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a b s t r a c t

Querying both structured and unstructured data via a single common query interface such as SQL
or natural language has been a long standing research goal. Moreover, as methods for extracting
information from unstructured data become ever more powerful, the desire to integrate the output of
such extraction processes with ‘‘clean’’, structured data grows. We are convinced that for successful
integration into databases, such extracted information in the form of ‘‘triples’’ needs to be both (1) of
high quality and (2) have the necessary generality to link up with varying forms of structured data.
It is the combination of both these aspects, which heretofore have been usually treated in isolation,
where our approach breaks new ground.

The cornerstone of our work is a novel, generic method for extracting open information triples
from unstructured text, using a combination of linguistics and learning-based extraction methods,
thus uniquely balancing both precision and recall. Our system called LILLIE (LInked Linguistics and
Learning-Based Information Extractor) uses dependency tree modification rules to refine triples from
a high-recall learning-based engine, and combines them with syntactic triples from a high-precision
engine to increase effectiveness. In addition, our system features several augmentations, which modify
the generality and the degree of granularity of the output triples. Even though our focus is on
addressing both quality and generality simultaneously, our new method substantially outperforms
current state-of-the-art systems on the two widely-used CaRB and Re-OIE16 benchmark sets for
information extraction.

We have made our code publicly available1 to facilitate further research.
© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

It is commonly known that some 80% of enterprise data is
nstructured while only some 20% is structured [1,2]. Hence,
nly a relatively small part of enterprise data is stored in re-
ational databases. Traditionally, the information retrieval and
atural language processing communities focus on working with
nstructured data, while the database community typically works
ith structured data. In order to query both structured and un-
tructured data via a single common query interface such as
QL or natural language [3,4], there have been several research
fforts over the last years. One such approach, which we follow
n our work, is to first use information extraction techniques to
retrieve relevant entities (subjects and objects) and relationships

∗ Corresponding author.
E-mail addresses: ellery.smith@zhaw.ch (E. Smith),

papadopoulos@infili.com (D. Papadopoulos), martin.braschler@zhaw.ch
M. Braschler), kurt.stockinger@zhaw.ch (K. Stockinger).
1 https://github.com/OIELILLIE/LILLIE
ttps://doi.org/10.1016/j.is.2021.101938
306-4379/© 2021 The Authors. Published by Elsevier Ltd. This is an open access art
(predicates) from text documents and to then populate so-called
knowledge graphs or ontologies [5]. The next step is to link the gen-
erated knowledge graph with the tables of a relational database
(entity linking). Finally, the combined system can be queried in
either SQL or in natural language.

An example of such an end-to-end data processing pipeline
is shown in Fig. 1. The inputs are text documents from medical
articles such as in PubMed,2 as well as a relational database that
stores information about genes and so-called anatomical entities,
i.e. different organs in our body. First, the input text ‘‘THY1 is
overexpressed in human gallbladder carcinoma’’ is parsed and sub-
ject, object and predicate are extracted. Next, the subject ‘‘THY1’’
and the object ‘‘human gallbladder carcinoma’’ are linked to the
relational database.

Building such an end-to-end pipeline to enable the vision of
querying structured and unstructured data via a common inter-
face has been a long standing research effort [6,7]. However, each
of the previously-mentioned steps has typically been treated and

2 https://pubmed.ncbi.nlm.nih.gov/.
icle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. Example of an end-to-end data processing pipeline. Step 1 - Information
xtraction: First we extract triples such as subject, predicate and object from a
ext document. Step 2 - Entity Linking: Afterwards we link the extracted subjects
nd objects to specific columns of a relational database. As a result we have an
xtended relational database that is enriched with information stored in text
ocuments.

ptimized in isolation. Hence, significant potential for improve-
ent is left unexplored when considered in the larger context of
ata exploration. When the triple extraction process is viewed as
n integral part of this larger process of integrating and querying
tructured and unstructured data, we claim that two considera-
ions are crucial to be treated simultaneously — the combination
f which has previously received only little attention:

• How to optimize the effectiveness of triple extraction, balanc-
ing both recall and precision?
• How to augment the approach to increase generality, making

the extracted triples suitable for linking up with varying
forms of structured data stored in a relational database?

Much work on triple extraction concentrates on the first as-
pect only and is therefore not really optimized towards an end-
to-end pipeline of both triple extraction and database integration.

In this work we tackle an important open gap in triple ex-
traction and database integration. In particular, we present a
novel approach for extracting subject–predicate–object relational
triples from unstructured text, which are then linked to relevant
ontologies and inserted into a relational database. This paper is
part of a greater vision of building a data exploration system with
INODE [8].

The contributions of our paper are as follows:

• We combine a high-precision rule-based triple extractor with
a high-recall learning-based extractor, using a novel triple
refinement method.
• Our system includes additional options for output mod-

ifications, which allow the granularity and specificity of
the extracted triples to be customized to a given structured
database.
• Our approach outperforms current state of the art systems on

the two widely-used benchmark datasets CaRB and ReOIE.

The paper is organized as follows: in Section 2 we review
he related work on information extraction and entity linking for
nowledge base construction; in Section 3, we give an overview
f the LILLIE architecture; in Sections 4 and 5, we describe the
lgorithms and functions of the rule-based extractor and the
earning-based extractor, respectively; in Sections 6 and 7, we
how how to combine both engines, and customize their output;
n Section 8, we describe how to apply our triple extractor to the
ask of entity linking and database insertion; in Section 9, we give
detailed analysis and evaluation of all the components of our
ystem, and compare these to the current state-of-the-art. The
aper culminates in Section 10, where we show how the enriched
atabase can be queried and discuss performance considerations.
2

2. Related work

In this section, we provide background information for each
of the distinctive modules that comprise our data processing
pipeline, namely open information extraction and entity linking
for knowledge base construction.

2.1. Information extraction

Information extraction systems aim at distilling structured
representations of information from natural language text, usu-
ally in the form of relational triples {subject, predicate, object},
hich correspond to {entity1; relationship; entity2} or n-ary
ropositions [9].
There are two types of information extraction systems: Closed

nformation Extraction (CIE) systems identify instances from a
ixed and finite set of corpora, considering only a closed set of re-
ationships between two arguments [10]. On the other hand, Open
nformation Extraction (OIE) systems use a domain-independent
pproach and are capable of extracting entities and relationship
riples from natural language sentences. Since OIE systems fol-
ow a relation-independent extraction paradigm, they can play a
ey role in many natural language processing (NLP) applications
nvolving natural understanding (NLU) and knowledge base con-
truction from massive and heterogeneous corpora, by extracting
hrases that indicate semantic relationships between entities.
In order to extract triples, most approaches try to identify

inguistic extraction patterns, either hand-crafted or automati-
ally learned from the data. The line of work on OIE starts with
ystems relying on distant supervision [11,12], and rule-based
aradigms that focus on the grammatical and syntactic properties
f the language [13,14]. An abundance of learning-based systems
hat leverage annotated data sources to train classifiers has been
roposed [15,16], with more recent implementations making use
f pretrained language models [17,18]. Despite the existence of so
any approaches, however, the majority focus only on evaluating

he effectiveness of different triple extraction tools on raw data,
ithout incorporating any preprocessing strategies to limit the
umber of potentially uninformative triples [19].
Some more recent methods go beyond the triple extraction

ask by encompassing more thorough preprocessing and postpro-
essing strategies, including discourse analysis, coreference reso-
ution or summarization to improve the quality of the extracted
riples [20–22].

.2. Entity Linking for knowledge base construction

Entity Linking (EL) – also known as Named Entity Recognition
Disambiguation – is the task of identifying an entity mention in
text and establishing a link to an entry in a knowledge base

KB), e.g. Wikidata [23], DBpedia [24], YAGO [25]. EL systems are
apable of resolving the lexical ambiguity of entity mentions and
an therefore be extremely useful in a plethora of NLU appli-
ations, by enriching the information extracted via OIE systems.
oreover, by establishing links between the entity mentions and
B entities, we are able to store and utilize information in seman-
ic graphs, facilitating semantic parsing, question answering and
xploratory data analysis operations.
Earlier approaches leverage statistical models combined with

eature engineering methods to achieve entity linking, viewing
he problem as a word sequence labeling task [26]. More mod-
rn neural-based approaches treat the problem as a multi-class
lassification task, in which entities correspond to classes. The
oal is to propose a list of candidate entities for each mention
y encoding both the mentions and the candidate entities into
ector representations, then ranking the candidates based on
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Fig. 2. Overview of our proposed architecture of LILLIE for extracting re-
lational triples from text documents and integrating them into a relational
database. Uniquely, our system is a combination of a rule-based extractor (high
precision-oriented) with a learning-based extractor (high recall-oriented).

content similarity. Much work has been put in constructing and
correlating mention and candidate entity embeddings, spanning
from convolutional encoders [27,28] to recurrent [29,30] and
self-attention networks [31–35].

3. Architecture of LILLIE

An overview of the architecture of LILLIE (LInked Linguistics
and Learning-Based Information Extractor) is shown in Fig. 2. We
briefly describe the main aspects of each of the components. The
details will be discussed in the subsequent sections.

• Rule-based Extractor: This component follows a precision-
oriented, linguistics-based approach to extract triples from
unstructured text (see Section 4).
• Learning-based Extractor: This component follows a recall-

oriented triple extraction approach, based on complemen-
tary OIE strategies to extract relational triples (see Sec-
tion 5).
• Triple Refinement: This module efficiently combines the re-

sults of the aforementioned extractors, maintaining the best
attributes of each one (see Section 6).
• Output Modification: A number of parameterization settings

are introduced by this module, allowing LILLIE to adapt to
different text domains (see Section 7).
• Entity Linking and Database Integration: The final part of

our system aims at correlating the extracted triples with
domain-specific ontologies in order to enhance their contex-
tual value, before integrating them to a relational database
(see Section 8).
3

4. The rule-based extractor

In this section we explain our precision-oriented, rule-based
extractor, whose goal is to extract relational triples from a text
document.

The input for the rule-based extractor is a sentence of unstruc-
tured plaintext, such as:

Long non-coding RNA CCAT2 promotes breast cancer growth and
metastasis

And the output is a set of annotated subject–predicate–object
triples, for example:

(long non-coding RNA CCAT2 ; promotes ; breast cancer growth)

(long non-coding RNA CCAT2 ; promotes ; breast cancer metastasis)

For each component of a triple (subject, predicate and object),
we identify a single base term from the input text. From this term,
we expand it into a complete phrase, while annotating each term
with the rules used to include it.

We explain this concept by using the previous example:

long non-coding RNA CCAT2 ; promotes ; breast cancer
growth

Here, long non-coding is marked as an adjectival component
of the subject, RNA is marked as a compound element, and CCAT2
is marked as the base term. With this additional information, we
can alter the granularity of the given triples, for matching to
more or less specific entities in structured data. For example, if
"long non-coding RNA CCAT2" is not present in an ontology,
we can match on the more general entities such as "RNA CCAT2"
or "CCAT2".

