
Developing AI tools - Supervised Regression
The second module of our AI4Business course describes how to develop AI solutions that generate value. This tutorial details the practical AI development process with a supervised regression example in Python. The Data Science Life Cycle consists of the following five steps:

1. Business Understanding

2. Data Preparation & Understanding

3. Modeling

4. Deployment

5. Monitoring

In this tutorial we put focus on the first three steps, as indicated in the figure below. The deployment and monitoring steps are discussed in detail in modules four and five of the course.

1. Business Understanding
Every AI project should start from a business opportunity to create value. Imagine that we are a real estate agency in Boston, maintaining a portfolio of houses which we rent or sell in the housing market. The accurate valuation of housing properties is therefore crucial for our business.

We are currently relying on expert knowledge and rule-based systems to determine the value of a house. We are however wondering whether AI is able to deliver extra insights that we are currently missing in our valuation process. Furthermore, we are interested in automating this process as

much as possible.

Our goal, stated as a prediction task, is therefore the following: predict the price of a housing property based on characteristics of said house. This allows us to accurately value each property to optimize our business returns.

2. Data Preparation & Understanding
After defining our business problem, we are ready to start working towards a solution. The first important step is to obtain, prepare and understand data that is relevant to solve our problem. We therefore need information on housing prices and property characteristics in the neighborhood of

Boston.

Obtaining data
The first step is to actually find relevant data. The PyDataset package provides instant access to several datasets within Python. Luckily for us, there is a dataset available with information on Boston housing prices in this package. The following steps are executed to obtain the data:

1. Import the data() function from the pydataset package

2. Use this function as data('Boston') to load the titanic data

We save the dataset in an object called housing.

That went smooth and fast! Now that we have the data, we can have a first look at it by inspecting the housing object.

crim zn indus chas nox rm age dis rad tax ptratio black lstat medv

1 0.00632 18.0 2.31 0 0.538 6.575 65.2 4.0900 1 296 15.3 396.90 4.98 24.0

2 0.02731 0.0 7.07 0 0.469 6.421 78.9 4.9671 2 242 17.8 396.90 9.14 21.6

3 0.02729 0.0 7.07 0 0.469 7.185 61.1 4.9671 2 242 17.8 392.83 4.03 34.7

4 0.03237 0.0 2.18 0 0.458 6.998 45.8 6.0622 3 222 18.7 394.63 2.94 33.4

5 0.06905 0.0 2.18 0 0.458 7.147 54.2 6.0622 3 222 18.7 396.90 5.33 36.2

... ... ... ... ... ... ... ... ... ... ... ... ... ... ...

502 0.06263 0.0 11.93 0 0.573 6.593 69.1 2.4786 1 273 21.0 391.99 9.67 22.4

503 0.04527 0.0 11.93 0 0.573 6.120 76.7 2.2875 1 273 21.0 396.90 9.08 20.6

504 0.06076 0.0 11.93 0 0.573 6.976 91.0 2.1675 1 273 21.0 396.90 5.64 23.9

505 0.10959 0.0 11.93 0 0.573 6.794 89.3 2.3889 1 273 21.0 393.45 6.48 22.0

506 0.04741 0.0 11.93 0 0.573 6.030 80.8 2.5050 1 273 21.0 396.90 7.88 11.9

506 rows × 14 columns

The data frame has 506 rows and 14 columns on housing values in suburbs of Boston:

crim: per capita crime rate by town.

zn: proportion of residential land zoned for lots over 25,000 sq.ft.

indus: proportion of non-retail business acres per town.

chas: Charles River dummy variable (= 1 if tract bounds river; 0 otherwise).

nox: nitrogen oxides concentration (parts per 10 million).

rm: average number of rooms per dwelling.

age: proportion of owner-occupied units built prior to 1940.

dis: weighted mean of distances to five Boston employment centres.

rad: index of accessibility to radial highways.

tax: full-value property-tax rate per 10,000 USD.

ptratio: pupil-teacher ratio by town.

black: 1000(Bk - 0.63)^2 where Bk is the proportion of blacks by town.

lstat lower status of the population (percent).

medv: median value of owner-occupied homes in 1000s USD.

