logged data [24, 25, 33, 34]. This, in-turn, allows to quantify
user sessions with data exploration systems and verify participants’
feedback on NASA-TLX questionnaire. Based on previously con-
ducted research studies, we define various metrics to characterize
IDE session [7, 10, 28]. The HSI metrics derived by logging user
sessions are:

(1) Length of Pipeline defines the total number of operations
contributing to the exploration of the target data subset.

(2) Total Exploration Duration expresses the difference be-
tween the time at which the user submits the first query and
the time at which the user ends the data exploration task.

(3) Average Time Per Step defines the average time taken by
the data explorer to submit each query at each step.

3.4 Deriving System and Data Metrics

We define the following data and system metrics:
(1) Recall Rate: Proportion of relevant data in the recovered

data.
(2) Precision Rate: Proportion of recovered data that are rele-

vant
(3) AverageQueryDelay represents the average time duration

taken between submission and execution of a query.

3.5 Analysis of Metrics

In case of HSE, since the response is a categorical variable (5 point
Likert scale), a Kruskal-Wallis significance test is used to check if
there was a difference in sample means of responses across groups.
Then the Wilcoxon rank-sum test should be applied to compute
the pairwise statistical significance [29]. We set our null hypothesis
‘𝐻0’ as- “For a given NASA-TLX question, there is no significance
difference between responses of participants from various groups”.
In case of data, system, and HSI, since the values are continuous
variables, a two-way ANOVA significance test is utilized to check
if there is a difference in sample means across all groups. Then a
Tukey’s Honestly Significant Difference (HSD) test is applied to
find out the pairwise statistical significance [22]. We set our null
hypothesis ‘𝐻0’ as- “For each metric, there is no significant difference
in values from various groups”.

Now consider that a user provides feedback on Feeling of Ac-
complishment after completing the given IDE task. To cross-check
this metric, we propose to utilize Recall Rate which is derived from
the logged session for that particular user. So, if the user provides a
Likert score of 5 (most favorable) for Feeling of Accomplishment,
then correspondingly the value for Recall Rate should be 100%. Sim-
ilarly, for user feedback on Effort Required, we propose Length of
Pipeline, and for Temporal Demand, we propose Total Exploration

Figure 1: Modified front-end design of dora the ex-

plorer for experimentation.

Duration for cross-checking (Goal# 3). However, for the metrics
Mental Demand and Perceived Controllability, it is not possible to
determine their counterparts as they require special intervention
like application of special medical devices (e.g. EEG) and cannot be
simply cross verified by logging participants’ interactions with the
IDE system [9, 32].

4 VALIDE WITH DORA THE EXPLORER

To achieve Goal# 1 & 4, we apply our framework on an operator-
enabled IDE system – dora the explorer 2 designed for SDSS data
exploration [26, 27]. We represent the dataset as a set of records D.
Each record describes a galaxy with a set of 7 attributes𝐴.: “u, g, r,

i, z” describes the photometric magnitudes and brightness of galax-
ies in SDSS filters, “petroRad_r” describes the size of galaxies, and
“redshift” characterizes the spectroscopic redshifts and measures
the distance of galaxies from the Earth. In general, a galaxy can
be distinguished by its color, shape and structure. Figure 1 shows
two samples produced with dora the explorer (under Module 3 -
Current operator results) containing 302 & 247 galaxies described
by conjunction of 2 attribute values or simply 𝑎𝑚 = {petroRad_r,i},
where 0 < 𝑚 ≤ 𝑛. An exploration pipeline is a sequence of operators
whose purpose is to recover a desired data subset. In its general
form, an operator takes a set of objects D ⊆ D and returns sets of
objects that are related to objects in D. Table 2 summarizes the set
of operators used in dora the explorer. Since they are applied to
sets, we represent their equivalent definition in the Region Connec-
tion Calculus 8 (RCC8) formalism [19, 30] (second column). Figure 1
presents the modules of dora the explorer which we extended
for our study.