We design our rules to be as generic as possible, and to be
applicable on all possible text domains. To this end, we used the
CaRB and ReOIE16 datasets for crafting these rules. The CaRB [36]
and ReOIE16 [37] benchmarking sets are 1877 arbitrarily selected
annotated sentences from various sources, designed to represent
a wide variety of text domains and language styles.

To design the rules, we analyzed a set of only 30 random
sentences from the CaRB development set, and designed the
rules based on these, using an approach similar to a ‘‘few shot’’
learning model. We then tested these rules on the rest of the CaRB
development set to assess their generalizability. This approach
ensures that our system is generic, and adaptable to many differ-
ent domains, as demonstrated by its performance on the ReOIE16
set, which was not seen prior to evaluation.

We believe these rules to be applicable to a wide variety
of textual domains, with no modifications to the core rule set
being needed as we move between datasets. In Section 7, we
describe a small number of domain-specific adaptions layered
on top, that can be enabled or disabled when required, to give
further generalizability. This allows for high-precision annotated
extractions, suitable for to mapping to structured data.

4.1. Pre-processing

To begin with, the input text is parsed into a syntactic de-
pendency tree using the Stanford Dependency Parser [38], and
annotated with part-of-speech tags. The dependency tree passes
through several custom pre-processing stages, before the tokens
comprising the triple are extracted from the tree.

We include a purpose-built anaphora resolution procedure in
our system, based on deterministic transformation rules on the
dependency tree. We keep the ruleset minimal, in order to
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Fig. 3. A syntactic dependency tree before pre-processing (above) and after
below). The subject-phrase "Gastrointestinal hormonal peptides", shown
in blue, has been duplicated in the sub-clause on the left, to account for the
conjunctive phrase. With this pre-processing step, LILLIE enables more effective
downstream processing. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

achieve a reliable, high-precision procedure, in contrast to gener-
alized anaphora resolution systems, which we found introduced
many noisy substitutions. In addition, we account for conjunc-
tive predicates by duplicating and re-arranging branches of the
dependency tree.

An example of this pre-processing is shown in Fig. 3 for the
sentence ‘‘Gastrointestinal hormonal peptides can cause gastroin-
testinal malignancies and may contribute to dysmotility’’.

This procedure handles cases of co-reference resolution where
the anaphora is a ‘‘wh-word’’ (‘which’ or ‘who’), or a pronominal
(it, he, etc.), at the head of a sub-clause. These cases can be de-
terministically resolved, e.g. ‘‘This cancer is found in the kidneys,
where it can be aggressive.’’. These instances can to be reliably
resolved with very high precision, as they are linguistically unam-
biguous. Cases where: a) there are two (or more) ‘‘wh-words’’ or
pronominals in the dependent clause; or b) where the anaphora is
not the head-word of a sub-clause; are explicitly not handled, as
they can be ambiguously interpreted, and attempting to resolve
them would break the principle of high precision extraction.

Similarly, verbal conjunctions, such as in ‘‘He was the Prime
Minister and also served as a judge.’’ (from the CaRB develop-
ment set), are handled only in cases where the subject can be
unambiguously added to the conjunctive clause, but will not be
split in more complex cases, such as ‘‘This gene is found in the
kidney and it mutates within it.’’. Such cases are deferred to the
Learning-Based Extractor — which defines our complementary
approach. We provide an analysis of how much this approach
(of not attempting to resolve ambiguity) improves F1 and AUC
in Table 6.

The procedure is described formally in Algorithm 1. We use
d(n, n′) to denote the syntactic dependency between nodes n
and n′ of the dependency tree, where n′ is the governor. Further
information concerning the syntactic and linguistic terms used in
the algorithms in this work can be found in [39].

4.2. Triple extraction

After processing the original dependency tree into a set of
modified trees, we can now use it to extract relational triples.
To do this, we find sets of three nodes from each tree, which
represent the base terms for the subject, predicate and object,
respectively. We again explain this process with our running
example:
4

Algorithm 1 Input Pre-processing

Input: t , a syntactic dependency tree
Output: T , a set of modified trees

for all n ∈ BreadthFirstSearch(t) do
for all c ∈ n.children do

if d(c, n) = conj and n is verbal then
for all c ′ ∈ n.children do

if d(c ′, n) = nsubj then
c.children = c.children ∪ {Copy(s)}

T ← {t}
for all n ∈ BreadthFirstSearch(t) do

if d(n, n.parent) ∈ {acl, aclrelcl, advcl} then
for all c ∈ n.children do

if d(c, n) is a subject then
if c is a wh-word or pronominal then

c ← n.parent.subject
t ′ ← CopyTree(n); T ← T ∪ {t ′}

Long non-coding RNA CCAT2 promotes breast cancer growth and
metastasis

The base tokens are CCAT2 and promotes, for the subjects
and predicates respectively, and metastasis and growth for
each of the two objects. These are identified according to a set
of rules, which determine the appropriate dependencies between
the three terms. The edges between the subject, predicate and
object base tokens must match a set of valid edges, such as
(nsubj→dobj) for a nominal subject and direct object triple.

For each of these base terms, we traverse the dependency
tree depth-first, marking terms that match certain rules. These
rules take the form of a lookup table, where the dependency on
each edge is mapped to six rules: three inclusion rules, one for
subject, predicate and object: and, similarly, three donation rules.
epending on whether the base token is for the subject, predicate
r object, two of these rules are then chosen. The inclusion rules
etermine whether an edge is valid to traverse, and the sub-tree
an be included in the final triple. The donation rules determine
f a given sub-tree will be donated, or moved, to the subject,
redicate or object.
For example, a compound edge below the subject node will

e included in the subject portion of the triple. If this edge was
elow the predicate node, however, it would be moved to the
bject’s subtree. This process is applied recursively to all subtrees
ntil the subject, predicate and object trees contain only relevant
okens.

For example, an auxiliary verb, such as may or could, will be
nnotated and added to the predicate, and compound nouns, such
s breast and cancer will be added to the subject or object. The
utput of this procedure is a set of triples, consisting of terms
nnotated with dependency rules.
In total, there are 40 branch-rules used in our system. Here,

e give an example of some of these rules:

• Temporal Modifiers: A temporal modifier denotes the time
at which the predicate was invoked by the subject on the
object. In the sentence ‘‘Last year, he passed his exams.’’, last
year is the temporal modifier.
Temporal phrases are typically attached to the verb of a
clause in a dependency graph; however, we transfer all
instances of temporal indicators to the object portion of
the triple using the branch donation rules. In the previous
example, we take passed as the predicate, and transfer the
phrase last year to the object, giving the triple (he ; passed
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sample of the branch-rules used in our rule-based extractor. S, P and O represent Subject, Predicate and Object, respectively.
Rule Remove from S Remove from P Remove from O Donate from S to Donate from P to Donate from O to

Temporal modifiers No Yes No N/A O N/A
Adjectival clauses No Yes No S N/A O
Compound particle Yes No Yes N/A P N/A
Multi-word expressions No Yes No S N/A O
Copulas Yes No No N/A P P
... ... ... ... ... ... ...
o
t
S
O
t
u
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s
a
t
‘
‘
r
a
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; his exams last year). This differs from the standard
parse of (he ; passed last year ; his exams), and
produces a more informative triple for structured database
insertion by keeping specificity of the predicate high.
• Compound Particles: A compound particle denotes part of

an idiomatic split verbal phrase, such as in the sentence
‘‘The detective closed the case down.’’, where down is a
compound particle in the verb phrase shut down.
Using this rule, we can combine verb phrases split over
long distances, and remove ambiguity in the object, by us-
ing dependency tree analysis. In the previous example, we
can extract the triple (the detective ; closed down
; the case), rather than the more ambiguous interpre-
tation: (the detective ; closed ; the case down),
accounting for the clear semantic difference between the
two predicates.
• Multi-Word Expressions: Multi-word expressions (MWEs)

cover phrases like such as or instead of. In the sentence, ‘‘We
could find a suitable donor, at least.’’, the phrase at least is
attached as a MWE to the root verb.
In cases such as these, where the MWE will cause ambiguity
in the predicate, even though it is a dependent branch of
the root verb, we use the inclusion rules to prune its branch
from the tree, to give the triple (we ; could find ; a
suitable donor), rather than the direct parses of (we
; could at least find ; a suitable donor). In the
subject and object, however, we leave MWEs in the output
triple, as they frequently contribute necessary context in
noun phrases.
• Copulas and Auxiliary Verbs: A copula generally denotes

an is-a relation, as in ‘‘CCAT2 is a gene’’ or ‘‘These tumours
were malignant.’’ Auxiliary verbs occur in phrases such as
‘‘was found’’ (was) or ‘‘has been detected’’ (has and been).
In a typical dependency parse, copulas are typically not posi-
tioned as the root of the tree, and are instead represented as
a sub-branch of the object. As such, we modify the tree, by
promoting the copula to the root, and positioning the object
as a sub-tree of the root verb. However, in cases where
copulas and auxiliary verbs interact, as in ‘‘These tumours
have been malignant.’’, we use our rules to ensure that the
extracted triple becomes (these tumours ; have been ;
malignant), rather than (these tumours ; have ; been
malignant), as the dependency tree suggests.

With these rules, we attempt to cover all linguistic domains,
ut, similarly to our pre-processing techniques, we take the ap-
roach of removing portions of the input that are linguistically
mbiguous, and thus benefit from a stochastic approach, as these
ill be handed by the Learning-Based Extractor. As such, some
ependencies, such as Clausal Subjects (e.g. in ‘‘How this gene
ehaves makes little sense.’’), or Discourse (representing elements
f casual speech) are pruned from the dependency tree by our
ules. We implement these rules using a table, describing when to
nclude, remove, or transfer branches below the subject, predicate
r object base token. An abridged version of this table is shown

n Table 1.

5

5. The learning-based extractor

The learning-based extractor introduces a data processing
pipeline that takes as input a sentence of natural language text
and provides a structured representation of the extracted infor-
mation in the form of OIE triples, identical to the rule-based
extractor. For example, the same sentence:

Long non-coding RNA CCAT2 promotes breast cancer growth and
metastasis

Produces the following triple in the form of subject–predicate–
object:

(long non-coding RNA CCAT2 ; promotes ;
breast cancer growth and metastasis)

The extractor comprises an in-place coreference resolutionmod-
ule and a parallel triple extraction module that integrates three
complementary OIE engines relying on both learning-based and
linguistics-based components, each based on a different extrac-
tion strategy. These engines are discussed in detail in Section 5.2.
The main intuition behind this approach is to enhance the per-
formance of our extractor compared to standalone engines, while
developing a recall-oriented approach to be used in conjunction
with the precision-oriented rule-based extractor. More informa-
tion regarding the aforementioned modules is provided in the
following subsections.

