(s) SUBSPACE

NETWORK

Technical Overview
subspace.network

https://www.subspace.network/

Agenda

Stanford CBR Seminar

1. Introduction to Subspace
2. Honest Consensus Protocol
3. Arrive at a Secure Construction

Bonus — Storage & Execution Protocols

Background

How to tally votes in Nakamoto Consensus?

B, + chia

Proof of Work Proof of Stake Proof of Capacity

one-CPU-one-vote one-Coin-one-vote one-Disk-one-vote

&0

Background

Storage required to run a node

Archival Node

full state + history

Full Node

full state

Light Client

minimal state

403 GB

4.7 GB

58 MB

>

A4

10.5TB

633 GB

1GB

~ 300 GB

~123 GB

233 KB

Problem

The Farmer's Dilemma

@ < Honest Wg

v Retain the history X lgnore the history
v Maintain the state Rational > X Discard the state
v Verify new blocks X Trust new blocks
(State (\
: Higher Rol ($/ TB)
1TB History 1TB
Disk | S Disk @ Plot
KQ? Plot
G G

Solution: Subspace

How to make PoC Incentive-Compatible

o —~¢| INncentivize nodes to store the history
Proof-of-Archival-Storage (PoAS) Consensus

E?Y| Separate consensus and compute
R0 Decoupled Execution (DecEx)

-aaz®| Spread the history across all nodes
o o) Distributed Storage Network (DSN)

Public Testnet
Open Farming for All

SPARTAN ARIES GEMINI

Public Devnet Public Testnet Incentivized Testnet

I Polkadot Kusama Subspace testnet I Subspace testnet -

BEST BLOCK BEST BLOCK
#10,165,542 #8600,205

https://telemetry.subspace.network/

https://telemetry.subspace.network/

Permanent Archival Storage

Subspace Relayer

Polkadot CHAINS

44

Kusama STORAGE

2809 GIB

Ethereum BLOCKS ARCHIVED
60,348,078

https://testnet-relayer.subspace.network/

https://testnet-relayer.subspace.network/

Consensus Layer

How to agree on transaction ordering

ek

__:L@

&

=

N

PoOAS Consensus Layer

Proof of Archival Storage

& Plotting Phase

) Two Phase Protocol

1. Initial Setup Phase (plotting) -
create a unique copy of the history

2. Challenge-Response Phase
~ (Consensus) — audit the history
and produce blocks

B Consensus Phase

A

@--

N

Blocks

Source Records

Pa

e Y s N e N

]
)
rity Records]
]

Pieces

Archiving

Preparing the history

For each new block

1. Append to a buffer of some size

2. When buffer is full
- Slice into a set of source records
- Erasure code a set of parity records
with some rate

Erasure Code—(_) - Merkelize the entire record set

, - Append a merkle proof to each

Merkleize
+ Compile

O)

record, yielding a piece set
3. Commit to a root chain block

Encoding

DISK
PLOT

Plotting

Initial Setup Phase

For each 4096 byte piece of history

W

Encode using SLOTH-256-189 where key
is hash of public key

Create a tag (commitment) to the
encoding

Write the encoding to disk (plot)

Store the tag prefix within a Binary
Search Tree (BST)

Farming

Continuous Challenge-Response Phase

Slot
Challenge

F

For each timeslot

1. Issue a random challenge

2. Query BST for nearest tag to the challenge
by XOR distance

3. If within dynamic solution range: compile a

PoR

Tag

Encoding

(1 - ©
|

—| 4kb

Proof-of-Replication (PoR)
a. Sign the tag and challenge
b. Attach encoding and public key
c. Broadcast to the network
4. All nodes verify the PoR
a. Ensure tag w/in solution range
y, b. Decode and verify witness

c. Checkthe sighature

How POAS Compares

A permissionless proof-of-useful-storage

Proof-of-Space Proof-of-Storage
useless data useful data
permiSSionleSS wia @ SUBSPACE
dynamic availability NETWORK
Permissioned sspacemesh : :
farmer registration p e FILECOIH

Securing Consensus

Against all known attack vectors

Security Properties

Goals & Assumptions

Simple Proofs of Space-Time and Rational Proofs of Storage

Tal Moran* Ilan Orlov?

Abstract

We introduce a new cryptographic primitive: Proofs of Space-Time (PoSTs) and construct an extremely simple,

practlcal protocol for implementing these proofs. A PoST allows a prover to convince a verifier that she spent a

(storing dat: a period of time). Formally, we define the PoST resource as a

trade off between CPU work and space- tlme (under reasonable cost assumptions, a rational user will prefer to use the
lower-cost space-time resource over CPU work).

