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AI is everywhere

Predict what you buy
Generate product descriptions
Reduce traffic jams in smart cities
Monitor farming crops

Self-driving cars
Play several Atari games and Go
Voice interface to make phone calls &
schedule your appointments

Digital assistant Alexa
Ship before you buy
Buy without checkout

FaceID & Siri
Song recommendations
Navigation in Maps

Man vs. machine competitions:
Deep Blue (chess)
Watson (tv quiz Jeopardy)
Debater (professional debates)

Content recommendations
Optimized streaming
Autogenerate personalized thumbnails
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If AI systems are everywhere…

• How easy is it to build an AI solution?
• What are the requirements to build an AI solution?
• Is building an AI solution the same as building any piece of software?
• What are the challenges to make my AI solution work?
• What kind of special tools do I need to build an AI solution?
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Why are AI solutions so difficult?

Data Management Configuration

Different expertise Model Governance

Entanglement
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Challenges of building AI systems
Any software application comes with many challenges.
AI/ML brings around a couple of extra ones:
• Data is difficult to manage and resource consuming
• Iteration is necessary but slow
• The expertise needed is abundant and diverse
• Scaling quickly becomes an issue
• Maintenance becomes particularly difficult
• Selecting the right tool is not always so easy
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Data is an investment
Having easily available and high quality data is expensive

Why invest in data?
• Model quality depends on data quality
• Data is needed after deployment
• Data is worthless if not usable
• Data is at the core of the AI system

• Bad data increases complexity à need easy access to high quality data
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Data is an investment
Data governance is key
• Being data driven is more than 

just buying expensive data
• Having the processes is as 

valuable as having the right tool
• Having a cohesive data strategy 

is the key to success.
• Data governance is not the 

same as Data management

Inperva- Data Governance

https://www.imperva.com/learn/data-security/data-governance/
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Data can significantly change
Data distributions can shift.
Assumption that past data is representative of future data is broken.

Data Drift Concept Drift

• Distribution of the features or 
target changes
• Past performance does not 

guarantee future results
• Models are not ever lasting but 

speed of decay increases

• Occurs when patterns learned 
by the model no longer holds
• It might happen over time or 

suddenly
• Is more difficult to correct as is 

related to fundamentals
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Iteration is a must
Be ready to iterate over:
• What does the business need?
• Do we have data as needed?
• Is data ready for modelling?
• What model should we build?
• Is our model good enough?
• How do we make results 

available?

CRISP-DM

https://commons.wikimedia.org/wiki/File:CRISP-DM_Process_Diagram.png
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Iteration is a must
As complexity of the environment increases, so does the workflow

MLOps.org - CRISP-ML(Q)

https://arxiv.org/pdf/2003.05155.pdf
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Business and Technical Leaders
Aligning business and technical leaders is not always easy.
But it is necessary to bridge the gap:
Business leaders
• Update their Data/AI literacy
• Understand the uncertainty around AI systems
Technical leader
• Set right expectations ahead of time
• Plan resources efficiently
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Business and Technical Leaders
If deploying AI for the first time:
• Start small
• Look for low hanging fruits
• Look for problems with visible 

value

Remember: AI is not bulletproof, but 
when used correctly can be an 
extremely powerful tool

AI is not going to replace 
managers, but managers that use 
AI will replace those that do not
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Technical teams working together
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Technical teams working together
DevOps, IT and Data Scientist often organized in silos at organizations. 
These silos must be connected* for AI. *Unless you found a unicorn that can do everything
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Technical teams working together
When working in silos:

• Impossible to have a high-level 
overview of the solution
• Constant blaming across teams
• Can’t tackle complex problems (e.g. 

real time applications)
• Maintenance  rapidly becomes a 

nightmare
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Think about scaling
Scaling AI solutions is not easy nor cheap



22

Maintaining AI solutions

“As the machine learning (ML) community continues to accumulate 
years of experience with live systems, a wide-spread and 
uncomfortable trend has emerged: developing and deploying ML 
systems is relatively fast and cheap, but maintaining them over time is 
difficult and expensive.”

Sculley et al.

https://papers.nips.cc/paper/2015/file/86df7dcfd896fcaf2674f757a2463eba-Paper.pdf
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Selecting right technology
Selecting the right tool for the problem at 
hand is not always simple, as the 
technology supporting AI is
• Diverse
• Fast growing
• Tailored

Remember: Don’t marry yourself to a 
tool. Tools are just means to an end.
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Selecting right technology
Some general tips on selecting the right technology
Integration should be easy
• You are already on an ecosystem, new tools need to be easily integrable.
Flexibility is key
• Tools should easy to use and flexible to customization
Scalability is your friend
• Not all tools scale well for all problems
Right tool for the right job
• There are many tools available, no need to overspend
Support is important
• Having good support and a large community behind is key
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AI Ecosystem is crowded
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PoC versus Production
“All of AI, .., has a proof-of-concept-to-production gap. The full cycle of
a machine learning project is not just modelling. It is finding the right
data, deploying it, monitoring it, feeding data back [into the model],
showing safety—doing all the things that need to be done [for a model]
to be deployed. [That goes] beyond doing well on the test set, which
fortunately or unfortunately is what we in machine learning are great
at.”