5.1. In-place coreference resolution

An in-place coreference resolution module is used to im-
prove the quality of information extraction, addressing those
cases where an entity found in unstructured text is replaced by
its coreferential pronoun. For example, the phrase ‘‘Mary is a nice
person, I like hanging out with her.’’ will be substituted with
the coreference-resolved equivalent ‘‘Mary is a nice person, I like
hanging out with Mary.’’

To this end, we leverage the pretrained neural coreference res-
lution tool from AllenNLP [40], which implements a variant of
he Lee et al. end-to-end coreference resolution model [41] using
pan-BERT embeddings [42]. The model has been trained on the
ntoNotes 5.0 dataset [43], achieving an F1-score of 78.87% on
he test set. Prior to being ingested by our triple extraction mod-
le, each sentence is processed through the in-place coreference
esolution component, where all mentions referring to the same
ntity are substituted by that entity, eventually leading to more
nformative triples.

An indicative example of the performed substitutions on an
mall extract is provided in Table 2. As shown in the example,
ll mentions of the type ‘‘this gene’’ have been replaced with
he original entity ‘‘CCL26 gene’’, while all mentions of the type
‘this chemokine’’ have been substituted with the original entity
‘chemokine receptor CCR3’’. It is evident that the coreference-
esolved text will lead to more informative triples, since all triple
rguments will contain original noun phrases as unique referents
nstead of their coreferential pronouns.
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able 2
n-place coreference resolution using the learning-based extractor on an example
aken from the OncoMX gene biomarkers database. LILLIE replaces all mentions
f ‘‘this gene’’ with the original entity ‘‘CCL26 gene’’.
Original sentences:

CCL26: This gene is one of two Cys–Cys (CC) cytokine genes clustered on
the q arm of chromosome. Cytokines are a family of secreted proteins
involved in immunoregulatory and inflammatory processes. The CC
cytokines are proteins characterized by two adjacentcysteines. The
cytokine encoded by this gene displays chemotactic activity for normal
peripheral blood eosinophils and basophils. The product of this gene is
one of three related chemokines that specifically activate chemokine
receptor CCR3. This chemokine may contribute to the eosinophil
accumulation in atopic diseases.

Coreference-resolved sentences:

CCL26: CCL26 gene is one of two Cys–Cys (CC) cytokine genes clustered on
the q arm of chromosome. Cytokines are a family of secreted proteins
involved in immunoregulatory and inflammatory processes. The CC
cytokines are proteins characterized by two adjacent cysteines. The
cytokine encoded by CCL26 gene displays chemotactic activity for normal
peripheral blood eosinophils and basophils. The product of CCL26 gene is
one of three related chemokines that specifically activate chemokine
receptor CCR3. Chemokine receptor CCR3 may contribute to the
eosinophil accumulation in atopic diseases.

5.2. Parallel triple extraction

Our approach aims at distilling the maximum available infor-
ation from texts that can be used directly for end-user appli-
ations. To this end, we integrated three of the most popular OIE
ystems, each based on a different extraction strategy, into a sin-
le module. These complementary OIE engines were chosen both
n terms of underlying architecture (i.e. clause-based, deep neural
etwork-based) and also regarding the targeted corpus (i.e. some
xtractors are focusing on numerical context while others attend
o conjunctive sentences). The advantage of having more triples
s exploited during the output modification process (Section 7),
roviding the option to the end-user of having a high recall
ystem, based on the needs of each use case. A brief explanation
f the intuition behind each system is provided below:

• Open IE 5.1 [44] is a successor to the Ollie learning-based
information extraction system [15]. It is based on the combi-
nation of four different linguistics-based and learning-based
OIE tools; namely CALMIE (specializing in triple extraction
from conjunctive sentences) [45], RelNoun (for noun rela-
tions) [46], BONIE (for numerical sentences) [47], and SRLIE
(based on semantic role labeling) [48].
• ClausIE [14] follows a clause-based approach, first identi-

fying the clause type of each sentence and then applying
specific proposition extraction based on the corresponding
grammatical function of the clause’s constituents. It also
considers nested clauses as independent sentences. Because
ClausIE detects useful pieces of information expressed in
a sentence before representing them in terms of one or
more extractions, it is especially useful in splitting complex
sentences into many individual triples.
• AllenNLP OIE system [40] formulates the triple extraction

problem as a sequence BIO tagging problem and applies a bi-
LSTM transducer to produce OIE tuples, which are grouped
by each sentence’s predicate [49]. Given that it relies on
supervised learning and contextualized word embeddings to
produce independent probability distributions over possible
BIO tags for each word, it has the potential of discovering
richer and more complex relations.

We provide an example to showcase the supplementary re-
ults of the aforementioned engines which comprise the learning-
ased extractor in Table 3. The example showcases a triple ex-
raction task on a complex sentence, containing both independent
6

Table 3
Parallel triple extraction example from the learning-based extractor, using
different engines (O: Open IE, C: ClausIE, A: AllenNLP OIE).
Original sentence: The protein encoded by KIF1A gene is a
member of the kinesin family and functions as an anterograde
motor protein that transports membranous organelles along
axonal microtubules.

Derived triple Engine

The protein; be encoded ; by KIF1A gene O, C, A

The protein encoded by KIF1A gene ; is ; a
member of the kinesin family and functions as
an anterograde motor protein of the kinesin
family that transports membranous organelles
along axonal microtubules

C

The protein encoded by KIF1A gene ; is ; a
member of the kinesin family and functions as
an anterograde motor protein

O, A

An anterograde motor protein ; transports ;
membranous organelles along axonal
microtubules

O, A

and multiple dependent clauses. The first column shows the list
of derived triples and the second column presents the extraction
engine that managed to identify each triple. It is evident that
while some of the produced triples remain concise and highly-
informative (e.g. first and last extraction), others (second and
third) contain redundant information with low marginal utility
with respect to the use case. Even longer triples, however, can be
useful using a relevant post-processing approach; a feature that
is addressed by the Triple Refinement module described in the
next section. In general, each engine that comprises the learning-
based extractor has diverse quality characteristics from which we
can benefit from while using their combined extractions.

Examples such as this pose some of the most challenging
research cases, as it is usually difficult to identify all possible in-
dividual clauses using a single extraction approach. However, the
complementary strategy of the learning-based extractor manages
to capture triples from different parts of the sentence, with a
portion of them focusing on the main clause and the rest on the
dependent clauses.

6. Triple refinement

Once both triple extraction engines have output a set of triples
for a given sentence, they are combined into a single unified set,
which aims to maintain the high precision of the rule-based engine,
but increases recall using the triples output from the learning-
based engine (which is designed to produce more triples, but with
lower precision). To do this, the learning-based triples are first
passed through a triple refinement procedure.

This procedure maps the output triples onto the sentence’s
syntactic dependency tree. For every triple, each node on the tree
is marked if it is part of the subject, predicate or object. We design
a set of edge-rules, similarly to the rule-based extractor, which
signify if an edge is valid between two marked nodes. There are
three sets of rules for subject, predicate and object nodes.

For example, in the triple from Table 3:

(The protein encoded by KIF1A gene ; is ;
a member of the kinesin family and
functions as an anterograde motor protein)

The object nodes member and functions are connected by a
conjunction relation, which is not a valid object edge, according
to the refinement ruleset. The whole branch of the functions
sub-tree is pruned, and the object becomes: a member of the
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a

inesin family. This procedure uses the inclusion rules de-
cribed in Table 1 to determine which branches are kept in the
inal tree. In this sense, the triple refiner uses the same rules as
he Rule-Based Extractor to determine which tokens and phrases
re relevant. However, the crucial difference is that the Rule-
ased Extractor will completely disregard the entire sub-tree of
n ambiguous phrase, while the Learning-Based Extractor plus
riple Refiner will include ambiguous branches, but prune them
o remove irrelevant terms. Because of this, while the Rule-Based
xtractor may miss ambiguous elements, and the Learning-Based
xtractor may include irrelevant elements in its output, the Triple
efiner prunes irrelevant parts of a given triple to create a best-
f-both-worlds approach. This procedure is described formally in
lgorithm 2, where V represents the table of inclusion rules from
able 1.

Algorithm 2 Triple Refiner

Input: T , a set of triples, (S, P,O), for a sentence;
t , a dependency tree for that sentence;
V , a mapping from {subject, predicate, object} to a list of valid
dependencies

Output: R, a set of refined triples

R← ∅
for all (S, P,O) ∈ T do

t ′ ← Copy(t)
for all n ∈ DepthFirstSearch(t ′) do

if n ∈ S then n.mark = subject
else if n ∈ P then n.mark = predicate
else if n ∈ O then n.mark = object
else n.mark = none

for all n ∈ BreadthFirstSearch(t ′) do
if n.mark = n.parent.mark then

if d(n, n.parent) /∈ V [n.mark] then
n.mark← none
for all n′ ∈ DepthFirstSearch(n) do

n′.mark← none
r ← {subject : ∅, predicate : ∅, object : ∅}
for all n ∈ DepthFirstSearch(t ′) do

r[n.mark] ← r[n.mark] ∪ {n}
R← R ∪ {r}

Because of this, new triples can be obtained which the rule-
ased extractor was unable to find, while maintaining the high
recision of the rule-based system. Additionally, because the
riples are mapped to the dependency tree, they can be anno-
ated with additional information. For example, the object in the
revious triple now becomes:

a member of the kinesin family

Where kinesin can be easily isolated as a compound noun
rom the triple, for later entity linking. Mapping all triples to a
ependency tree also allows us to apply the output modifica-
ion procedures, described in the following section, to all triples,
egardless of which engine they originated from.

After the refinement procedure, the triples are merged into
single set. If there are potential duplicates, the system favors

he rule-based triple, in order to maintain high precision. For
xample, if two triples from different extractors have the same
redicate for a given sentence, the rule-based one is chosen.

. Output modification

Once the triple refinement is complete, and each triple is
lso mapped to a dependency tree, we can modify the final
7

output based on several settings, which activate or disable a small
number of auxiliary rules. The core rules and functionality remain
generic and do not need to be modified, but these additional op-
tional rules allow for extra flexibility if the text domain requires
it.

This allows our system to adapt to a wider variety of text do-
mains and relational databases. If, for example, longer entities with
additional context are required, a switch can be turned on which
will provide a more expressive output. Or, if the input textual data
is highly structured, compound entities can be split into smaller-
sub entities for better matching. However, this modification may
produce noisy results on less-structured text, since complex or
ambiguous conjunctions are difficult to parse accurately, so it
can be turned off in these cases. These modifications are de-
scribed formally in Algorithm 3. We will discuss the details of the
algorithm in the following subsections.

