
EUR-L

Security audit report

Prepared for Lugh

March 3, 2022

Research Department

Document management

Revision history

Version Date Version details

1.0 February 25, 2022 Initial version

1.1 March 3, 2022 Review after fixes

©Apriorit 1 Confidential

Research Department

Table of contents
Project summary 5

Coverage and scope of work 6

Smart contracts overview 8

Executive overview 10

Summary of strengths 10

Summary of discovered vulnerabilities 10

Summary of High Risk Vulnerabilities and Recommendations 12

Summary of Medium Risk Vulnerabilities and Recommendations 13

Summary of Low Risk Vulnerabilities and Recommendations 14

Security rating 15

Security grading criteria 16

Code review and recommendations 17

Test coverage analysis 21

EURLToken contract uncovered test cases 21

Forwarder contract uncovered test cases 22

Symbolic analysis 23

Static analysis 24

Analysis of GAS usage 25

Appendixes 27

Appendix A. Detailed findings 27

Risk rating 27

Smart contracts discovered vulnerabilities 28

Closed issues 28

Appendix B. Methodologies description 32

Smart contracts security checks 32

©Apriorit 2 Confidential

Research Department

Project summary

Name

Eurl Solidity
Source

Repository Revision

https://gitlab.com/sceme/eurl-solidity de1233cb948eca55099fe9e4788f8d1
3c642dc07

40c47b69fc6f1687951fdf3ad3d74f6b
609d2b6b

Methods Code review

Unit test coverage analysis

Static/symbolic analysis

Behavioral analysis

Manual penetration testing

Gas usage analysis

©Apriorit 3 Confidential

Research Department

Coverage and scope of work

The audit focused on an in-depth analysis of the EUR-L token implementation as well

as its interaction with Forwarder smart contract. The main targets of the analysis were

the following smart contracts:

● Blacksitable.sol

● Forwarder.sol

● Token.sol

Out of Scope:

● testToken.sol

● testTokenV2.sol

● whitepaper document

We conducted the audit in accordance with the following criteria:

● Consistency between the behavior of the contract and its description

● Behavioral analysis of smart contract source code

● Checks against our database of vulnerabilities and manual attacks against the

contract

● Symbolic analysis of potentially vulnerable areas

● Static analysis

● Manual code review and code quality evaluation

● Unit test coverage analysis

©Apriorit 4 Confidential

Research Department

● GAS usage analysis

The audit was performed using manual code analysis. Once potential vulnerabilities

were discovered, manual attacks were performed to check if they could be easily

exploited.

©Apriorit 5 Confidential

Research Department

Smart contract overview

EURL Solidity smart contracts have been developed using Solidity language for the

Ethereum network. They offer:

- ERC20 compatible functionality

- gasless transactions

- pausing of token mintage and burn

- blacklisting

- roles-based access control

Gasless transfer was built in such a way that the user signs the data off-chain, but the

transaction is broadcasted by a paymaster. This includes the following steps:

- userA signs off-chain permit operation where a spender is a Forwarder

smart-contract;

- paymaster calls permit on EURL token with result signature and broadcasts it;

- userA signs off-chain request for an usual ERC20 token transfer;

- paymaster broadcasts signed request by calling Forwarder smart-contract;

- after a sequence of verification checks paymaster receives some predefined fee

from sender for gasless transfer operation;

- userB receives tokens.

There are several roles represented in the contract:

OWNER/DEFAULT_ADMIN_ROLE - the highest role in hierarchy that can update

administrator, master minter, itself and also upgrade the EURL contract.

©Apriorit 6 Confidential

Research Department

ADMIN/PAUSER_ROLE - responsible for fees management operations, blacklisting of

users, pausing mintage, forcing transfers, settings of a trusted forwarder and a fees

faucet.

MASTER_MINTER - responsible for adding/removing minters, updating of minting

allowances, mint/burn.

MINTER_ROLE - responsible for mint/burn, minting management

RESERVE - role declared in a description but never mentioned in the actual

implementation as an actual role. In reality it is a fee faucet that receives some fee from

a sender based on manual transaction rate.

©Apriorit 7 Confidential

Research Department

Executive overview

Apriorit conducted a security assessment of Eurl Solidity in February-March 2022 to

evaluate its current state and risk posture, evaluate exposure to known security

vulnerabilities, determine potential attack vectors, and check if any can be exploited

maliciously.