4.1 Use Cases for dora the explorer

Our use cases were provided by an astrophysicist (a co-author of
this paper), well-versed in SQL querying over SDSS. The training
use case consists of - (1) pointed shape, (2) located far away from
Earth, and (3) emitting light primarily in (i) visible (ii) near infra-red
wavelengths galaxies. To find them, our expert writes a rough SQL
query, extracts a first sample dataset and then uses the SkyServer

2With the developers’ consent, we use dora the explorer in our study to demon-
strate the application of VALIDE. The code is freely available at https://github.com/
apersonnaz/rl-guided-galaxy-exploration, and the application at https://bit.ly/dora-
application

https://github.com/apersonnaz/rl-guided-galaxy-exploration
https://github.com/apersonnaz/rl-guided-galaxy-exploration
https://bit.ly/dora-application
https://bit.ly/dora-application
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Table 2: Examples of exploration operators in dora the ex-

plorer: input in bold lines, output in dashed lines.

Operator RCC8 Formalism [30] Output description

by-facet(𝐷,𝐴) NTPPi returns as many subsets of 𝐷 as there
are combinations of values of attributes
in𝐴

by-superset(𝐷,𝑘) NTPP returns the𝑘 smallest supersets of input
set 𝐷 (𝑘 is application-dependent)

by-distribution(𝐷) DC returns all sets that are distinct from the
input set 𝐷 and whose attribute value
distribution is similar to 𝐷

by-neighbors(𝐷,𝑎) EC returns 2 sets that are distinct from the
input set 𝐷 and that have the previous
(smaller) and next (larger) values for at-
tribute 𝑎

Imaging Query Form [8] to check visually if the sampled dataset
contains Pointed Shape galaxies and further refines SQL queries to
find as many galaxies of interest as possible.

1SELECT count ( ∗ )
2FROM PhotoObj AS p
3JOIN SpecObj AS s ON s . b e s t o b j i d = p . o b j i d
4AND p . p e t r o r a d _ r BETWEEN 1 . 8 8 2 AND 2 . 7 5 9
5AND p . r e d s h i f t BETWEEN 0 . 2 0 1 AND 0 . 3 3 3
6AND s . z BETWEEN 16 . 5 0 6 AND 16 . 7 5 3
7AND p . r BETWEEN 16 . 9 2 8 AND 17 . 4 9 6

Listing 1: An expert-created SQL query for finding Pointed

Shape galaxies

For the test use case, we consider galaxies which are - (1) edge-on
spiral shape, (2) located near-by, and (3) emitting light in (i) visible,
(ii) near infra-red range. This identifies Spiral edge-on galaxies
whose query is:

1SELECT count ( ∗ )
2FROM PhotoObj AS p
3JOIN SpecObj AS s ON s . b e s t o b j i d = p . o b j i d
4AND p . p e t r o r a d _ r BETWEEN 4 . 5 5 AND 25 8 . 4 8 6
5AND p . r e d s h i f t BETWEEN −0 .01 AND 0 . 0 7 8 1
6AND s . z BETWEEN −9999 . 001 AND 16 . 7 5 3
7AND p . r BETWEEN 16 . 9 2 8 AND 17 . 4 9 6

Listing 2: An expert-created SQL query for finding Spiral

Edge-on galaxies

4.2 Study Design for dora the explorer

We define two exploration modes shown in Table 3. Traditional
Operator represents an exploration mode limited to using by-facet

to search for subsets of an input set (akin to drill-down) or using
by-superset to search for supersets of an input set (akin to roll-up).
These exploration modes are further extended by the All Operators
set by adding by-neighbors and by-distribution. The factor total in-
teractions reflects the total number of query submissions or query
undos that the user is allowed in a session. For total interactions,
the levels are MIN and MAX. MIN is a lower-bound and represents
a well-written expert SQL query for finding the required dataset.
MAX is an upper-bound and corresponds to a non-expert written
SQL query for finding the required dataset. We set MIN to ‘7’ -

Table 3: Levels for factors, operators and total interactions.