Algorithm 3 Output Modification Procedures

function EnhancedPredicates(t)
for all n ∈ BreadthFirstSearch(t) do

if {c | c ∈ n.children, d(c, n) = dobj} = ∅ then
for all c ∈ n.children do

if d(c, n) = cop then
d(c, n)← advmod; c ← n; n← c

if d(c, n) = nmod and n is verbal then
d(c, n)← vmod

return t
function EntityContext(t)

T ← T ∪ {t}
for all n ∈ DepthFirstSearch(t) do

for all c ∈ n.children do
if d(c, n) ∈ {acl, aclrelcl, advcl} then

T ← T ∪ Copy(c)
n.children = n.children \ {c}

return T
function SplitTriples(t)

t ′ ← Copy(t)
for all n ∈ DepthFirstSearch(t ′) do

n.children← {c | c ∈ n.children,
d(c, n) /∈ {conj, cc}}

T ← T ∪ {t ′}
for all n ∈ BreadthFirstSearch(t) do

if n is not verbal then
for all c ∈ n.children do

if c is nominal and d(c, n) = conj then
n.children← {c ′ | c ′ ∈ n.children,

d(c ′, n) /∈ {conj, cc}}
n.children← n.children ∪ c.children
n.token← c.token
t ′ ← CopyTree(t); T ← T ∪ {t ′}

return T

7.1. enhanced_predicates Setting

When enhanced_predicates is enabled (see first function
in Algorithm 3), the predicate contains additional descriptive
information, and the subject and object are simplified. For the
sentence:

Blood E2F3 mRNA levels were significantly higher in lung cancer
patients when compared to either patients with benign lung diseases
or healthy subjects.

The default version keeps the shorter extracted predicate:

(Blood E2F3 mRNA levels ;
were ; significantly higher in lung cancer patients)
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Fig. 4. Section of a dependency tree with and without enhanced_predicates
enabled (subject, predicate and object are marked in purple, red and blue,
respectively). LILLIE enables enhancement of extracted triples with more de-
scriptive information. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

While the enhanced_predicates version is as follows:

(Blood E2F3 mRNA levels ;
were significantly higher in ; lung cancer patients)

This is illustrated in Fig. 4, where the predicate node (were)
has been promoted to the root of the tree, and the original
root, (higher) has been changed to an adverbial modifier. This
expands the tokens in the predicate (shown in red).

7.2. entity_context Setting

If the textual input data is highly descriptive, and many enti-
ties include additional contextual (temporal, location, etc.) infor-
mation in the subject or object, we can disable the
entity_context option to exclude potentially noisy additional
clauses or phrases (see second function in Algorithm 3). This aids
in entity matching, as the relevant tokens can be extracted more
efficiently. Without this option disabled, the output triple from
the previous example would be:

(Blood E2F3 mRNA levels ;
were significantly higher in ;
lung cancer patients when compared
to either patients with benign
lung diseases or healthy subjects)

The benchmark evaluation results in Table 5 have the en-
ity_context switch enabled, since human annotators tend to-
ards more contextual labeling. However, we disable this switch
hen using our system for structured data integration, as the
dditional information causes excess noise during the entity link-
ng procedure. This ease of adaptability to different domains and
ontexts, using the output modification switches, is one of the key
trengths of the LILLIE system.

.3. split_triples Setting

We can also split or merge conjunctive phrases into sub-triples
see third function in Algorithm 3). This option is best-suited for
ell-structured textual data, as complex conjunctions can intro-
uce errors (i.e. lower precision) if the text is not well-formed.
onsider the following sentence:
8

Long non-coding RNA CCAT2 plays an important role in tu-
morigenesis, tumor growth and metastasis.

We can extract three separated triples for each sub-entity:

(Long non-coding RNA LncRNA CCAT2 ; plays ;
an important role in tumor growth)

(Long non-coding RNA LncRNA CCAT2 ; plays ;
an important role in metastasis)

(Long non-coding RNA LncRNA CCAT2 ; plays ;
an important role in tumorigenesis)

Or, merge them into a single entity:

(Long non-coding RNA LncRNA CCAT2 ; plays ;
an important role in tumorigenesis tumor growth and metastasis)

We demonstrate the effect of the split_triples enhance-
ment in Table 7. When this switch is enabled, we gain a higher
number of triples that can be linked to entities for database
insertion. In this case, the enhancement was effective due to the
linguistically precise nature of the scientific texts used.

It should be noted that, while the combined effect of the
proposed triple refinement and output modification processes can
be considered similar to that of knowledge base canonicalization
(i.e. the problem of mapping each entity to its canonical form to
reduce ambiguity or redundancy) [50], our approach significantly
differs from the established line of work [51,52] as it allows full
ontrol of the auxiliary information captured by the extractors, based
n user preference.

. Entity linking and database integration

The final step of our end-to-end system is to integrate the
xtracted triples into a relational database, in order to increase
he contextual value of our information extraction pipeline. Even
hough our entity linking and database integration approach is
eneric, we describe a specific use case of applying our approach
n the domain of medical research. We have chosen this use case
o demonstrate LILLIE’s impact of solving a challenging real-world
roblem [8] at the intersection of academia and industry based on
olid theoretical foundations.
We followed an entity linking strategy to correlate triples

ubjects and objects with a specific anatomical entity from the
beron [53] cross-species anatomy ontology (e.g. pharynx =
BERON:0006562) and with a specific biomarker from the On-
oMX [54] cancer mutation and expression knowledgebase (e.g.
eratin 8 = KRT8). Finally, we integrated the linked triples into the

relational database called OncoMX.

8.1. Entity linking

Since the output of our triple extractor and refiner contains
additional annotations, such as compound or adjectival compo-
nents, we can efficiently link textual entities from our extracted
triples with existing entities in a database. For example, with the
entity long non-coding RNA CCAT2, we can separate this into
four sub-entities:

long non-coding RNA CCAT2
RNA CCAT2
CCAT2
long non-coding CCAT2

Each of these new entities has a different degree of granularity,
and we can now match on the most specific entity available. For
example, if long non-coding CCAT2 was present in our database,

we select this match; however, if only the less specific CCAT2
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Fig. 5. Sample of Uberon anatomical entities, showing ids and labels (i.e. exact
names and synonyms) of humans and animals.

entity was present, we can still find a match. This approach has
several advantages: it allows for a more efficient search, and can
handle n-grams split over several sub-phrases. It also does not
require a similarity measure, which enhances precision, while
maintaining high recall.

Using the Uberon ontology, we then concatenated two prop-
rties of the ontology (label, hasExactSynonym) to create a
imple dataframe of the following structure as shown in Fig. 5.
he column label contains a list of different names (official label
nd synonyms) for each anatomical entity and was used to match
he extracted triples with Uberon entities.

Similarly, we collected the gene names from the OncoMX
atabase comprising a table of 809 gene records. We then ran an
terative process to match one or more mentions of gene names
ith each triple’s subject or object.

.2. Database integration and enrichment

We applied the aforementioned entity linking approaches on
he extracted triples in order to enrich the existing OncoMX
atabase with the new information stemming from our infor-
ation extraction system. In particular, we could increase the

nformation context of the OncoMX database via linking it with
iterature mentions of genes that are affecting cancer develop-
ent in specific Uberon anatomical entities, as shown in Fig. 6.
ach row contains a Pubmed ID (pmid) that corresponds to a
edical article, a gene name (gene), an Uberon entity ID (uberon)

and name (uberonname), as well as the extracted relational triple
in subject–predicate–object format. The enriched database can
then be used for querying structured and previously unstructured
data via a single common query interface such as SQL or in natural
language.

9. Experiments

To evaluate our system, we first measure the performance of
our triple extractor against two state-of-the-art systems, OpenIE6
[55] and IMoJIE [56], on two standard benchmark data sets.
Next, we use the PubMed abstracts dataset to demonstrate the
qualitative advantages of our enhancements, in comparison to
these systems and to show that our approach generalizes well
or a diverse set of datasets. Lastly, we show how our data can
e successfully queried in a relational setting from a database
nriched with triples. For reproducibility of our results, we make
he source code of LILLIE available.3

.1. Datasets

The performance of a triple extraction system is assessed as
ollows: for a given sentence, a system’s extracted triples are
ompared with a set of gold-standard triples, selected by human
nnotators, and precision and recall are measured on term-level.
e use two datasets of annotated sentences for our experiments:

3 Source code of LILLIE: https://github.com/OIELILLIE/LILLIE.
9

Table 4
Sample extractions on the domain-generic CaRB benchmark dataset.
Original sentence

Warner Communications Inc., which is being acquired by Time Warner,
has filed a $1 billion breach-of-contract suit against Sony.

Generated triples

(1) Warner Communications Inc. ; is being acquired by ; Time Warner
(2) Warner Communications Inc. ; has filed ; a $ 1 billion breach of contract
suit against Sony

Original sentence

The fuselage had an oval cross-section and housed
a water-cooled inverted-V V-12 engine.

Generated triples

(1) The fuselage ; housed ; a water-cooled inverted-V V-12 engine
(2) The fuselage ; had ; an oval cross-section

Original Sentence

Although Heathrow authorities have been watching a group of
allegedly crooked baggage handlers, the Gauguin may be ‘lost’.

Generated triples

(1) Heathrow authorities ; have been watching ; a group of allegedly crooked
baggage handlers
(2) the Gauguin ; may be ; ‘lost’

• The CaRB dataset [36] contains 1282 open-domain sen-
tences, divided into two sets of 641 sentences, for devel-
opment and testing, respectively.
• Re-OIE16 [37] is an updated subset of OpenIE16 [57], an

earlier corpus, with all sentences re-annotated to better
reflect the needs of OIE. Similar to CaRB, this contains 600
open-domain sentences.

A sample of the sentences contained in CaRB, and the triples
e extract, are shown in Table 4.
For further demonstrating the generalizability of our approach,

e also perform extractions on a set of medical journal papers,
aken from a variety of disciplines. The PubMed abstracts dataset
ontains 116,049 sentences across 38,703 abstracts and paper
itles.

.2. Performance of LILLIE’s triple extraction pipeline

We first evaluate the triple extraction portion of our system
ILLIE using the CaRB Evaluator4 on the CaRB test set. In addition,
e adapt the Re-OIE16 annotations to be used with the CaRB
valuator, in order to provide consistent results.
Initially, we used the CaRB development set, comprising 50%

f the sentences, for development and tuning of the rule-based
xtractor and refiner. We developed a set of generic, domain-
ndependent linguistic rules by analyzing a randomly-chosen
ample of 30 sentences for linguistic patterns, then tested these
ules on the remainder of the CaRB development set, to en-
ure maximum generalizability. These rules remained the same
hroughout all further evaluations and experiments. We then
valuated the performance of our system against the current
tate-of-the art systems on the testing portion of the CaRB set,
nd the previously unseen ReOIE16 benchmark. Since these two
atasets are open-domain, and were not used for training or
evelopment, we believe our results on these benchmarks show
hat our system, and its components, such as the rule sets, are
eneric and adaptable to many different domains.
The results are shown in Table 5. We observe the most sig-

ificant improvements for our approach (LILLIE) in the AUC scores,
ith an approx. 6% increase over both state of the art systems

4 https://github.com/dair-iitd/CaRB.

https://github.com/OIELILLIE/LILLIE
https://github.com/dair-iitd/CaRB
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Fig. 6. Enriched OncoMX database after information extraction, entity linking and database integration.
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Table 5
Evaluation results for triple extraction on the CaRB test set and Re-OIE16, com-
pared to OpenIE6 and IMoJIE. LILLIE (our approach) substantially outperforms
state-of-the-art systems. AUC = Area under Curve, P = Precision, R = Recall.