Now we have to ask ourself the following question: Is this data relevant to solve our business problem? Remember that the business goal is to predict the price of a housing property based on its characteristics. We have an indicator for the house's value, so medv is therefore our target to

model and predict. We have several housing characteristics that we can use to predict the target, so these are our features. It seems that this is a good dataset to start from with relevant information for our business problem.

Ethical considerations
Notice how the data contains the feature black which measures the proportion of black people by town. Even though this feature is available, that does not mean we need to use it. Such features coding for race are prone to lead to racial biases in AI systems and we therefore decide to throw this

feature out of the data and not use it at all.

Quality check
Before continuing it is also very important to check the quality of our data. Useful features and target is one thing, but if they have a lot of missing or wrong values then they are not that valuable. Below we calculate the number of missing values for each column in our data, which is apparently

equal to zero!

crim       0
zn         0
indus      0
chas       0
nox        0
rm         0
age        0
dis        0
rad        0
tax        0
ptratio    0
lstat      0
medv       0
dtype: int64

Relevant and high-quality data, that's great! Let's gain some insights in the data then.

Inspect the data
We obtain some information on the different columns in the data via the .info() method. This teaches us that all columns contain zero missing values (which we already knew) and that all columns contain numerical values (either integers or floats).

<class 'pandas.core.frame.DataFrame'>
Int64Index: 506 entries, 1 to 506
Data columns (total 13 columns):
 #   Column   Non-Null Count  Dtype  
---  ------   --------------  -----  
 0   crim     506 non-null    float64
 1   zn       506 non-null    float64
 2   indus    506 non-null    float64
 3   chas     506 non-null    int64  
 4   nox      506 non-null    float64
 5   rm       506 non-null    float64
 6   age      506 non-null    float64
 7   dis      506 non-null    float64
 8   rad      506 non-null    int64  
 9   tax      506 non-null    int64  
 10  ptratio  506 non-null    float64
 11  lstat    506 non-null    float64
 12  medv     506 non-null    float64
dtypes: float64(10), int64(3)
memory usage: 55.3 KB

We check how many unique values each column has and observe that most columns contain hundreds of possibilities. Feature 'chas' only contains two (as this is a dummy indicator) and 'rad' contains nine as this feature represents an index.

crim       504
zn          26
indus       76
chas         2
nox         81
rm         446
age        356
dis        412
rad          9
tax         66
ptratio     46
lstat      455
medv       229
dtype: int64

Univariate exploration
A first interesting insight to learn is the distribution of the different columns. Below we show a table with summary statistics for each column such as the mean, minimum, maximum, and quartiles. The minimum, average and maximum target values are for example 5, 22.5 and 50 respectively. The

median equals 21.2, indicating a slightly skewed distribution.

crim zn indus chas nox rm age dis rad tax ptratio lstat medv

count 506.000000 506.000000 506.000000 506.000000 506.000000 506.000000 506.000000 506.000000 506.000000 506.000000 506.000000 506.000000 506.000000

mean 3.613524 11.363636 11.136779 0.069170 0.554695 6.284634 68.574901 3.795043 9.549407 408.237154 18.455534 12.653063 22.532806

std 8.601545 23.322453 6.860353 0.253994 0.115878 0.702617 28.148861 2.105710 8.707259 168.537116 2.164946 7.141062 9.197104

min 0.006320 0.000000 0.460000 0.000000 0.385000 3.561000 2.900000 1.129600 1.000000 187.000000 12.600000 1.730000 5.000000

25% 0.082045 0.000000 5.190000 0.000000 0.449000 5.885500 45.025000 2.100175 4.000000 279.000000 17.400000 6.950000 17.025000

50% 0.256510 0.000000 9.690000 0.000000 0.538000 6.208500 77.500000 3.207450 5.000000 330.000000 19.050000 11.360000 21.200000

75% 3.677083 12.500000 18.100000 0.000000 0.624000 6.623500 94.075000 5.188425 24.000000 666.000000 20.200000 16.955000 25.000000

max 88.976200 100.000000 27.740000 1.000000 0.871000 8.780000 100.000000 12.126500 24.000000 711.000000 22.000000 37.970000 50.000000

Tables are interesting, but graphs are nicer to look at. For numerical data, histograms are a very useful tool to visualize distributions. For this we use the very popular pyplot module from the matplotlib package in Python.