- Andrew Ng
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The big picture

Google - CD and automation pipelines in ML

https://cloud.google.com/architecture/mlops-continuous-delivery-and-automation-pipelines-in-machine-learning
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Basic ML building blocks

Data Management Experimentation Production
Process and govern the data  used 
by models:
• Usually large data sets
• Should be of high quality
• Should be compliant with 

legislation
• Should be tracked

Build a model based on business 
requirements, after iteration of 
experimentation:
• Workflow is iterative
• Experiment should be tracked
• Code should have standards
• Accuracy metrics should be 

tracked
• Retraining should be possible
• Requires specific infrastructure

Integrate prediction into 
production and business processes:
• Generate systematic predictions
• Track performance across time
• Follow best engineering 

practices
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Moving to production is hard
(Not so) Fun fact
According to VentureBeat, roughly 1 out of 10 Machine Learning
models actually makes it into production. But why?

The Set up is not right ML has its own difficulties

• Bad infrastructure
• Disconnect between the relevant 

parties
• Poor data management
• Leadership doesn’t understand 

• Scaling is not easy
• Duplication is widespread
• Management not on board
• Lack of Reproducibility
• Support across technologies
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Deploying models takes time

Algorithmia - State of Enterprise ML

https://algorithmia.com/state-of-ml?utm_medium=website&utm_source=interactive-page&utm_campaign=IC-1912-2020-State-of-ML&_hsenc=p2ANqtz-_WbXKYLnpgf4zi4OZTNYmNgCRPIFFEqmW-Cqi2Px_T1K2wkIJvDt7KdCxB5vXAPmGirLi7ukZTykxeUh9vmHdn7dRF9g&_hsmi=81660946
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Changing anything changes all

MLOps.org - Motivation for MLOps

https://ml-ops.org/content/motivation
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Hidden technical debt

Developing and deploying ML systems is relatively fast and cheap, but
maintaining them over time is difficult and expensive. Some of the
reasons for this are:
• Data dependencies cost more than code dependencies
• Feedback Loops
• ML-Systems anti-patterns
• Configuration debts
• Always changing external world
• Other ML related debt (e.g Data testing, Reproducibility debt)
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Other production issues
• Data quality: 
• ML models reflect the data they are build on, so they are very dependent on 

its size and quality  

• Model decay: 
• As times goes by, there might be changes in behavior that the original data 

would not necessarily reflect causing the quality of the model to drop

• Locality: 
• The quality of the performance of ML model does not always translates 

completely to production
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Trusting AI systems
• Any practical AI system in production needs to be:

• Fair
• Not allowing for any bias or discrimination

• Robust
• Not able to be manipulated from the outside

• Explainable
• Able to understand the internal decision process

• Need for AI governance and responsible AI
• Technical solutions exist, but at some costs (e.g., slower execution)



37

Fairness

• No discrimination against minorities or bias in decisions

• Bias is often present in data and transferred into models
• Toxic effects of reinforcing existing unhealthy stereotypes

• Some recent examples
• Facial recognition worked better for light-skinned males (Buolamwini)
• Man is to computer programmer as women is to homemaker? (Bolukbasi)
• Amazon’s hiring tool discriminated against women (Reuters)

https://www.nytimes.com/2018/02/09/technology/facial-recognition-race-artificial-intelligence.html
https://arxiv.org/abs/1607.06520
https://www.reuters.com/article/us-amazon-com-jobs-automation-insight-idUSKCN1MK08G
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Robustness

• Not able to be manipulated by a third party via adversarial attacks 
• Deliberately force to make a wrong prediction and trying to fool the AI

• Make the system do something else than it is intended to do:
• Stickers on stop sign confuse the AI
• Patch that tricks AI into thinking a banana is a toaster
• Glasses make facial recognition AI think you’re actress Milla Jovovich

• Adversarial use of AI
• Obama Deep Fake video

https://spectrum.ieee.org/cars-that-think/transportation/sensors/slight-street-sign-modifications-can-fool-machine-learning-algorithms
https://arxiv.org/pdf/1712.09665.pdf
https://www.newscientist.com/article/2111041-glasses-make-face-recognition-tech-think-youre-milla-jovovich/
https://ars.electronica.art/center/en/obama-deep-fake/
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Explainability

• Understand why a specific decision is made
• User has the “right to an explanation” (GDPR)
• Especially important for high-stakes decisions with a big impact on lives

• Wolf vs husky experiment (Ribeiro et al.)
• Snow in the background? à Husky

• Two options to guarantee explainability
• Tranparent models
• Ex-post interpretation techniques of black box models (many exist)

https://arxiv.org/pdf/1602.04938.pdf
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