CaRB Re-OIE16

AUC P R F1 AUC P R F1

LILLIE .391 .604 .487 .539 .543 .685 .645 .664
IMoJIE .333 .647 .456 .535 .483 .653 .584 .617
OpenIE6 .337 .589 .477 .527 .523 .642 .612 .627

OpenIE6 and IMoJIE in the CaRB dataset, and an increase across
all metrics in the Re-OIE16 dataset. The precision/recall balance
achieved by the triple refiner and combiner of LILLIE is reflected
in the improved F1 scores on both datasets. In particular, preci-
sion and recall are well-matched on Re-OIE16, despite the system
being tuned on the CaRB development set, and ReOIE16 was not
used during the training or development of our system, which
demonstrates good generalizability.

This result is noteworthy as tuning the output of the triple
xtraction component for these benchmarks was not an isolated
oal, with the component instead tailored to be part of our
igger end-to-end system. The generalizibility of our domain-
ndependent information extraction approach is also qualitatively
epicted in Table 4 via a diverse selection of examples taken from
he CaRB test set.

.3. Ablation study

In Table 6, we show the results of each component of our
ystem, in accordance with the architecture shown in Fig. 2. We
ive AUC and F1 scores on both CaRB and ReOIE testing sets, in
rder to show the effect of each individual component.
The individual scores for the Rule-Based and Learning-Based

omponents are shown, along with the effects of pre-processing
nd co-reference resolution, respectively. The Rule-Based pre-
rocessing increases the F1 and AUC scores on both datasets, and
he in-place co-reference resolution increases the F1 scores on both
ata sets, while somewhat degrading AUC. This is due to the fact
hat the CaRB and ReOIE datasets contain single sentences, rather
han longer texts, so the positive effects of co-reference resolution
re less apparent. Nevertheless, the addition of this component
mproves the overall results when the triple refiner is applied.

Finally, we analyze the performance of combining the Rule-
ased (RB) and Learning-Based (LB) approaches as indicated in
able 6 by ‘‘Combination of RB and LB’’. In particular, we demon-
trate the improvements made by the Triple Refinement process
y showing the results of a simple union of the triples from both
omponents. A raw combination of the high-recall triples and
igh-precision triples yields a degradation of both F1 and AUC
cores on both sets. However, when using the triple refiner, all met-
ics are improved, with AUC showing a significant increase on both
ets. These results demonstrate that each individual component
f our system provides a net-positive improvement in benchmark
cores, and, when combined together, result in a substantial

mprovement overall.

10
able 6
blation study of LILLIE. AUC and F1 scores for each individual component of
ur system.

CaRB ReOIE

AUC F1 AUC F1

Rule-Based (RB)

–without pre-processing .337 .503 .459 .624
–with pre-processing .370 .531 .507 .657

Learning-Based (LB)

–without coref resolution .381 .442 .470 .440
–with coref resolution .358 .457 .457 .500

Combination of RB and LB

–raw combination .365 .424 .478 .448
–refined combination .391 .539 .543 .664

9.4. Error analysis

In general, LILLIE encounters errors in three main areas: firstly,
in qualified phrases, such as ‘‘Research shows that...’’; secondly, in
sentences which are grammatically ambiguous to parse; thirdly,
in triples requiring inference. We will discuss these error areas in
ore detail below.
(1) Qualified phrases: A sentence containing a qualified phrase

s one in which the main clause is not necessarily implied to
e factual. In the sentence ‘‘This protein leads to tumor growth.’’,
he meaning is unambiguous. However, if the sentence were
‘Some studies claim that this protein leads to tumor growth.’’, the
ub-clause is not necessarily implied as fact.
Consider the following sentence from PubMed as an example

f a sentence with a qualified phrase:

The prevailing view of CD73 is that it is overexpressed in tumors.

LILLIE extracts the following triple:

(CD73 ; is ; overexpressed in tumors)

This is not necessarily a definitively true statement, since it
s qualified as an opinion, and outputting this triple may result
n ambiguous information being added to a database. Our engine
oes not account for such qualifying phrases, and outputs these
riples as facts. However, the outputs of OpenIE6 and IMoJIE will
roduce similar unqualified triples, and currently this remains an
pen problem in Information Extraction.
(2) Grammatically ambiguous sentences: Our approach encoun-

ers errors in cases where the sentence is grammatically complex,
uch as the following, taken from the CaRB development set:

US 258 and NC 122 parallel the river north before the two routes
diverge northeast of Tarboro.

Here, the dependency parser may fail to produce the necessary
arse — in this case, due to the term ‘‘parallel’’ being misinter-
reted as a noun, rather than a verb. However, in use cases such
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Fig. 7. Example of a SQL query on the enriched OncoMX database. LILLIE enables querying structured and (previously) unstructured data from a single common
uery interface.
s the PubMed abstracts, where text is often unambiguous, this
ssue occurs rarely.

(3) Triples requiring inference: For cases where inference is
equired, our extractor has a lower recall than other engines.
ecause of our aim to build a high-precision engine for database
ntegration, we make no attempt to infer triples that are not
irectly implied by the text, as this was found to add additional
oise and degrade precision. For example, consider the following
itle of a paper on PubMed:

Association of Leptin, Visfatin, and Adiponectin With Renal Cell
Carcinoma

There may be indirect triples, such as:

(Leptin ; is associated with ; Renal Cell Carcinoma)

Other systems attempt to extract such triples; however, when
esting additional inference methods, we found them to degrade
recision, and introduce many noisy superfluous triples. As such,
e were unable to maintain our precision–recall balance in these
ases. This is an area for further study, as a high-precision method
f extracting such information would be valuable for entity link-
ng.

.5. Positive effect of triple enhancements

Using examples from the PubMed abstracts dataset, we now
emonstrate the effects of our various triple enhancement pro-
edures, in comparison to the triples output from the OpenIE6
nd IMoJIE systems. To begin with, we show the output of both
xisting systems on our main example sentence:
11
Long non-coding RNA CCAT2 plays an important role in tu-
morigenesis, tumor growth and metastasis.

The IMoJIE system, while achieving high precision on the test
sets, does not output split triples of the form demonstrated in
Section 7. Instead, it groups all conjunctive entities into a single
triple:

(Long non-coding RNA ; plays ;
an important role in tumorigenesis , tumor growth and metastasis)

This form of triple reduces precision during the entity linking
process — particularly in cases where the input text is suffi-
ciently well-formed to reliably split triples. On the other hand,
the OpenIE6 system produces a similar output to our method:

(Long non-coding RNA ; plays ; an important role in metastasis)

However, our split_triples flag allows this behavior to
be enabled or disabled depending on the nature of the input
data, giving a balance between extraction precision and entity
linking precision. Additionally, the pre-processing steps described
in Section 4 allow for verbal conjunctions, such as in:

2-O-Methylmagnolol Upregulates the Long Non-Coding RNA, GAS5,
and Enhances Apoptosis in Skin Cancer Cells

Where the IMoJIE and OpenIE6 systems output only one triple
for this sentence:

(2-O-Methylmagnolol ; Upregulates ;
the Long Non-Coding RNA , GAS5 ,
and Enhances Apoptosis in Skin Cancer Cells)
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Fig. 8. Example of a SQL query on the enriched OncoMX database. It corresponds to the equivalent natural language question: ‘‘Find all anatomical entities where
enes are over-expressed due to some cancer reported in the literature’’.
Our system uses the subject duplication procedure shown in
ig. 3 and Algorithm 1 to obtain two triples, one for each object
ntity:

(2-O-Methylmagnolol ; Upregulates ; the Long Non-Coding RNA GAS5)
(2-O-Methylmagnolol ; Enhances ; Apoptosis in Skin Cancer Cells)

0. Database enrichment and querying

With these high-precision triples, we can more accurately link
extual mentions of named entities to their corresponding entries
n a knowledge base. This allows us to perform new queries
hat were not supported by the original database. We showcase
his capability by leveraging the raw information contained in
ubMed abstracts to enrich the OncoMX database from Section 8.
sing the OncoMX database, we can execute structured relational
ueries on unstructured, textual information stored in medical
rticles. Such an example is provided in Fig. 7, which corre-
ponds to the equivalent natural language question: ‘‘What are
he genes over-expressed in breast cancer that are reported in
he literature?’’

We are able to answer this query by exploiting the triples
xtracted from the PubMed medical articles (unstructured data)
nd their mapping to genes and anatomical entities (structured
ata). The goal of our query is to find all literature cases that
nclude ‘‘over-expression’’ of a gene, specifically on breast cancer.
he result is a subset of 13 genes that are reported as being
ver-expressed in breast cancer cases.
12
In a similar manner, we can extend our search to find all
anatomical entities where genes are over-expressed due to cancer
according to the literature. The results of this query are shown in
Fig. 8. The number of returned rows is limited to 20 from the
original 70 for visualization purposes.

Finally, we can focus our search on finding all literature cases
derived from the triple extraction of Pubmed articles which in-
clude the keywords ‘‘cancer’’ and ‘‘biomarker’’ in the extracted
triples. The results shown in Fig. 9 contain the captured genes
and anatomical entities, along with their corresponding subject–
predicate–object relational triples.

In order to quantify the effect of our tight integration be-
tween triple extraction and entity linking, we also perform a
comparison between each system on this same dataset. For this
experiment, we run OpenIE6, IMoJIE and two versions of LILLIE
(with split_triples enabled and disabled, respectively) on the
set of PubMed abstracts, and perform the entity linking procedure
described in Section 8. For OpenIE6 and IMoJIE, we use an n-gram
based search over the Uberon and OncoMX databases, as they do
not provide the annotated triples of our system. This procedure
simply searches the databases with all possible n-grams from the
subject and object, until the longest match is found, rather than
deriving the n-grams from the syntactic structure of the triple.

The dataset consists of 38,703 abstracts, comprising 116,049
sentences. We extract triples from each sentence, and attempt
to link each triple with the structured database. Linked triples
are ones that contain both an Uberon anatomical entity and an
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Fig. 9. Example of a SQL query on the enriched OncoMX database. It allows us to search for cancer biomarkers based on specific keywords found in the literature,
showcasing LILLIE’s information extraction capabilities.
Table 7
The number of extracted triples on the PubMed abstracts dataset for each sys-
tem, and the number of these triples that link with both an Uberon anatomical
entity and an OncoMX gene symbol. LILLIE shows a higher ratio of relevant
triples (linked triples divided by extracted triples) than the state-of-the-art
systems.