Below we show histograms for each columns in the Boston housing data. We observe how our target 'medv' follows a somewhat normal distribution with a slightly heavier right tail. Do you notice something weird about one of the features? Hint: look for an index.

The 'rad' feature represents an index, but has an outlying value. We can verify this by looking at the unique values of 'rad'. This value of 24 seems off but represents a big part of the data as indicated by the histogram. We will leave this as-is right now, but further investigation should clarify

whether this is a legitimate value, a data error or an the system's internal indication for missing values.

[ 1  2  3  5  4  8  6  7 24]

Empirical relation of the features to the target
So far we focused on the exploration of the target and features. What is really interesting is to discover the empirical relation between the features and the target. This is the pattern that you want to capture in an ML model, so let's have a look!

Both the target and features are numerical, so we can make use of scatterplots to get an idea of their relation. The graph below shows a scatterplot of housing values in function of the number of rooms. There is a clear trend visible where the housing price increases with the number of rooms. One

would indeed expect that bigger houses are more expensive.

The graph below shows a scatterplot of housing values in function of the lower population status percentage. There is a clear trend visible where the housing price decreases for higher proportions of lower status neighborhoods. One would indeed expect that houses in those areas are less

expensive because living needs to stay affordable for people.

The graph below shows boxplots of our target, grouped by the 'chas' index. Areas that bound the Charles River seems to have higher housing values.

The graph below shows boxplots of our target, grouped by the 'rad' index, but no clear trend becomes apparent at first sight.

But that's enough on the data itself. We have a good understanding of the dataset and can now move on to the modeling playground!

3. Modeling
Okay hold up, maybe we are not completely done with the data yet. Some preparation for our modeling phase is still necessary.

Target and features
We first separate the target and features. The target is stored in the object y. This is a vector (pandas Series) of length 506. The features are stored in object X. This is a matrix (pandas DataFrame) with 506 rows and 12 columns, one for each feature.

<class 'pandas.core.series.Series'>
(506,)

Sample:

1    24.0
2    21.6
3    34.7
4    33.4
5    36.2
Name: medv, dtype: float64

<class 'pandas.core.frame.DataFrame'>
(506, 12)

Sample:

chas lstat indus nox rm zn crim ptratio age rad dis tax

1 0 4.98 2.31 0.538 6.575 18.0 0.00632 15.3 65.2 1 4.0900 296

2 0 9.14 7.07 0.469 6.421 0.0 0.02731 17.8 78.9 2 4.9671 242

3 0 4.03 7.07 0.469 7.185 0.0 0.02729 17.8 61.1 2 4.9671 242

4 0 2.94 2.18 0.458 6.998 0.0 0.03237 18.7 45.8 3 6.0622 222

5 0 5.33 2.18 0.458 7.147 0.0 0.06905 18.7 54.2 3 6.0622 222

Feature engineering
Feature engineering is the process of turning raw data into features that we can use in an ML model. Both our target and all features are already represented in a numerical format, interpretable by an ML model. So even though feature engineering is extremely important, we don't need to do

anything.

Data splitting
Before fitting ML models, we split the full dataset in train and test data. The train data is used to train the ML model while the test data is used to evaluate the model's performance. A very popular package for ML in Python is scikit-learn. The 'model_selection' module contains a train_test_split()

function to make life easy for us. We keep 70% of the data for training while using 30% of the data for evaluation later on. We also keep the target's distribution in the train and test set similar via stratification. Don't mind this technical term, but keeping those distributions similar is important to

allow for representative training and fair evaluation. Train data is indicated via '_train' and test data via '_test'.

Below we show how the test data contains 152 observations (equal to 30% of the data), while the train data contains 354 observations.

30% of the data: 152
test observations: 152
train observations: 354

The graph below shows that stratification actually worked. The distribution of our target is similar in the train (blue) and test (orange) set.