Levels Description

All Operators A set of all operators as defined in Table 2
Traditional Operators A set of operators consisting of only by-facet

& by-superset

MIN represents the total clauses & attributes in an
expert-created SQL query

MAX represents an upper bound on a non-expert
SQL query attempts.

same as the total number of SQL clauses and attributes required by
our expert to write the SQL query 2 in Section 4.1. We set MAX to
‘21’ to reflect the maximum number of attempts in the SDSS logs3
required for an non-expert to create the same SQL query4.

4.3 Deriving Human Metrics

The HSI metrics derived by logging user sessions are:
(1) Length of Pipeline defines the total number of operators

contributing to the target data subset. Suppose the user per-
forms a total of 𝑙 operations to get the desired result, and
during this the user performs various undos, then ’Length
of Pipeline’ 𝐿𝑝 is expressed as:

𝐿𝑝 =

𝑙∑
𝑖=1

O
{
O = +1, user executes an operation
O = −1, user undos an operation

(1)

(2) Total Exploration Duration expresses the difference be-
tween the time at which the user submits the first operator
𝑡𝑠 and the time at which the user ends the data exploration
task 𝑡𝑒 . Total Exploration Duration (𝑇𝐸 ) is denoted as:

𝑇𝐸 = 𝑡𝑒 − 𝑡𝑠 (2)

(3) Average Time Per Step defines the average time taken by
a user to submit an operator at each step. Consider a set T
containing records of timestamps at which the user submit-
ted each operator, i.e. T = {𝑡1, 𝑡2, . . . , 𝑡𝑛} then Average Time
Per Step 𝑇𝑝𝑠 is given as:

𝑇𝑝𝑠 =

𝑛−1∑
𝑖=1

𝑡𝑖+1 − 𝑡𝑖

𝑛 − 1
(3)

4.4 Deriving System and Data Metrics

We define the following data and system metrics:
(1) Recall Rate: Consider where the user finds a datasetD(𝑎 𝑗 ),

using a set of attributes 𝑎 𝑗 = {z,petroRad_r, redshift,i},
where 𝑎 𝑗 ∈ 𝐴 and 0 < 𝑗 ≤ 𝑛. Now, the gold standard dataset
for 𝑎 𝑗 is defined by expert SQL query as G(𝑎 𝑗 ). Hence, the
“Recall Rate” or 𝑅(𝑎 𝑗 ) is expressed as:

𝑅(𝑎 𝑗 ) =
D(𝑎 𝑗 ) ∩ G(𝑎 𝑗 )

G(𝑎 𝑗 )
(4)

3Attempts here signifies re-formulation of query at each step due to typos, missing
predicates, and missing or in-accurate operators.
4See the query interface and logs produced here http://skyserver.sdss.org/log/en/traffic/
sql.asp

http://skyserver.sdss.org/log/en/traffic/sql.asp
http://skyserver.sdss.org/log/en/traffic/sql.asp
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(2) Precision Rate: Consider where the user finds a dataset
D(𝑎 𝑗 ), using a set of attributes𝑎 𝑗 = {z,petroRad_r,redshift,i},
where 𝑎 𝑗 ∈ 𝐴 and 0 < 𝑗 ≤ 𝑛. Now, the relevant items in the
recovered dataset D(𝑎 𝑗 ), defined by an expert SQL query,
as R(𝑎 𝑗 ). Hence, the “Precision Rate”5 or 𝑃 (𝑎 𝑗 ) is expressed
as:

𝑃 (𝑎 𝑗 ) =
D(𝑎 𝑗 )

D(𝑎 𝑗 ) ∪ R(𝑎 𝑗 )
(5)

(3) Average Query Delay represents the time duration be-
tween submission and execution of a query. Given a user
has executed ‘𝑛’ queries and 𝑄𝑑𝑖 represents query delay for
the 𝑖𝑡ℎ query, 𝑄𝑑 is expressed as:

𝑄𝑑 =
𝑄𝑑1 +𝑄𝑑2 + · · · +𝑄𝑑𝑛

𝑛
(6)