Extracted triples Linked triples

LILLIE 206,096 3513
LILLIE (split_triples = 0) 117,290 2448
OpenIE6 247,072 3110

OncoMX gene symbol, with one in the subject and the other
in the object, irrespectively. Partial matches are not recorded.
The results of this are shown in Table 7 for OpenIE6 and LILLIE.
However, we were unable to run the full dataset with IMoJIE,
which encountered memory issues on the large amount of data,
so we show the results for a sample of 1000 abstracts (3035
sentences) in Table 8. We also show the average speed of each
system, tested on an Intel Core i7-7700HQ 2.80 GHz CPU, with
32 GB RAM and NVIDIA GeForce GTX 1050 GPU.

The results show that, when using our entity linking proce-
ure, LILLIE achieves a higher ratio of relevant triples in com-
arison to OpenIE6. In particular, the higher-precision version,
ith split_triples disabled, achieves a comparable amount
f linked triples, on less than half the extractions overall. This
hows that our system can additionally be adapted to provide a
igher-precision variant, if required.
We report a slower runtime for our system compared to

penIE6, and a faster runtime that IMoJIE. However, as shown
n Tables 7 and 5, we extract more accurate (higher F1 and AUC
cores) and more usable (higher ratio of linked triples) triples

verall.

13
Table 8
The number of extracted triples on a sample of 1000 PubMed abstracts, and the
number of these triples that link with both an Uberon anatomical entity and an
OncoMX gene symbol.

Extracted triples Linked triples Time per sentence

LILLIE 5648 71 7.54
OpenIE6 6675 50 1.46
IMoJIE 4565 49 14.19

In the future we will explore more advanced entity matching
techniques based on transformer neural network architectures
such as the ones presented in [33,58]. However, for our end-to-
end data processing pipeline, the current entity linking approach
showed already promising results.

11. Conclusions

In this paper, we presented LILLIE — an end-to-end system
for the enrichment of relational databases with extracted infor-
mation from unstructured text. We developed a (1) precision-
oriented, linguistics-based, triple extraction approach using
domain-independent generic rules. We combined this approach
with a (2) recall-oriented, learning-based, triple extraction ap-
proach to counter the loss of structural and semantic infor-
mation. LILLIE not only allows effectively combining these two
approaches but also enables enhancements of the extracted infor-
mation via parameterizable postprocessing. Hence, our system is
able to adapt to a diverse set of textual domains. Finally, we also
leverage entity linking methods to integrate textual entities from
our extracted triples into a relational database, thus increasing
the contextual value of the extracted entities.
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We compared LILLIE’s performance with the two popular state
f the art OIE systems, IMoJIE and OpenIE6, on the two widely-
sed benchmark datasets CaRB and Re-OIE16. LILLIE shows a
ubstantial performance gain over the existing systems in terms
f AUC, Precision, Recall and F1-score. Moreover, we demon-
trated the effects of our triple enhancement processes on a
orpus comprising biomedical documents (PubMed abstracts) to
ighlight the generalizability of our approach.
Future work could investigate the integration of additional

earning-based OIE extractors, employing transfer or few-shot
earning techniques to enhance and extend information extrac-
ion for domain-specific or even multi-lingual corpora for which
o training data is available. Another interesting line of work
ould address entity disambiguation using popular knowledge
ases (e.g. DBpedia) or word embedding techniques to resolve
omplex one-to-many property mappings, further increasing the
ffectiveness of our system.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

cknowledgments

This project has received funding from the European Union’s
orizon 2020 research and innovation program under grant
greement No 863410. The research work of D.P. was supported
y the Hellenic Foundation for Research and Innovation (HFRI),
reece under the HFRI PhD Fellowship grant (Fellowship Num-
er: 50, 2nd call).

eferences

[1] P. Simon, Too Big to Ignore: The Business Case for Big Data, Vol. 72, John
Wiley & Sons, 2013.

[2] A. Rogers, The 80% blind spot: Are you ignoring unstructured
organizational data? Forbes (2019).

[3] K. Affolter, K. Stockinger, A. Bernstein, A comparative survey of recent
natural language interfaces for databases, VLDB J. 28 (5) (2019) 793–819.

[4] U. Brunner, K. Stockinger, ValueNet: A natural language-to-SQL system that
learns from database information, in: International Conference on Data
Engineering (ICDE), 2021.

[5] A. Hogan, E. Blomqvist, M. Cochez, C. d’Amato, G.D. Melo, C. Gutierrez, S.
Kirrane, J.E.L. Gayo, R. Navigli, S. Neumaier, et al., Knowledge graphs, ACM
Comput. Surv. 54 (4) (2021) 1–37.

[6] I. Mansuri, S. Sarawagi, Integrating unstructured data into relational
databases, in: 22nd International Conference on Data Engineering
(ICDE’06), 2006, p. 29, http://dx.doi.org/10.1109/ICDE.2006.83.

[7] A. Jain, A. Doan, L. Gravano, SQL queries over unstructured text databases,
in: 2007 IEEE 23rd International Conference on Data Engineering, 2007,
pp. 1255–1257, http://dx.doi.org/10.1109/ICDE.2007.368986.

[8] S. Amer-Yahia, G. Koutrika, F. Bastian, T. Belmpas, M. Braschler, U. Brunner,
D. Calvanese, M. Fabricius, O. Gkini, C. Kosten, D. Lanti, A. Litke, H. Lücke-
Tieke, F.A. Massucci, T.M. de Farias, A. Mosca, F. Multari, N. Papadakis, D.
Papadopoulos, Y. Patil, A. Personnaz, G. Rull, A. Sima, E. Smith, D. Skoutas,
S. Subramanian, G. Xiao, K. Stockinger, INODE: Building an end-to-end data
exploration system in practice [extended vision], 2021, arXiv:2104.04194.

[9] D. Jurafsky, J.H. Martin, Speech and language processing: An introduction
to natural language processing, in: Speech and Language Processing: An
Introduction to Natural Language Processing Computational Linguistics and
Speech Recognition, 2001.

[10] G. Liu, X. Li, J. Wang, M. Sun, P. Li, Extracting knowledge from web text
with Monte Carlo tree search, in: The Web Conference 2020 - Proceedings
of the World Wide Web Conference, WWW 2020, 2020, http://dx.doi.org/
10.1145/3366423.3380010.

[11] M. Banko, M.J. Cafarella, S. Soderland, M. Broadhead, O. Etzioni, Open in-
formation extraction from the web, in: IJCAI International Joint Conference
on Artificial Intelligence, 2007.

[12] F. Wu, D.S. Weld, Open information extraction using wikipedia, in:
ACL 2010 - 48th Annual Meeting of the Association for Computational
Linguistics, Proceedings of the Conference, 2010.
14
[13] A. Fader, S. Soderland, O. Etzioni, Identifying relations for open information
extraction, in: EMNLP 2011 - Conference on Empirical Methods in Natural
Language Processing, Proceedings of the Conference, 2011.

[14] L. Del Corro, R. Gemulla, ClausIE: Clause-based open information extrac-
tion, in: WWW 2013 - Proceedings of the 22nd International Conference
on World Wide Web, 2013.

[15] Mausam, M. Schmitz, R. Bart, S. Soderland, O. Etzioni, Open language
learning for information extraction, in: EMNLP-CoNLL 2012 - 2012 Joint
Conference on Empirical Methods in Natural Language Processing and
Computational Natural Language Learning, Proceedings of the Conference,
2012.

[16] M. Yahya, S.E. Whang, R. Gupta, A. Halevy, ReNoun: Fact extraction for
nominal attributes, in: EMNLP 2014 - 2014 Conference on Empirical
Methods in Natural Language Processing, Proceedings of the Conference,
2014, http://dx.doi.org/10.3115/v1/d14-1038.

[17] K. Kolluru, S. Aggarwal, V. Rathore, Mausam, S. Chakrabarti, IMoJIE:
Iterative memory-based joint open information extraction, 2020, http:
//dx.doi.org/10.18653/v1/2020.acl-main.521, arXiv:2005.08178.

[18] Y. Ro, Y. Lee, P. Kang, Multiˆ2OIE: Multilingual open information extraction
based on multi-head attention with BERT, in: Findings of the Association
for Computational Linguistics: EMNLP 2020, Association for Computa-
tional Linguistics, Online, 2020, pp. 1107–1117, http://dx.doi.org/10.18653/
v1/2020.findings-emnlp.99, URL https://www.aclweb.org/anthology/2020.
findings-emnlp.99.

[19] C. Niklaus, M. Cetto, A. Freitas, S. Handschuh, A survey on open informa-
tion extraction, in: Proceedings of the 27th International Conference on
Computational Linguistics, Association for Computational Linguistics, Santa
Fe, New Mexico, USA, 2018, pp. 3866–3878, URL https://www.aclweb.org/
anthology/C18-1326.

[20] N. Kertkeidkachorn, R. Ichise, T2KG: An end-to-end system for creating
knowledge graph from unstructured text, in: AAAI Workshop - Technical
Report, 2017.

[21] D. Papadopoulos, N. Papadakis, A. Litke, A methodology for open infor-
mation extraction and representation from large scientific corpora: The
CORD-19 data exploration use case, Appl. Sci. (Switzerland) (2020) http:
//dx.doi.org/10.3390/app10165630.

[22] D. Papadopoulos, N. Papadakis, N. Matsatsinis, PENELOPIE: Enabling open
information extraction for the greek language through machine translation,
in: Proceedings of the 16th Conference of the European Chapter of the
Association for Computational Linguistics: Student Research Workshop,
Association for Computational Linguistics, Online, 2021, pp. 23–29, URL
https://aclanthology.org/2021.eacl-srw.4.

[23] D. Vrandečić, M. Krötzsch, Wikidata, Commun. ACM (2014) http://dx.doi.
org/10.1145/2629489.

[24] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, Z. Ives, DBpedia: A
nucleus for a web of open data, in: Lecture Notes in Computer Science (In-
cluding Subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics), 2007, http://dx.doi.org/10.1007/978-3-540-76298-0_52.

[25] T.P. Tanon, G. Weikum, F. Suchanek, Yago 4: A reason-able knowledge base,
in: European Semantic Web Conference, Springer, 2020, pp. 583–596.

[26] J.R. Finkel, T. Grenager, C. Manning, Incorporating non-local information
into information extraction systems by Gibbs sampling, in: ACL-05 -
43rd Annual Meeting of the Association for Computational Linguistics,
Proceedings of the Conference, 2005, http://dx.doi.org/10.3115/1219840.
1219885.

[27] M. Francis-Landau, G. Durrett, D. Klein, Capturing semantic similarity for
entity linking with convolutional neural networks, in: 2016 Conference
of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, NAACL HLT 2016 - Proceedings
of the Conference, 2016, http://dx.doi.org/10.18653/v1/n16-1150, arXiv:
1604.00734.

[28] Y. Sun, L. Lin, D. Tang, N. Yang, Z. Ji, X. Wang, Modeling mention,
context and entity with neural networks for entity disambiguation, in:
IJCAI International Joint Conference on Artificial Intelligence, 2015.