Summary of strengths

Building upon the strengths of the available implementation can help better secure it by

continuing these good practices. In this case, a number of positive security aspects

were readily apparent during the assessment:

- the code and project files are well structured, which makes them easy to read

and maintain. The code is self-explanatory.

- the contracts perform only the declared functionality

- the main contract uses role-based access control

- verification errors have a custom explanation

- new compiler version was used

Summary of discovered vulnerabilities
During the assessment, two high-risk vulnerabilities were discovered, but during the

manual penetration testing one of them was considered as a false positive. Overall, one

high risk, two medium-risk, five low-risk vulnerabilities were discovered. All

vulnerabilities were fixed after the initial audit. The chart below shows the distribution of

findings.

©Apriorit 8 Confidential

Research Department

©Apriorit 9 Confidential

Research Department

©Apriorit 10 Confidential

Research Department

Summary of high-risk vulnerabilities and recommendations

The recommendations below should be implemented as soon as possible since they

provide for the effective and efficient mitigation of many of the high-risk issues

identified. For more detailed information on all of the findings, refer to Appendix A:

Detailed Findings) of the report.

Table 1: High-risk vulnerabilities

Risk
rating Finding name Recommendation Status

High Local variables
shadowing

Rename the local variables that
shadow another component FIXED

©Apriorit 11 Confidential

Research Department

Summary of medium-risk vulnerabilities and recommendations

Table 2: Medium-risk vulnerabilities

Risk
rating Finding name Recommendation Status

Medium Unprotected
Function

The function can be called by anyone,
and can mutate the state of the
Forwarder smart contract. Consider
access restriction only for trusted
origin.

FIXED

Medium DoS with Block
Gas Limit

The function is gas sensitive because
of the for loop.

Consider setting a restriction on length
of input data.

FIXED

©Apriorit 12 Confidential

Research Department

Summary of low-risk vulnerabilities and recommendations

For more detailed information on all of the findings, refer to Appendix A: Detailed

Findings.

Table 3: Low-risk vulnerabilities

Risk
rating Finding name Recommendation Status

Low Missing events
Emit events when critical parameters
change so it is possible to track
off-chain changes in fee scheme.

FIXED

Low Absence of zero
address check

Check that the address is not zero

before assigning variables in

EURLToken smart contract.
FIXED

Low Absence of zero
address check

Check that the address is not zero

before assigning variables in Forwarder

smart contract.
FIXED

Low Large contract
size

EURLToken smart contract may not be

deployable on mainnet. Consider

enabling the optimizer (with a low

"runs" value!), turning off revert strings,

or using libraries.

FIXED

Low

Dependence on a
predictable
environment
variable

It is recommended to use small

deadline values. FIXED

©Apriorit 13 Confidential

Research Department

Security rating

Apriorit reviewed Lugh security posture in regards to the EURLToken and Forwarder

smart contracts, and Apriorit consultants identified security strengths as well as

vulnerabilities that create high, medium and low levels of risk. Taken together, the

combination of asset criticality, threat likelihood, and vulnerability severity have been

used to assign a grade for the overall security of the application. An explanation of the

grading scale is included in the second table below.

In conclusion, Apriorit recommends that Lugh continue to follow existing good security

practices and further improve their security posture by addressing all of the described

findings.

High Medium Low Security Grade

EUR-L token 0 0 0 Highly secure A

©Apriorit 14 Confidential

Research Department

Security grading criteria

Grade Security Criteria description

A Highly secure
Exceptional attention to security. No high- or
medium-risk vulnerabilities and few minor low-risk
vulnerabilities.

B Moderately
secure

Good attention to security. No high-risk vulnerabilities
and only a few medium- or several low-risk
vulnerabilities.

C Marginally
secure

Some attention to security, but security requires
improvement. A few high-risk vulnerabilities that can be
exploited.

D Insecure Significant security gaps exist. A large number of
high-risk vulnerabilities.

©Apriorit 15 Confidential

Research Department

Code review and recommendations
Based on years of software development experience, Apriorit formed a list of best

practices to write clear and understandable code. Following these best practices makes

maintenance easier.

During the assessment, contract code was compared against our list of best practices.

As a result of the code review, we formed the following recommendations.

1. FIXED Delete dead lines of code

Remove unused function calls because “dead code” is not used in the test flow,

and makes the code's review and code maintenance more difficult.

Affected code:

- test/UpgradedToken.js L:17, L:21, L:31, L:43, L:64, L:66, L:68, L:70, L:84,

L:87, L:90, L:93

2. FIXED Remove unused imports

It is detected importing unused libraries in the tests.