Baseline linear regression model
We start by fitting a linear regression model via ordinary least squares (OLS) as baseline. Linear regression is a classical statistics approach to model a continuous dependent variable such as our housing value amounts. We will make use of the statsmodels, a popular Python package for statistical

modeling. We fit the OLS model to the training targets (y_train) by making use of the training feature matrix in dummy format (X_train).

After the successful model fitting, we can inspect the summary results of our regression model. A lot of information is shown, but the the coefficients for each feature are the most interesting to look at. These coefficients allow to exactly calculate the predicted housing prices for each suburb area.

OLS Regression Results

Dep. Variable: medv R-squared: 0.755

Model: OLS Adj. R-squared: 0.746

Method: Least Squares F-statistic: 87.49

Date: Thu, 12 Aug 2021 Prob (F-statistic): 2.60e-96

Time: 19:20:21 Log-Likelihood: -1039.4

No. Observations: 354 AIC: 2105.

Df Residuals: 341 BIC: 2155.

Df Model: 12

Covariance Type: nonrobust

coef std err t P>|t| [0.025 0.975]

const 31.5783 5.815 5.430 0.000 20.140 43.017

chas 1.0371 1.144 0.906 0.365 -1.214 3.288

lstat -0.5707 0.062 -9.172 0.000 -0.693 -0.448

indus 0.0571 0.072 0.796 0.427 -0.084 0.198

nox -14.4009 4.437 -3.246 0.001 -23.128 -5.674

rm 4.6241 0.510 9.063 0.000 3.621 5.628

zn 0.0334 0.016 2.041 0.042 0.001 0.066

crim -0.1308 0.034 -3.804 0.000 -0.198 -0.063

ptratio -0.8114 0.154 -5.269 0.000 -1.114 -0.509

age -0.0074 0.015 -0.479 0.633 -0.038 0.023

rad 0.2232 0.079 2.823 0.005 0.068 0.379

dis -1.4347 0.235 -6.103 0.000 -1.897 -0.972

tax -0.0120 0.005 -2.632 0.009 -0.021 -0.003

Omnibus: 159.101 Durbin-Watson: 1.980

Prob(Omnibus): 0.000 Jarque-Bera (JB): 920.917

Skew: 1.816 Prob(JB): 1.06e-200

Kurtosis: 10.018 Cond. No. 1.17e+04

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

[2] The condition number is large, 1.17e+04. This might indicate that there are

strong multicollinearity or other numerical problems.

We won't go into details of the linear regression model structure, but focus on the interpretation of the obtained results. The coefficient 'const' = 31.6 indicates the prediction for a property where all features have the value of zero. The negative coefficient of the feature 'lstat' indicates that

increasing the lower population status percentage decreases the predicted value (remember that trend before). The positive coefficient of 'rm' indicates that increasing the number of rooms inflates the property value (remember that trend as well). More specifically even, increasing the number of

rooms with 1 increases the value with 4.6, intuitive right? The sign and magnitude of coefficients can be used to determine the effect of each housing feature on the property value.

Simple regression tree
We now fit a simple regression tree to illustrate the model structure of a tree model. For this we use the decision tree regressor from scikit-learn to model the training targets (y_train) based on the training feature matrix (X_train). We use a maximum tree depth equal to two to keep results intuitive

and transparent. Furthermore, we make use of the mean squared error (MSE) as loss function during model training.

The tree structure is very easily visualized to show the underlying decision process.

The first split checks whether lstat <= 9.725 is true (go left) or false (go right). This means that properties in wealthy suburbs with few lower status population go to the left and the other less wealthy ones go to the right of the tree.

The next split on the left side of the tree checks whether rm <= 7.437 is true (go left) or false (go right). This means that small houses go to the left of the node and big houses go to the right of the node. The leftmost bottom node therefore collects all 130 wealthy areas with small houses in our

data, which have a value of 27.162 on average. The same reasoning allows us to conclude that wealthy areas with big houses have a value of 46.325 on average.

