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Introducing CRISP - ML(Q)

Google - CD and automation pipelines in ML

https://cloud.google.com/architecture/mlops-continuous-delivery-and-automation-pipelines-in-machine-learning
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CRISP-ML(Q) Phases
Six phases:

• Business and Data Understanding
• Data Engineering (Data Preparation)
• Machine Learning Model Engineering
• Quality Assurance for Machine Learning
Applications
• Deployment
• Monitoring and Maintenance
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Business and Data Understanding
From Business to ML objectives

Defining the scope
• Data scientist and Business

Establishing a success criteria
• Business, ML and Economic

Feasibility
• Applicability of ML technology, legal constraints and requirements of the application

Data Collection
• Having the data is required before starting as well as data version control

Data Quality Verification
• Data description + requirements + verification
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Data Engineering
Data preparation serves the purpose of producing a data set 

for the subsequent modelling phase.

Data Selection
• Feature selection, data selection, unbalanced classes

Clean Data
• Noise reduction, data imputation

Construction of Data
• Feature engineering, data augmentation

Standardization of data
• Data format, normalization
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Machine Learning Engineering
The goal of the modelling phase is to craft one or multiple models that satisfy the given 

constraints and requirements

Literature research
• Screen the literature, search for baselines, don’t re-invent the wheel

Quality measures and Model selection
• Use the right measures and models for the problem at hand

Domain knowledge
• Incorporate the domain knowledge available, only if improves performance

Reproducibility
• Method and results reproducibility is non-negotiable

Experimental documentation
• Keep track of the changed model performance
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Quality Assurance
Validate performance
• Generalization performance on a test set

Determine Robustness
• Real life data can be noisy

Increase explainability for ML practitioner and end user
• Explainable models are easier to improve and more likely to be accepted

Compare result with success criteria
• If success criteria not met, one should backtrack to previous phases
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Deployment
The deployment phase of a ML model is characterized by its practical use 

in the designated field of application

Select right architecture
• Select right architecture for your models, scalability is paramount

Model evaluation under production conditions
• Production data and environment might widely differ from development

User acceptance and usability
• Model might still be unusable, incomprehensible or susceptible to outliers

Minimize risks of unforeseen errors
• Have a fall back plan in case model fails

Deployment strategy
• Deployment should be incremental
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Monitoring and Maintenance
The risk of not maintaining the model is the degradation of 
the performance over time which leads to false predictions

Data drift over time
• Input data is not always similar to training data

ML systems require monitoring
• ML systems are complex, with many possible points of failure

Models need to be updated
• Performance of model deteriorates over time, so they need to be updated

Is not always about the data
• Technical monitoring is also a must