[29] N. Gupta, S. Singh, D. Roth, Entity linking via joint encoding of types,
descriptions, and context, in: EMNLP 2017 - Conference on Empirical
Methods in Natural Language Processing, Proceedings, 2017, http://dx.doi.
org/10.18653/v1/d17-1284.

[30] P.H. Martins, Z. Marinho, A.F. Martins, Joint learning of named entity
recognition and entity linking, in: ACL 2019 - 57th Annual Meeting of
the Association for Computational Linguistics, Proceedings of the Student
Research Workshop, 2019, http://dx.doi.org/10.18653/v1/p19-2026, arXiv:
1907.08243.

[31] L. Logeswaran, M.W. Chang, K. Lee, K. Toutanova, J. Devlin, H. Lee,
Zero-shot entity linking by reading entity descriptions, in: ACL 2019 -
57th Annual Meeting of the Association for Computational Linguistics,
Proceedings of the Conference, 2020, http://dx.doi.org/10.18653/v1/p19-
1335, arXiv:1906.07348.

[32] L. Wu, F. Petroni, M. Josifoski, S. Riedel, L. Zettlemoyer, Zero-shot entity
linking with dense entity retrieval, in: EMNLP 2020 - Conference on
Empirical Methods in Natural Language Processing, Proceedings, 2019.

http://refhub.elsevier.com/S0306-4379(21)00137-X/sb1
http://refhub.elsevier.com/S0306-4379(21)00137-X/sb1
http://refhub.elsevier.com/S0306-4379(21)00137-X/sb1
http://refhub.elsevier.com/S0306-4379(21)00137-X/sb2
http://refhub.elsevier.com/S0306-4379(21)00137-X/sb2
http://refhub.elsevier.com/S0306-4379(21)00137-X/sb2
http://refhub.elsevier.com/S0306-4379(21)00137-X/sb3
http://refhub.elsevier.com/S0306-4379(21)00137-X/sb3
http://refhub.elsevier.com/S0306-4379(21)00137-X/sb3
http://refhub.elsevier.com/S0306-4379(21)00137-X/sb4
http://refhub.elsevier.com/S0306-4379(21)00137-X/sb4
http://refhub.elsevier.com/S0306-4379(21)00137-X/sb4
http://refhub.elsevier.com/S0306-4379(21)00137-X/sb4
http://refhub.elsevier.com/S0306-4379(21)00137-X/sb4
http://refhub.elsevier.com/S0306-4379(21)00137-X/sb5
http://refhub.elsevier.com/S0306-4379(21)00137-X/sb5
http://refhub.elsevier.com/S0306-4379(21)00137-X/sb5
http://refhub.elsevier.com/S0306-4379(21)00137-X/sb5
http://refhub.elsevier.com/S0306-4379(21)00137-X/sb5
http://dx.doi.org/10.1109/ICDE.2006.83
http://dx.doi.org/10.1109/ICDE.2007.368986
http://arxiv.org/abs/2104.04194
http://refhub.elsevier.com/S0306-4379(21)00137-X/sb9
http://refhub.elsevier.com/S0306-4379(21)00137-X/sb9
http://refhub.elsevier.com/S0306-4379(21)00137-X/sb9
http://refhub.elsevier.com/S0306-4379(21)00137-X/sb9
http://refhub.elsevier.com/S0306-4379(21)00137-X/sb9
http://refhub.elsevier.com/S0306-4379(21)00137-X/sb9
http://refhub.elsevier.com/S0306-4379(21)00137-X/sb9
http://dx.doi.org/10.1145/3366423.3380010
http://dx.doi.org/10.1145/3366423.3380010
http://dx.doi.org/10.1145/3366423.3380010
http://refhub.elsevier.com/S0306-4379(21)00137-X/sb11
http://refhub.elsevier.com/S0306-4379(21)00137-X/sb11
http://refhub.elsevier.com/S0306-4379(21)00137-X/sb11
http://refhub.elsevier.com/S0306-4379(21)00137-X/sb11
http://refhub.elsevier.com/S0306-4379(21)00137-X/sb11
http://refhub.elsevier.com/S0306-4379(21)00137-X/sb12
http://refhub.elsevier.com/S0306-4379(21)00137-X/sb12
http://refhub.elsevier.com/S0306-4379(21)00137-X/sb12
http://refhub.elsevier.com/S0306-4379(21)00137-X/sb12
http://refhub.elsevier.com/S0306-4379(21)00137-X/sb12
http://refhub.elsevier.com/S0306-4379(21)00137-X/sb13
http://refhub.elsevier.com/S0306-4379(21)00137-X/sb13
http://refhub.elsevier.com/S0306-4379(21)00137-X/sb13
http://refhub.elsevier.com/S0306-4379(21)00137-X/sb13
http://refhub.elsevier.com/S0306-4379(21)00137-X/sb13
http://refhub.elsevier.com/S0306-4379(21)00137-X/sb14
http://refhub.elsevier.com/S0306-4379(21)00137-X/sb14
http://refhub.elsevier.com/S0306-4379(21)00137-X/sb14
http://refhub.elsevier.com/S0306-4379(21)00137-X/sb14
http://refhub.elsevier.com/S0306-4379(21)00137-X/sb14
http://refhub.elsevier.com/S0306-4379(21)00137-X/sb15
http://refhub.elsevier.com/S0306-4379(21)00137-X/sb15
http://refhub.elsevier.com/S0306-4379(21)00137-X/sb15
http://refhub.elsevier.com/S0306-4379(21)00137-X/sb15
http://refhub.elsevier.com/S0306-4379(21)00137-X/sb15
http://refhub.elsevier.com/S0306-4379(21)00137-X/sb15
http://refhub.elsevier.com/S0306-4379(21)00137-X/sb15
http://refhub.elsevier.com/S0306-4379(21)00137-X/sb15
http://refhub.elsevier.com/S0306-4379(21)00137-X/sb15
http://dx.doi.org/10.3115/v1/d14-1038
http://dx.doi.org/10.18653/v1/2020.acl-main.521
http://dx.doi.org/10.18653/v1/2020.acl-main.521
http://dx.doi.org/10.18653/v1/2020.acl-main.521
http://arxiv.org/abs/2005.08178
http://dx.doi.org/10.18653/v1/2020.findings-emnlp.99
http://dx.doi.org/10.18653/v1/2020.findings-emnlp.99
http://dx.doi.org/10.18653/v1/2020.findings-emnlp.99
https://www.aclweb.org/anthology/2020.findings-emnlp.99
https://www.aclweb.org/anthology/2020.findings-emnlp.99
https://www.aclweb.org/anthology/2020.findings-emnlp.99
https://www.aclweb.org/anthology/C18-1326
https://www.aclweb.org/anthology/C18-1326
https://www.aclweb.org/anthology/C18-1326
http://refhub.elsevier.com/S0306-4379(21)00137-X/sb20
http://refhub.elsevier.com/S0306-4379(21)00137-X/sb20
http://refhub.elsevier.com/S0306-4379(21)00137-X/sb20
http://refhub.elsevier.com/S0306-4379(21)00137-X/sb20
http://refhub.elsevier.com/S0306-4379(21)00137-X/sb20
http://dx.doi.org/10.3390/app10165630
http://dx.doi.org/10.3390/app10165630
http://dx.doi.org/10.3390/app10165630
https://aclanthology.org/2021.eacl-srw.4
http://dx.doi.org/10.1145/2629489
http://dx.doi.org/10.1145/2629489
http://dx.doi.org/10.1145/2629489
http://dx.doi.org/10.1007/978-3-540-76298-0_52
http://refhub.elsevier.com/S0306-4379(21)00137-X/sb25
http://refhub.elsevier.com/S0306-4379(21)00137-X/sb25
http://refhub.elsevier.com/S0306-4379(21)00137-X/sb25
http://dx.doi.org/10.3115/1219840.1219885
http://dx.doi.org/10.3115/1219840.1219885
http://dx.doi.org/10.3115/1219840.1219885
http://dx.doi.org/10.18653/v1/n16-1150
http://arxiv.org/abs/1604.00734
http://arxiv.org/abs/1604.00734
http://arxiv.org/abs/1604.00734
http://refhub.elsevier.com/S0306-4379(21)00137-X/sb28
http://refhub.elsevier.com/S0306-4379(21)00137-X/sb28
http://refhub.elsevier.com/S0306-4379(21)00137-X/sb28
http://refhub.elsevier.com/S0306-4379(21)00137-X/sb28
http://refhub.elsevier.com/S0306-4379(21)00137-X/sb28
http://dx.doi.org/10.18653/v1/d17-1284
http://dx.doi.org/10.18653/v1/d17-1284
http://dx.doi.org/10.18653/v1/d17-1284
http://dx.doi.org/10.18653/v1/p19-2026
http://arxiv.org/abs/1907.08243
http://arxiv.org/abs/1907.08243
http://arxiv.org/abs/1907.08243
http://dx.doi.org/10.18653/v1/p19-1335
http://dx.doi.org/10.18653/v1/p19-1335
http://dx.doi.org/10.18653/v1/p19-1335
http://arxiv.org/abs/1906.07348
http://refhub.elsevier.com/S0306-4379(21)00137-X/sb32
http://refhub.elsevier.com/S0306-4379(21)00137-X/sb32
http://refhub.elsevier.com/S0306-4379(21)00137-X/sb32
http://refhub.elsevier.com/S0306-4379(21)00137-X/sb32
http://refhub.elsevier.com/S0306-4379(21)00137-X/sb32


E. Smith, D. Papadopoulos, M. Braschler et al. Information Systems 105 (2022) 101938
[33] U. Brunner, K. Stockinger, Entity matching with transformer architectures-a
step forward in data integration, in: International Conference on Extending
Database Technology, Copenhagen, 30 March-2 April 2020, 2020.

[34] Y. Li, J. Li, Y. Suhara, A. Doan, W.-C. Tan, Deep entity matching with pre-
trained language models, in: International Conference on Very Large Data
Bases, 2021.

[35] Y. Eslahi, A. Bhardwaj, P. Rosso, K. Stockinger, P. Cudré-Mauroux, Annotat-
ing web tables through knowledge bases: A context-based approach, in:
2020 7th Swiss Conference on Data Science (SDS), IEEE, 2020, pp. 29–34.

[36] S. Bhardwaj, S. Aggarwal, M. Mausam, CaRB: A crowdsourced benchmark
for open IE, in: Proceedings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP), Association for Com-
putational Linguistics, Hong Kong, China, 2019, pp. 6262–6267, http://
dx.doi.org/10.18653/v1/D19-1651, URL https://www.aclweb.org/anthology/
D19-1651.

[37] J. Zhan, H. Zhao, Span model for open information extraction on accurate
corpus, in: Proceedings of the AAAI Conference on Artificial Intelligence,
Vol. 34, 2020, pp. 9523–9530.