Affected code:

- test/TokenMetaTx.js L:4, L:7

- test/UpgradedToken.js L:3

- Contracts/Token.sol L:32

3. FIXED Use external modifier where it’s possible

Consider using the external visibility modifier for functions that are intended to be

called only outside a smart contract and won't be called from within a declared

contract. Potentially, it can reduce gas usage.

Example:

©Apriorit 16 Confidential

Research Department

- Contracts/Token.sol, payGaslessBasefee(address payer, address

paymaster) can be restricted to external

4. FIXED Use visibility modifiers for state variables

Even though internal is the default visibility for state variables it is a good

practice to be explicit about visibility modifiers.

Affected code:

- Contracts/Token.sol L:53, L:54

- Contracts/Forwarder L:51, L:52

5. FIXED Use constants

Consider using constants instead of magical numbers.

Affected code:

- Contracts/Token.sol, decimals(), L:77

- Contracts/Token.sol, updateTxFeeRate(uint256 newRate), L:136

- Contracts/Token.sol, calculateTxFee(), L:152

- Contracts/Token.sol, _msgSender(), L:325

- Contracts/Token.sol, _msgData(), L:334

6. PARTIALLY FIXED Use mixed case for state variables

It is good practice to use respective naming conventions for variables:

https://docs.soliditylang.org/en/v0.8.10/style-guide.html#local-and-state-variable

-names

Affected code:

- Contracts/Blacklistable.sol L:68, L:76, L:85, L:90

- Contracts/Token.sol L:53, L:54, L:84, L:98, L:109, L:242, L:272

Secondary check: Contracts/Blacklistable.sol, L:90, _newBlacklister is not in the

mixed case.

©Apriorit 17 Confidential

https://docs.soliditylang.org/en/v0.8.10/style-guide.html#local-and-state-variable-names
https://docs.soliditylang.org/en/v0.8.10/style-guide.html#local-and-state-variable-names

Research Department

7. DECLINED Perform check on contract interface

Consider checking on contract interface in initialization logic of Forwarder

smart-contract. Because Forwarder smart-contract depends on EURL token it

would be convenient to check if an instance hidden by the eurlToken address

implements the required interface to eliminate initialization with untrusted smart

contracts.

See

@openzeppelin/contracts-upgradeable/utils/introspection/IERC165Upgradeable.s

ol for details

Affected code:

- Contracts/Forwarder.sol, initialize(address eurlToken), L:73

Rejection reason: Since Lugh will originate the forwarder, there are no huge risks

to implement such logic

8. FIXED zero address checks

Add checking on zero address before assigning state variables.

Affected code:

- Contracts/Forwarder.sol:L72

- Contracts/EURLToken.sol:L127

- Contracts/EURLToken.sol:L311

9. FIXED Add restriction on forward request registration

The Forwarder allows users to register a new request type and change the state

of the smart contract. The call is gas sensitive because it contains a loop through

the ‘typeName’. If a client doesn’t account for input size and forms an input with

a long input string as a ‘typeName’, the transaction will fail due to an “out-of-gas”

exception. This will result in wasted Ether. Consider restriction of access to

‘registerRequestType’ method only to an allowed origin.

©Apriorit 18 Confidential

Research Department

Affected code:

- Contracts/Forwarder.sol: L120

©Apriorit 19 Confidential

Research Department

Test coverage analysis
Unit tests are an essential part of smart contract development. They help to find

problems in the code that are missed by the compiler before deploying the contract to

the blockchain.

During the audit, the percentage of unit test coverage for each of the contracts was

evaluated. The results are presented in the table below.

Contract Initial coverage Final coverage

Blacklistable.sol 100 % 100 %

Forwarder.sol 72 % 96 %

Token.sol 76 % 91 %

After the secondary review it was discovered that all sensitive exceptional scenarios

were tested.

EURLToken contract uncovered test cases

Function Description Status

removeMinter,
L:221-L:222

resetting of minter's allowance,
revoking minter's role CLOSED

updateMintingAllowanc
e, L:233

changing of minting allowance for
minter CLOSED

updateTxFeeRate,
L:136 setting of incorrect transaction fee CLOSED

payGaslessBasefee,
L:191, L:193

negative cases during forward
execution flow:

- checking on trusted forwarder
- checking on ability to pay

gasless base fee

CLOSED

©Apriorit 20 Confidential

Research Department

Forwarder contract uncovered test cases

Function Description Status

verify, L:84, L:85 request verification flow: negative
and positive cases CLOSED

registerRequestType,
L:122-L-128 new request type registration CLOSED

©Apriorit 21 Confidential

Research Department

Symbolic analysis
The results of the symbolic test execution detected one possible issue. Dependence on

a predictable environment variable in EURLToken smart contract. See Appendix A for

details.