On the right side of the tree there is another split on 'lstat'. This means that areas with 9.725 < lstat <= 16.215 have a value of 20.237 on average and areas with lstat > 16.215 have a value of 13.589 on average.

This simple tree therefore shows four possible housing valuations for suburbs:

IF wealthy \& small houses THEN 27

IF wealthy \& big houses THEN 46

IF medium wealthy THEN 20

IF not wealthy THEN 14

This decision proces is also visualized in the graph below where we seperate the four options over the 'lstat' and 'rm' features. The wealthy areas are indicated by purple dots, medium wealthy by blue, not wealthy and small houses in green and finally not wealthy and big houses in yellow,

In [1]: # Load the housing dataset
from pydataset import data
housing = data('Boston')

In [2]: # Inspect the housing data
housing

Out[2]:

In [3]: # Remove the feature 'black' from the data
housing.drop(columns=['black'], inplace = True)

In [4]: # Get the number of missing values per column
print(housing.isnull().sum())

In [5]: # Get some info on the data via the .info() method
housing.info()

In [6]: # Get the number of unique values via the .nunique() method
print(housing.nunique())

In [7]: # Get some summary statistics via the .describe() method
housing.describe()

Out[7]:

In [8]: # Import 'pyplot' module from 'matplotlib' package
import matplotlib.pyplot as plt

In [9]: # Plot histograms for all data columns
housing.hist(figsize = (14,14), layout = (5,3))
plt.show()

In [10]: # Print the unique values of feature 'rad'
print(housing.rad.unique())

In [11]: # Scatterplot for 'medv' and 'rm'
plt.scatter(housing.rm, housing.medv)
plt.title('Scatterplot')
plt.xlabel('Number of rooms')
plt.ylabel('Median house value (1000 USDs)')
plt.show()

In [12]: # Scatterplot for 'medv' and 'lstat'
plt.scatter(housing.lstat, housing.medv)
plt.title('Scatterplot')
plt.xlabel('Lower status percentage')
plt.ylabel('Median house value (1000 USDs)')
plt.show()

In [13]: # Boxplots for 'medv' grouped by 'chas'
import seaborn as sns
sns.boxplot(x = "chas", y = "medv", data = housing)
plt.title('Boxplots')
plt.xlabel('Bounding Charles River')
plt.ylabel('Median house value (1000 USDs)')
plt.show()

In [14]: # Boxplots for 'medv' grouped by 'rad'
sns.boxplot(x = "rad", y = "medv", data = housing)
plt.title('Boxplots')
plt.xlabel('Highway accessibility index')
plt.ylabel('Median house value (1000 USDs)')
plt.show()

In [15]: # Extract target vector y from the data
y = housing.medv
print(type(y))
print(y.shape)
print('\nSample:')
y.head()

Out[15]:

In [16]: # Extract feature matrix X from the data
features = list(set(housing.columns) - set(['medv']))
X = housing[features]
print(type(X))
print(X.shape)
print('\nSample:')
X.head()

Out[16]:

In [17]: # Perform a train-test plit on the data
# Import the numpy package
import numpy as np
# Import 'model_selection' module from 'sklearn' package
from sklearn import model_selection as ms
# Use the train_test_split() function to split the data
X_train, X_test, y_train, y_test = ms.train_test_split(X, y,
                                                       test_size = 0.3,
                                                       random_state = 5678,
                                                       stratify = np.digitize(y, np.linspace(min(y), max(y), 20)))

In [18]: # Compare dataset sizes
# Expected number of observations in test set
print('30% of the data:', round(len(y) * 0.3))
# Number of obevations in test set
print('test observations:', len(y_test))
#Number of observations in training set
print('train observations:', len(y_train))

In [19]: # Stratification check
plt.hist(y_train, bins = 50, alpha=0.5, label = 'train')
plt.hist(y_test, bins = 50, alpha=0.5, label = 'test')
plt.title('Histogram')
plt.xlabel('Median house value (1000 USDs)')
plt.ylabel('Counts')
plt.legend(loc = 'upper right')
plt.show()