[38] D. Chen, C.D. Manning, A fast and accurate dependency parser using neural
networks, in: Proceedings of the 2014 Conference on Empirical Methods
in Natural Language Processing (EMNLP), 2014, pp. 740–750.

[39] M.-C. De Marneffe, T. Dozat, N. Silveira, K. Haverinen, F. Ginter, J. Nivre,
C.D. Manning, Universal stanford dependencies: A cross-linguistic typology,
in: LREC, Vol. 14, 2014, pp. 4585–4592.

[40] Allen Institute for AI, AllenNLP coreference resolution demo. URL https:
//demo.allennlp.org/coreference-resolution.

[41] K. Lee, L. He, M. Lewis, L. Zettlemoyer, End-to-end neural coreference
resolution, in: EMNLP 2017 - Conference on Empirical Methods in Natu-
ral Language Processing, Proceedings, 2017, http://dx.doi.org/10.18653/v1/
d17-1018, arXiv:1707.07045.

[42] M. Joshi, D. Chen, Y. Liu, D.S. Weld, L. Zettlemoyer, O. Levy, SpanBERT:
Improving pre-training by representing and predicting spans, Trans. Assoc.
Comput. Linguist. 8 (2020) 64–77, http://dx.doi.org/10.1162/tacl_a_00300,
URL https://www.aclweb.org/anthology/2020.tacl-1.5.

[43] R. Weischedel, M. Palmer, M. Marcus, E. Hovy, S. Pradhan, L. Ramshaw,
N. Xue, A. Taylor, J. Kaufman, M. Franchini, M. El-Bachouti, R. Belvin, A.
Houston, OntoNotes Release 5.0 LDC2013T19, Linguistic Data Consortium,
2013.

[44] Dair-Iitd, Open IE 5.1. URL https://github.com/dair-iitd/OpenIE-standalone.
[45] S. Saha, Mausam, Open information extraction from conjunctive sentences,

in: Proceedings Ofthe 27th International Conference on Computational
Linguistics, 2018.
15
[46] H. Pal, Mausam, Demonyms and Compound Relational Nouns in Nominal
Open IE, 2016, http://dx.doi.org/10.18653/v1/w16-1307.

[47] S. Saha, H. Pal, Mausam, Bootstrapping for numerical open IE, in: ACL 2017
- 55th Annual Meeting of the Association for Computational Linguistics,
Proceedings of the Conference (Long Papers), 2017, http://dx.doi.org/10.
18653/v1/P17-2050.

[48] J. Christensen, S. Soderland, O. Etzioni, An analysis of open information
extraction based on semantic role labeling categories and subject descrip-
tors, in: Proceeding of K-CAP ’11 Proceedings of the Sixth International
Conference on Knowledge Capture, 2011.

[49] G. Stanovsky, J. Michael, L. Zettlemoyer, I. Dagan, Supervised open
information extraction, in: NAACL-HLT, 2018.

[50] T.-H. Wu, Z. Wu, B. Kao, P. Yin, Towards practical open knowledge base
canonicalization, in: Proceedings of the 27th ACM International Conference
on Information and Knowledge Management, 2018, pp. 883–892.

[51] L. Galárraga, G. Heitz, K. Murphy, F.M. Suchanek, Canonicalizing open
knowledge bases, in: Proceedings of the 23rd Acm International Conference
on Conference on Information and Knowledge Management, 2014, pp.
1679–1688.

[52] X. Lin, L. Chen, Canonicalization of open knowledge bases with side infor-
mation from the source text, in: 2019 IEEE 35th International Conference
on Data Engineering (ICDE), 2019, pp. 950–961, http://dx.doi.org/10.1109/
ICDE.2019.00089.

[53] C.J. Mungall, C. Torniai, G.V. Gkoutos, S.E. Lewis, M.A. Haendel, Uberon, an
integrative multi-species anatomy ontology, Genome Biol. 13 (1) (2012)
1–20.

[54] H.M. Dingerdissen, F. Bastian, K. Vijay-Shanker, M. Robinson-Rechavi, A.
Bell, N. Gogate, S. Gupta, E. Holmes, R. Kahsay, J. Keeney, et al., OncoMX:
a knowledgebase for exploring cancer biomarkers in the context of related
cancer and healthy data, JCO Clin. Cancer Inform. 4 (2020) 210–220.

[55] K. Kolluru, V. Adlakha, S. Aggarwal, S. Chakrabarti, et al., OpenIE6: Iterative
grid labeling and coordination analysis for open information extraction,
2020, arXiv preprint arXiv:2010.03147.

[56] K. Kolluru, S. Aggarwal, V. Rathore, S. Chakrabarti, et al., IMoJIE: Iterative
memory-based joint open information extraction, 2020, arXiv preprint
arXiv:2005.08178.

[57] G. Stanovsky, I. Dagan, Creating a large benchmark for open information
extraction, in: Proceedings of the 2016 Conference on Empirical Methods
in Natural Language Processing, Association for Computational Linguistics,
Austin, Texas, 2016, pp. 2300–2305, http://dx.doi.org/10.18653/v1/D16-
1252, URL https://aclanthology.org/D16-1252.

[58] Z. Miao, Y. Li, X. Wang, Rotom: A meta-learned data augmentation frame-
work for entity matching, data cleaning, text classification, and beyond,
in: Proceedings of the 2021 International Conference on Management of
Data, 2021, pp. 1303–1316.

http://refhub.elsevier.com/S0306-4379(21)00137-X/sb33
http://refhub.elsevier.com/S0306-4379(21)00137-X/sb33
http://refhub.elsevier.com/S0306-4379(21)00137-X/sb33
http://refhub.elsevier.com/S0306-4379(21)00137-X/sb33
http://refhub.elsevier.com/S0306-4379(21)00137-X/sb33
http://refhub.elsevier.com/S0306-4379(21)00137-X/sb34
http://refhub.elsevier.com/S0306-4379(21)00137-X/sb34
http://refhub.elsevier.com/S0306-4379(21)00137-X/sb34
http://refhub.elsevier.com/S0306-4379(21)00137-X/sb34
http://refhub.elsevier.com/S0306-4379(21)00137-X/sb34
http://refhub.elsevier.com/S0306-4379(21)00137-X/sb35
http://refhub.elsevier.com/S0306-4379(21)00137-X/sb35
http://refhub.elsevier.com/S0306-4379(21)00137-X/sb35
http://refhub.elsevier.com/S0306-4379(21)00137-X/sb35
http://refhub.elsevier.com/S0306-4379(21)00137-X/sb35
http://dx.doi.org/10.18653/v1/D19-1651
http://dx.doi.org/10.18653/v1/D19-1651
http://dx.doi.org/10.18653/v1/D19-1651
https://www.aclweb.org/anthology/D19-1651
https://www.aclweb.org/anthology/D19-1651
https://www.aclweb.org/anthology/D19-1651
http://refhub.elsevier.com/S0306-4379(21)00137-X/sb39
http://refhub.elsevier.com/S0306-4379(21)00137-X/sb39
http://refhub.elsevier.com/S0306-4379(21)00137-X/sb39
http://refhub.elsevier.com/S0306-4379(21)00137-X/sb39
http://refhub.elsevier.com/S0306-4379(21)00137-X/sb39
https://demo.allennlp.org/coreference-resolution
https://demo.allennlp.org/coreference-resolution
https://demo.allennlp.org/coreference-resolution
http://dx.doi.org/10.18653/v1/d17-1018
http://dx.doi.org/10.18653/v1/d17-1018
http://dx.doi.org/10.18653/v1/d17-1018
http://arxiv.org/abs/1707.07045
http://dx.doi.org/10.1162/tacl_a_00300
https://www.aclweb.org/anthology/2020.tacl-1.5
http://refhub.elsevier.com/S0306-4379(21)00137-X/sb43
http://refhub.elsevier.com/S0306-4379(21)00137-X/sb43
http://refhub.elsevier.com/S0306-4379(21)00137-X/sb43
http://refhub.elsevier.com/S0306-4379(21)00137-X/sb43
http://refhub.elsevier.com/S0306-4379(21)00137-X/sb43
http://refhub.elsevier.com/S0306-4379(21)00137-X/sb43
http://refhub.elsevier.com/S0306-4379(21)00137-X/sb43
https://github.com/dair-iitd/OpenIE-standalone
http://dx.doi.org/10.18653/v1/w16-1307
http://dx.doi.org/10.18653/v1/P17-2050
http://dx.doi.org/10.18653/v1/P17-2050
http://dx.doi.org/10.18653/v1/P17-2050
http://refhub.elsevier.com/S0306-4379(21)00137-X/sb49
http://refhub.elsevier.com/S0306-4379(21)00137-X/sb49
http://refhub.elsevier.com/S0306-4379(21)00137-X/sb49
http://dx.doi.org/10.1109/ICDE.2019.00089
http://dx.doi.org/10.1109/ICDE.2019.00089
http://dx.doi.org/10.1109/ICDE.2019.00089
http://refhub.elsevier.com/S0306-4379(21)00137-X/sb53
http://refhub.elsevier.com/S0306-4379(21)00137-X/sb53
http://refhub.elsevier.com/S0306-4379(21)00137-X/sb53
http://refhub.elsevier.com/S0306-4379(21)00137-X/sb53
http://refhub.elsevier.com/S0306-4379(21)00137-X/sb53
http://refhub.elsevier.com/S0306-4379(21)00137-X/sb54
http://refhub.elsevier.com/S0306-4379(21)00137-X/sb54
http://refhub.elsevier.com/S0306-4379(21)00137-X/sb54
http://refhub.elsevier.com/S0306-4379(21)00137-X/sb54
http://refhub.elsevier.com/S0306-4379(21)00137-X/sb54
http://refhub.elsevier.com/S0306-4379(21)00137-X/sb54
http://refhub.elsevier.com/S0306-4379(21)00137-X/sb54
http://arxiv.org/abs/2010.03147
http://arxiv.org/abs/2005.08178
http://dx.doi.org/10.18653/v1/D16-1252
http://dx.doi.org/10.18653/v1/D16-1252
http://dx.doi.org/10.18653/v1/D16-1252
https://aclanthology.org/D16-1252

	LILLIE: Information extraction and database integration using linguistics and learning-based algorithms
	Introduction
	Related work
	Information extraction
	Entity Linking for knowledge base construction

	Architecture of LILLIE
	The rule-based extractor
	Pre-processing
	Triple extraction

	The learning-based extractor
	In-place coreference resolution
	Parallel triple extraction

	Triple refinement
	Output modification
	enhanced_predicates Setting
	entity_context Setting
	split_triples Setting

	Entity linking and database integration
	Entity linking
	Database integration and enrichment

	Experiments
	Datasets
	Performance of LILLIE's triple extraction pipeline
	Ablation study
	Error analysis
	Positive effect of triple enhancements

	Database enrichment and querying
	Conclusions
	Declaration of competing interest
	Acknowledgments
	References