5 DEPLOYMENT OF EXPERIMENT

We now describe our experiment design (Goals# 4 in Section 1).
In total 196 participants were recruited on Prolific Academic [23]
from various academic background6. Subjects recruited were first
redirected to “Google Forms” to complete the study consent form.
Our study was carried out following the guidelines of the Data
Protection Officer at our university and as governed by the Euro-
pean Commission’s standard contractual clauses. During the entire
study, there was no direct in-person contact with the participants
and their identity was concealed at all times. Due to that, we first
conducted a pre-screening attention test. We asked participants to
watch a presentation for 10 mins related to background details of
data exploration and asked to answer 5 multiple-choice questions
related to the presentation. Out of 196, 89 participants demonstrated
their complete attention and commitment by answering all ques-
tions correctly. Finally, 84 of them consented to continue with the
study. Participants were separately rewarded with monetary means
at completion of the pre-screening test and the study. Given that the
population size (number of stakeholders in galaxy data exploration)
is large, and the sample size is 84, the confidence level achieved is
90%, with a margin of error of about 9% [12]. Each participant was
assigned to one group (in Table 4) using the proportional stratified
sampling method [16]. This assures that each group is assigned
with the same representative sample from the total set of partici-
pants. Participants assigned to each group were first redirected to
“Google Forms” to complete the study consent form and then to fol-
low an online training video so as to train participants to use dora
the explorer using the training use case. Subjects were trained to
use the different operators with rough estimates of values for the
attributes as described in Section 4. This process mimics real-world
scenarios with astrophysicists. After training, each user was asked
to complete the test use case.

6 RESULTS AND DISCUSSION

We demonstrate the analysis of data, system, and human metrics.
Results for each metric are presented for treatment ‘groups’ de-
scribed in Table 4.
5In case of dora the explorer D(𝑎 𝑗 ) ∪ R (𝑎 𝑗 ) = D(𝑎 𝑗 ) , hence Precision Rate is
always 1 regardless of participant group, therefore is not considered for statistical
analysis purpose.
6inline with goals described in [4, 5]

Table 4: List of groups assigned with different levels of fac-

tors used in this study.

Group Treatments

Group-1 All Operators with MIN Interactions
Group-2 Traditional Operators with MIN Interactions
Group-3 All Operators with MAX Interactions
Group-4 Traditional Operators with MAX Interactions.

6.1 Analysis of HSE Metrics

Figure 2 reports the mean value for participants’ response to the
NASA-TLX questionnaire from each group. Results from Kruskal-
Wallis significance test indicate that a significant effect was ob-
served only for Q1 - Feeling of Accomplishment with p-value=0.003.
In this case, we ran pairwise comparisons using a Wilcoxon rank-
sum test with Bonferroni correction of 𝛼 = (0.05 ÷ total treatments)
= (0.05 ÷ 4) = 0.01. Further, running a pairwise comparison between
group responses for Q1 using a Wilcoxon rank-sum test indicated
a significant effect between Group-1 (All Operators and MIN inter-
actions) vs Group-2 (Traditional Operators and MIN interactions),
Group-1 vs Group-4 (Traditional Operators and MAX interactions),
Group-2 vs Group-3 (All Operators and MAX interactions), and
Group-3 vs Group-4. This reveals that the significant difference
between participants of Group-1 & 3 vs Group-2& 4 mainly appears
when they use All Operators. For the remaining HSE metrics, re-
sults indicate that participants were able to use dora the explorer
with – (1) ease to complete the task in the allotted time and training
(Temporal Demand), (2) some to regular effort (Effort Required), (3)
less stress to some stress (Mental Demand), and (4) little to very
little assistance (Perceived Controllability).