In [20]: # Fit a linear regression model
# Import 'statsmodels.api'
import statsmodels.api as sm
# Fit an Ordinary Least Squares (OLS) regression model
lin_reg = sm.OLS(y_train, sm.add_constant(X_train)).fit()

In [21]: # Inspect the regression results
lin_reg.summary()

Out[21]:

In [22]: # Fit a simple regression tree
# Import 'DecisionTreeRegressor' from 'sklearn.tree'
from sklearn.tree import DecisionTreeRegressor
# Fit a simple regresstion tree of depth 2 using the Mean Squared Error (MSE) loss function
simple_tree = DecisionTreeRegressor(criterion = "mse", max_depth = 2).fit(X_train, y_train)

In [23]: # Visualize the simple regression tree
# Import the 'tree' module from the package 'sklearn'
from sklearn import tree
# Plot the tree structure using the 'plot_tree()' function
plt.figure(figsize = (30,20))
tree.plot_tree(simple_tree, feature_names = features, filled = True)
plt.show()

In [24]: # Plot the decision process of the regression tree
plt.scatter(X_train.lstat, X_train.rm, c = simple_tree.predict(X_train))
plt.vlines(9.725, ymin = min(X_train.rm), ymax = max(X_train.rm))
plt.hlines(7.437, xmin = min(X_train.lstat), xmax = 9.725)
plt.vlines(16.215, ymin = min(X_train.rm), ymax = max(X_train.rm))
plt.title('Decision process')
plt.xlabel('Lower status percentage')
plt.ylabel('Number of rooms')
plt.show()



We can also assess each feature's predictive power by calculating the so-called feature importance metric. Below we show how 'lstat' explains 71% of the predictive power and 'rm' 29%. For this tree this is not super informative, but this measure becomes really helpful when working with big

complex black box models.

importance

lstat 0.711398

rm 0.288602

Optimal regression tree
Let's now fit a slightly more complicated regression tree. We allow the tree to take a maximum depth of 10 and will search for the optimal tree depth. How do we do that? This is where the validation data comes in. We use part of the training data to evaluate all depth options and choose the depth

that leads to the best performance. For now we define performance as the MSE but we come back to this later. Sidenote: we use a more complicated setup of cross-validation (instead of one simple train-validation split) which has some advantages, but the implementation details are not a priority
here.

Below we visualize the MSE performance on our validation data for each tree depth. It is clear that performance improves from depth 1 to depth 6. For larger trees (depth > 6), the MSE increases again. This indicates that the tree becomes too complex and starts overfitting. We therefore pick the

tree of depth 6 as optimal model.

The optimal tree of depth 6 is visualized below. The underlying decision process can be unraveled in the exact same way as before.

The feature importance scores now contain more features than in the case of our simple regression tree. We observe that 'lstat and 'rm' are still by far the most important features as together the still explain over 86% of the predictive power.

importance

lstat 0.543211

rm 0.312331

dis 0.068612

crim 0.035725

age 0.012222

tax 0.010135

nox 0.008474

indus 0.004853

zn 0.002545

ptratio 0.001723

rad 0.000170

chas 0.000000

Model evaluation
We now have two models which we can compare, namely the linear regression model and the optimal regression tree of depth 6. Let's evaluate these two models on the test data to assess the predictive generalization performance towards unseen data. For both models we calculate the predicted

housing values of all observations in the test data.

For evaluation purposes, we now want to compare the predictions of both models to the observed housing values in the test data. The two graphs below show scatterplots of the observed values in function of the predictions for the linear model (left) and tree (right). The blue dots should be as

close as possible to the red line, because then the observed and predicted values are equal. These plots do not really say which model performs best, but teaches us two interesting facts:

Predictions for the linear model are of a continuous nature, while the tree results in discrete predictions. A tree can by design only return as many predictions as there are leaf nodes, which is not the case for linear models.

The linear model can result in negative value predictions in some cases. This is of course not feasible in reality and should be corrected a-posteriori.

We can summarize these graphs in one performance measure via for example the  with  the number of observations,  the observed targets and  the predicted targets. We calculate the MSE values and observe that the regression tree is performing better than

the linear regression model, as lower MSE indicates better performance.