Except for this issue the smart contracts are symbolic clean.

©Apriorit 22 Confidential

Research Department

Static analysis
Static analysis of the contract was conducted using well known analysis tools.

Static analysis showed several possible errors such as:

1) delegated external call/multiple sends in a single transaction

2) unprotected initialization function

3) local variables shadowing

4) missed events

5) absence of zero address check

6) large contract size

Some of the vulnerabilities turned out to be false positives after a detailed analysis. See

Appendix A for details.

©Apriorit 23 Confidential

Research Department

Analysis of GAS use
The approximate GAS costs for each function of the EURLToken contract are:

Function Estimated GAS use
constructor 153922
setMasterMinter 54684-90684
addMinter 30292-120104

removeMinter 29670 - 29850
updateMintingAllowance 26533 - 45733

mint 46279 - 76279
burn 43864
transfer 55964 - 75164
transferFrom 50978 - 65978
permit 43504 - 77684
setAdministrator 89238 - 165438
forceTransfer 43094 - 58094
setTrustedForwarder 28211 - 47423
updateGaslessBasefee 26828 - 46040
payGaslessBasefee 48601
setOwner 78685
transferOwnership 32796
setFeeFaucet 27981- 47181
updateTxFeeRate 26942 - 46142
unBlacklist 16448 - 27248
blacklist 28376 - 47576
pause 49335
unpause 18974
upgradeTo 51416

©Apriorit 24 Confidential

Research Department

The approximate GAS costs for each function of the Forwarder contract are:

Function Estimated GAS use
constructor 1144293
registerRequestType Depends on input

data. Usual request
with “ForwardRequest”
as input will cost
40293 - 59493

execute 118285 - 133281

Function that can be optimized:

- verify(Forwarder.ForwardRequest,bytes32,bytes32,bytes,bytes)

- execute(Forwarder.ForwardRequest,bytes32,bytes32,bytes,bytes)

- payGaslessBasefee(address,address)

- forceTransfer(address,address,uint256)

Consider using the external attribute for functions never called from the contract.

After the initial audit payGaslessBasefee method was marked as external which can
help to optimize gas usage and reduce gas costs for a paymaster.

©Apriorit 25 Confidential

Research Department

Appendixes

Appendix A. Detailed findings

Risk rating

Our risk ratings are based on the same principles as the Common Vulnerability Scoring

System. The rating takes into account two parameters: exploitability and impact. Each

of these parameters can be rated as high, medium, or low.

Exploitability — What knowledge the attacker needs to exploit the system and what

preconditions are necessary for the exploit to work:

● High — Tools for the exploit are readily available and the exploit requires no

specialized system knowledge.

● Medium — Tools for the exploit are available but have to be modified. The exploit

requires specialized knowledge about the system.

● Low — Custom tools must be created for the exploit. In-depth knowledge of the

system is required to successfully perform the exploit.

Impact — What effect will the vulnerability have on the system if exploited:

● High — Administrator-level access and arbitrary code execution or disclosure of

sensitive information (private keys, personal information)

● Medium — User-level access with no disclosure of sensitive information.

● Low — No disclosure of sensitive information. Failure to follow recommended

best practices does not result in an immediately visible exploit.

Based on the combination of parameters, an overall risk rating is assigned to a

vulnerability.

©Apriorit 26 Confidential

Research Department

Vulnerabilities discovered in the smart contract

Closed issues

High risk
Local variables shadowing

Description: The owner performs transfer of ownership and shadows the state variable

_owner of OwnableUpgradeable smart contract.

Affected code:

Token.sol L:109, setOwner() shadows _owner OwnableUpgradeable.sol L:22

Recommendation:

Rename the local variable _owner that shadow another component

Details:

https://github.com/crytic/slither/wiki/Detector-Documentation#state-variable-shadowin

g

Medium risk
Unprotected Function

Description: The function registerRequestType unprotected and allows to mutate a

state of smart contract by anyone.

Affected code:

Forwarder.sol, registerRequestType() L:120

Recommendation:

Consider access restriction only for trusted origin.

©Apriorit 27 Confidential

Research Department

Medium risk
DoS with Block Gas Limit

Description: it is possible to perform DoS attacks on the gas sensitive function. The

function is gas sensitive because of the for loop.