6.2 Analysis of Data, System, HSI Metrics

From Figure 3 (a) it can be observed that on average, participants of
Group-3 have a high Recall Rate (66 %) comparatively to others. To
check if there is statistically significant differences in Recall Rate
or dependent variable due to variation in factors or indepen-
dent variable – operators and total interactions, various statistical
models were developed. These models were then tested using - a
one way ANOVA (to test individual model containing each factor),
a two-way ANOVA (to test a single model containing both fac-
tors), a two-way ANOVA with interactions7 (to test a single model
containing both factors and interactions terms). Results indicate
a statistically-significant difference in mean values of Recall Rate
only when levels for factor ‘operators’ were varied, i.e. for a model
with ‘operators’ coded as categorical independent variable, with
(F(1,80) = 4.145, p < 0.04*). Further analysis of this model using
Akaike information criterion (AIC) revealed an AIC weight of 46%
(i.e. it explains 46% of the total variation in the dependent vari-
able - Recall Rate). Finally, it was verified that the model fits the
assumption of homoscedasticity using diagnostic plots [13]. We
conducted a Tukey’s HSD post-hoc test for pairwise comparisons
between the two levels of operators - All Operators and Tradi-
tional Operators [22]. The post-hoc test results indicate that there
7the term interactions is widely used in ANOVA analysis and should not be confused
with our factor ‘total interactions’.
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Figure 2: Plots for mean value of user feedback for each NASA-TLX questionnaire on Likert scale (the only significant result

is Feeling of Accomplishment (p-value=0.003).

Figure 3: Plots for calculated mean values of quantitative metrics from logs of each participant session.

is statistically-significant differences (p < 0.044) between groups
with All Operators and Traditional Operators and revealed that All
Operators set resulted in an increase of Recall Rate on average than
Traditional Operators by 13.64 units. Cross checking this withHSE

metric analysis for Q1 - Feeling of Accomplishment does confirm
our claim that All Operators does in fact assist in higher recovery
of target data.
Similarly, this entire process was repeated for the remaining metrics
individually in order to understand the effect of varying the fac-
tors or independent variable – operators and total interactions
on dependent variables – Average Query Delay (𝑄𝑑 ), Length of
Pipeline (𝐿𝑝 ), Total Exploration Duration (𝑇𝐸 ), Average Time Per
Step (𝑇𝑝𝑠 ) individually. Analysis indicates that there was no signifi-
cant effect caused by varying the independent variables on any of
the dependent variables except for Length of Pipeline. There is a
statistically-significant difference in Length of Pipeline only when
the factor total interactions were varied, with an AIC weight of
68% and fitting the assumption of homoscedasticity. The Tukey’s
HSD post-hoc test indicates statistically significant differences (p <
0.0103) and reveals that MAX interactions resulted in an increase
of Length of Pipeline on average than MIN interactions by 1.6 units,
i.e. nearly 2 extra operators were used by participants that were
assigned to groups having total interactions as MAX. This indicates
that participants tend to explore further when the total interactions
allowed is increased. Now, combining results, although participants
perceive Effort Required (as per HSE metric analysis) is similar
across different groups, theHSImetric analysis showcases that par-
ticipants from Group-3 and Group-4 tend to apply more operators
(by definition of Length of Pipeline). One reason for the discord
between Effort Required and its corresponding quantitative metric

Length of Pipeline is that the difference (2 extra operators) is small
thereby incurring a similar perceived effort.

7 CONCLUSION AND FUTUREWORK

We developed VALIDE, a preliminary human-centric evaluation
framework for operator-enabled IDE. We outlined the general
framework for VALIDE and demonstrated its application to dora
the explorer. VALIDE consisted of metrics and a methodology
that enable cross-checking with human feedback. VALIDE allows
to understand some inherent limitations in gathering and relying
on user feedback only. For example, participants across different
groups reported that there were no overall significant differences
in “Effort Required”, however cross checking this with “Length
of Pipeline” (HSI) metric, there appears to be some discrepancies.
Hence, VALIDE allows to point out such cases. Application of facto-
rial design along with statistical tests allowed us to conclude sound
results. Our results on dora the explorer indicated that partic-
ipants using All Operators were able to improve the Recall Rate
with respect to a ground truth, while an increase in total human-
data interactions had no significant effect on Recall Rate. However,
the best observed Recall Rate was 66%. This may be because users
cannot intervene and modify the semantics of available operators
for dora the explorer. Also, it may be due to the lack of assis-
tance in the form of (data subset, operator) recommendation at each
exploration step. In addition, VALIDE largely focused on manual
exploration. Thus, the evaluation using VALIDE opens two new
directions: extending dora the explorer with user interventions
to modify operators and support new visualizations, and going
beyond manual exploration by enabling stepwise and end-to-end
recommendations in IDE.
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