Test MSE regression tree: 20.401408976801577
Test MSE linear regression: 28.743160598910162

Manual checks:
RT:  20.401408976801587
LR:  28.743160598910166

We can try out another measure, for example the mean absolute error . We calculate the MAE values and observe that the regression tree is again performing better than the linear regression model, as lower MAE indicates better performance.

Test MAE regression tree: 2.9584180284799477
Test MAE linear regression: 3.787467657613744

Manual checks:
RT:  2.958418028479947
LR:  3.787467657613746

This analysis shows that two different metrics prefer the tree model over the linear one in the end. It is therefore clear that we should continue working with the regression tree as best AI solution for our business problem.

4. Deployment & 5. Monitoring
Once you picked a model it is time to leave the data scientist's playground and put that model in production where it can start delivering actual business value. We discuss deployment and monitoring in modules 4 and 5 of the AI4Business course, so stay tuned!

In [25]: # Inspect feature importance values
import pandas as pd
pd.DataFrame(data = simple_tree.feature_importances_,
             index = features,
             columns = ['importance'])[simple_tree.feature_importances_ > 0]

Out[25]:

In [26]: # Perform cross-validation to assess different tree depth options
from sklearn.model_selection import GridSearchCV
from sklearn.metrics import make_scorer
from sklearn.metrics import mean_squared_error

cv_grid = GridSearchCV(DecisionTreeRegressor(random_state = 1),
                       param_grid = {'max_depth':(1,2,3,4,5,6,7,8,9,10)},
                       scoring = make_scorer(mean_squared_error, greater_is_better = False),
                       cv = 5, refit = True).fit(X_train, y_train)

In [27]: # Visualize the accuracy performance for each tree depth
plt.scatter(x = [1,2,3,4,5,6,7,8,9,10],
            y = -cv_grid.cv_results_.get('mean_test_score'))
plt.title('Evolution of CV error')
plt.xlabel('Tree depth')
plt.ylabel('Mean Squared Error')
plt.show()

In [28]: # Visualize the optimal decicion tree
plt.figure(figsize = (20,10))
best_tree = cv_grid.best_estimator_
tree.plot_tree(best_tree, feature_names = features, filled = True, fontsize = 8)
plt.show()

In [29]: # Inspect feature importance values
pd.DataFrame(data = best_tree.feature_importances_,
             index = features,
             columns = ['importance']).sort_values('importance', ascending = False)

Out[29]:

In [30]: preds_linr = lin_reg.predict(sm.add_constant(X_test))
preds_tree = best_tree.predict(X_test)

In [31]: # Compare observed and predicted values
plt.figure(figsize = (12,6))
plt.subplot(1, 2, 1)
plt.scatter(x = preds_linr,
            y = y_test)
plt.plot([0,50], [0,50], 'r')
plt.xlabel('Linear predictions')
plt.ylabel('Observed values')
plt.subplot(1, 2, 2)
plt.scatter(x = preds_tree,
            y = y_test)
plt.plot([0,50], [0,50], 'r')
plt.xlabel('Tree predictions')
plt.show()

MSE = ∑N
i=1(yi − ŷ i)

21
N

N yi ŷ i

In [32]: # Calculate the MSE
print('Test MSE regression tree:', mean_squared_error(y_test, preds_tree))
print('Test MSE linear regression:', mean_squared_error(y_test, preds_linr))
print('\nManual checks:')
print('RT: ', sum((y_test - preds_tree)**2) / len(y_test))
print('LR: ', sum((y_test - preds_linr)**2) / len(y_test))

MAE = ∑N
i=1 |yi − ŷ i|

1
N

In [33]: # Calculate the MAE
from sklearn.metrics import mean_absolute_error
print('Test MAE regression tree:', mean_absolute_error(y_test, preds_tree))
print('Test MAE linear regression:', mean_absolute_error(y_test, preds_linr))
print('\nManual checks:')
print('RT: ', sum(np.abs(y_test - preds_tree)) / len(y_test))
print('LR: ', sum(np.abs(y_test - preds_linr)) / len(y_test))


