Lesson C4: Tricky Hangers

Warm Up

Inverse operations undo each other.

Addition and \qquad are inverse operations.
\qquad and division are inverse operations.

Example

1. For the hanger model and its code, describe what happens in each step. (Notice this is 12 is the same as half a smiley face). We are trying to find the weight of one whole smiley face.

Solution: \qquad
2. How is this hanger model different from prior hanger models and equations we have seen?
3. The equation for the original hanger is $12=\frac{1}{2} s$. Let's solve this using inverse equations:
$12=\frac{1}{2} s$ original
$24=s$
double both sides (also known as \qquad by 2)

Check:
$12=\frac{1}{2}(24)$
multiply 24 and one half
$12=12$
notice the equation is balanced
4. Set up a hanger model for the equation $\frac{1}{4} c=5$. Show your work to solve for c by finding out how much one c weighs.

5. What do you notice about the hanger below?

\qquad
\qquad
\qquad
\qquad
\qquad
6. Describe what is happening in each step.

7. The equation for the hanger above is $6=s-4$. Let's solve using inverse equations:
$6=s-4 \quad$ original
$6=s-4 \quad$ four on both sides to remove the helium balloon
$6+4=s-4+4$ Simplify
$10=s$

Check:
$6=10-4$
$6=6$
8. Set up a hanger model for the equation $p-10=2$. Show your work to solve for p.

9. Problem set, use whichever method you wish to solve.
a) $\frac{2}{3} m=4$
b) $6+r=4$
c) $\frac{b}{7}=5$
d) $x-7=5$
e) $9=\frac{3}{5} n$
f) $2=r-6$