Affected code:

Forwarder.sol, registerRequestType() L:120

Recommendation:

Consider setting of restriction on parameter bytes(typeName).length

Low risk
Missing events

Description: Detected missing events for critical arithmetic parameters such as

transaction txfee_rate and gasless_basefee.

Affected code:

Token.sol L:137, updateTxFeeRate()

Token.sol L:174, updateGaslessBasefee()

Recommendation:

Emit events when critical parameters change so it is possible to track off-chain changes

in fee scheme.

Low risk
Absence of zero address check

Description:

Detected missing zero address validation.

©Apriorit 28 Confidential

Research Department

Affected code:

Forwarder.sol L:72, initialize()

Recommendation:

Check that the address is not zero before assigning variables. Example:

require(addr != address(0))

Low risk
Absence of zero address check

Description:

Detected missing zero address validation.

Affected code:

Token.sol L:127, setFeeFaucet()

Token.sol L:311, setTrustedForwarder()

Recommendation:

Check that the address is not zero before assigning variables. Example:

require(addr != address(0))

Low risk
Large contract size

Description:

EURLToken contract code size is 31665 bytes and exceeds 24576 bytes

This contract may not be deployable on mainnet.

Recommendation:

©Apriorit 29 Confidential

Research Department

Consider enabling the optimizer (with a low "runs" value!), turning off revert strings, or

using libraries.

Low risk
Dependence on a predictable environment variable

Description:

A control flow decision is made based on The block.timestamp environment variable.

The block.timestamp environment variable is used to determine a control flow decision.

Note that the values of variables like coinbase, gaslimit, block number and timestamp

are predictable and can be manipulated by a malicious miner. Also keep in mind that

attackers know hashes of earlier blocks. Don't use any of those environment variables

as sources of randomness and be aware that use of these variables introduces a certain

level of trust into miners.

Affected code:

node_modules/@openzeppelin/contracts-upgradeable/token/ERC20/extensions/draft-E

RC20PermitUpgradeable.sol:57

require(block.timestamp <= deadline, "ERC20Permit: expired deadline")

Recommendation:

The issue can be considered as a false positive because of the difficulty of reproduction

and minimal severity of such manipulation but it is recommended to use small deadline

values.

©Apriorit 30 Confidential

Research Department

Appendix B. Description of methodologies

Smart contract security checks

Apriorit uses a comprehensive and methodical approach to assess the security of

blockchain smart contracts. We take the following steps to find vulnerabilities, expose

weaknesses, and identify deviations from accepted best practices in assessed

applications. Notes and results from these testing steps are included in the

corresponding section of the report.

Our security audit includes the following stages:

1. Discovery. The first step is to perform reconnaissance and information gathering

to decide how resources can be used in the most secure way. It is important to

obtain a thorough understanding of the smart economics, the logic of smart

contracts, and the environment they operate within so tests can be targeted

appropriately. Within this stage, Apiorit completes the following tasks:

a. Identifies technologies

b. Analyzes the specification, whitepaper, and smart contract source base

c. Creates a map of relations among smart contracts

d. Researches the structure of smart contract storage

e. Researches and analyzes standard implementations for functionality

2. Configuration Management. The configuration of the smart contracts is

analyzed.

3. User management and user permissions. The majority of smart contracts have

to manage individual users and their permissions. Most smart contracts split

permissions between the contract owner, administrator, etc. Within this stage,

Apiorit does the following:

©Apriorit 31 Confidential

Research Department

a. Determines whether all functions can be called only by the expected role

b. Reviews user management functions and role assignment

c. Reviews permissions for each role

4. Data validation. Inputs to a smart contract from users or other smart contracts

are its operational life-blood but are also the source of most high-risk attacks.

These steps ensure that data provided to the application is treated and checked.

All cases of invalid or unexpected data should be handled appropriately.

5. Efficiency check. Each function uses some amount of GAS during the call. In the

case of a GAS shortage or overlimit, the smart contract function call will fail.

Chipper smart contracts will be more interesting for users because no one wants

to waste money, so all functions should be optimized in terms of GAS use.

6. High-quality software development standards. The standard requires teams to

follow the best practices of coding standards. This will help Lugh avoid or

mitigate the most common mistakes during development that lead to smart

contract security vulnerabilities. It will also help with traceability and root cause

analysis. This stage includes:

a. Manual code review and evaluation of code quality

b. Unit test coverage analysis

©Apriorit 32 Confidential