Compared to a proof-of-work, a PoST requires less energy use, as the “difficulty” can be increased by extending
the time period over which data is stored without increasing computation costs. Our definition is very similar to
“Proofs of Space” [ePrint 2013/796, 2013/805] but, unlike the previous definitions, takes into account amortization
attacks and storage duration. Moreover, our protocol uses a very different (and much simpler) technique, making use
of the fact that we explicitly allow a space-time tradeoff, and doesn’t require any non-: standard assumptlons (beyond
random oracles). Unlike previous constructions, our protocol allows i which can
gracefully handle increases in the price of storage compared to CPU work. In addition, we show how, in a crypto-
cum:ncy comexl the parameters of the scheme can be adjusted using a market-based mechanism, similar in spirit to
the d 1 j for PoW p

1 Introduction

A major problem in designing secure decentralized protocols for the internet is a lack of identity verification. It is
often easy for an attacker to create many “fake” identities that cannot be distinguished from the real thing. Several
strategies have been suggested for defending against such attacks (often referred to as “sybil attacks™); one of the most
popular is to force users of the system to spend resources in order to participate. Creating multiple identities would
require an attacker to spend a correspondingly larger amount of resources, making this attack much more expensive.

https://eprint.iacr.org/2016/035.pdf

Assuming 51% of the resources are
controlled by economically rational
nodes. Given the proper security
parameters, the the protocol shall:

1. Maintains the safety and liveness
properties of Nakamoto consensus

2. Maintains the fairness of
one-disk-one-vote

Against all known attacks...

https://eprint.iacr.org/2016/035.pdf

Security Outline
Categorizing Attacks

@ Secure Proof-of-Storage

- Lazy Farming
- On-Demand Encoding
- Compression Attacks

@ Secure Randomness
- Grinding Attacks
- Public Simulation
- Private Simulation

@ Secure Notion of Time
- Prediction Attacks — /
- Long-Range Attacks
- Desync. Attacks

Breaking archival storage

>
&
~

Honest farmer downloads the
full history and creates a single
unique replica with one identity

< 4»
@ ______ @@

Salt challenge with identity

Lazy Farming

< Honest
Attacker >

Solution

s.t. each BST is unique

& N

7

Lazy farmer downloads a
single piece of the history and
encodes it many times under

different identities

On-Demand Encoding

o

Honest farmer pre-encodes
their plot to disk and queries
BST on each challenge

el

Mining PoOAS

< Honest
Attacker >

Solution
Tune encoding delay s.t.
mMining always uses more
energy than farming

O

Attacker attempts to create the
same number of encodings
on-demand within the window

@ i 33

o

Honest farmers retains

Compression Attack

Discarding the Plot

< Honest

a large (1TB) plot and a small Attacker >

(8 GB) binary search tree (BST)

o

ol

Solution
Require farmers to commit to
their plots at some interval
yielding a “salted” BST

O

An attacker could “compress”
their plot by only storing
the BST, many times...

AR N
A

| | o
< I I
Py

Content

Securing Randomness

Maintaining the chain structure

() A Content Grinding
é E|j Segregate the content and proof
| Public Simulation (Equivocation)
O) ©) _ Burn plots by blocklisting signing keys
, Private Simulation
) (¢) O Recycle the challenge over many rounds
O () O

Security threshold

C-Correlation
Reducing Predictability

0.50

0.45

040 _

0.35

030 —

0.25 T I I I I
0 200 400 600 800 1000

Prediction window length in number of blocks

https://arxiv.org/abs/1910.02218

As the slot update interval (prediction
window) is increased, the security threshold
increases from 27% to 50%. At an window of
32 blocks (3 mins), the security is up to 42%.
At a window of 256 blocks (26 mins), the
security is up to 47%

But prediction window allows for:
- Bribery Attacks
- Improved On-Demand Encoding

https://arxiv.org/abs/1910.02218

Fraction of Storage

Long-Range Attack

Rewriting History from Genesis

D Adversarial Storage

D Honest Storage

Time

Originally considered hard for POAS due to
replotting time, but there are efficient forms of
the attack...

o—4—a—4ad
EKD@D@D@D@D@D@D@D@D

Almost instantaneously

(@)

|||||||‘||||||||‘o_
0
Py

-

Proof-of-Time

Sealing the History

Content PoR PoT

()

—

lterate a permutation over the

A random beacon

Periodically commit to the history
Use the output as the challenge
Inspired by PoS Arrow of Time (PoSaT)
Long range attack is much harder
Prediction window is much shorter
Use iterated AES to reduce Amax
No difficulty reset (soft fork)
Executors run the PoT Chain
Farmers optimistically follow
Anyone can prove invalid PoT

on
@)

M
T
)
&
N
QLW JgJoudhWwWN

JR—|
—
—
o .

Proof-of-Time

Maintaining the arrow of time

o0 000000 0 o0 O3

= T
eeeeeeeeeeeee OLETLALLLL AL

Inspired by PoSaT (PoS with Arrow of Time)
https://arxiv.org/abs/2010.08154

https://arxiv.org/abs/2010.08154

1

Security Properties

Simple Proofs of Space-Time and Rational Proofs of Storage

Tal Moran* Ilan Orlov?

Abstract

We introduce a new cryptographic primitive: Proofs of Space-Time (PoSTs) and construct an extremely simple,

pracncal protocol for implementing these proofs. A PoST allows a prover to convince a verifier that she spent a

(storing dat: a period of time). Formally, we define the PoST resource as a

trade off between CPU work and space- tlme (under reasonable cost assumptions, a rational user will prefer to use the
lower-cost space-time resource over CPU work).

Compared to a proof-of-work, a PoST requires less energy use, as the “difficulty” can be increased by extending
the time period over which data is stored without increasing computation costs. Our definition is very similar to
“Proofs of Space” [ePrint 2013/796, 2013/805] but, unlike the previous definitions, takes into account amortization
attacks and storage duration. Moreover, our protocol uses a very different (and much simpler) technique, making use
of the fact that we explicitly allow a space-time tradeoff, and doesn’t require any non-: standard assumpuons (beyond
random oracles). Unlike previous constructions, our protocol allows i which can
gracefully handle increases in the price of storage compared to CPU work. In addition, we show how, in a crypto-
cum:ncy comexl the parameters of the scheme can be adjusted using a market-based mechanism, similar in spirit to
the d 1 j for PoW p

Introduction

Next Steps

Assuming 51% of the resources are
controlled by economically rational
nodes. Given the proper security

parameters, the the protocol shall:

1. Maintains the safety and liveness
properties of Nakamoto consensus

2. Maintains the fairness of
one-disk-one-vote

A major problem in designing secure decentralized protocols for the internet is a lack of identity verification. It is

often easy for an attacker to create many “fake” identities that cannot be distinguished from the real thing. Several .

strategies have been suggested for defending against such attacks (often referred to as “sybil attacks™); one of the most A / / k k
popular is to force users of the system to spend resources in order to participate. Creating multiple identities would g a I n S t O n OW n a tt a C S e
require an attacker to spend a correspondingly larger amount of resources, making this attack much more expensive.

https://eprint.iacr.org/2016/035.pdf

https://eprint.iacr.org/2016/035.pdf

Compute Layer

How to agree on the global state

History

State

Decoupled Execution

Separation of Concerns

In a standard blockchain, each full node will...

@ Propose new blocks @ Verify new transactions

@ Maintain chain history @ Maintain chain state

We separate these roles
between two types of nodes

-~ Storage Staked
o Farmers Executors
Prove they are storing the

Prove they are holding coins
actual blockchain history

and tracking the latest state

Decoupled Execution

Maintaining Security

Receipts (ER)

@\ Execution
*

B
A |
: ‘ﬂ

Fraud Proofsv

Farmer i Executor

Farmers produce blocks

Executors apply blocks

Executors produce ERs proportional
to their staked credits

Invalid ERs will lead to fraud proofs
Farmers can verify fraud proofs,
leading to executors being slashed
Assumes at least one honest full node
that is not under eclipse attack

———
o

o o

History

Farmers

Produce blocks and
order transactions

State

Decoupled Execution

9

Vertical Scaling

Executors

Verify, batch, and
apply transactions

1.

User's generate transactions and
broadcast to executors

Executors verify the user has funds to
cover the transaction fee

Executors produce transaction
bundles proportional to their stake
Farmers include include bundles into
blocks, providing an ordering
Executors apply the bundles and
generate a new state root

Block size not limited by network
delay, but farmer bandwidth

Data Availability Sampling (DAS) will
allows scaling to executor bandwidth

How it Compares

Eventually Eager Execution

Q 6 flow @ @ @

Optimism CELESTIA

Lazy Execution

Eager Execution
Client Side

Standard Model

Storage Layer

How to ensure data persists

Distributed Storage Of Subspace

How to store and retrieve our own history

Assuming a very large history, we must
ensure it remains

- Durable

- Load Balanced

- Retrievable

- Efficient Sync

To achieve this we employ
- Erasure coding
- Consistent Hashing
- Light Kademlia DHT
- Super Light Client

Storage Fee Pricing

Incentivizing Permanent Storage

z Circulating Credit Supply

Cost of Storage (CoS)
Subspace Credits / byte (CPB) Z Space Pledged - Z Space Reserved

CoS is normally constant

- op_return — satoshis / byte
crm - call_data — gwei/ byte
Our CoS (storage fee) is dynamic

- RF increases, fees get lower

- As RF decreases, fees get higher

1 10 100 1000 Portion of fees are placed in an
Replication factor (log scale) endowment and paid out gradually

How it compares?
AMM for On-Chain Storage

G

. Permanent
Proof-of-Capacity Storage

(PoC) Consensus E
e Filecoin

Temporary

Storage
SUPPLY DEMAND

Distributed
Storage Networks

@ arweave.org

Application Layer

How Ethereum can benefit from Subspace

Storage API

How to store and retrieve any data

SuKAJ).aceJA — Developer SDK

put(object) > object_id
wrap in subspace transaction
- include within a block
- store mapping on DHT
- pieces are spread across plots

get(object_id) » object

| - retrieve mapping from DHT
>/ Object - retrieve pieces from plots

- reconstruct object and verify

K-DHT
Network

10k Foot Overview

o

Subspace ©F Dotsama

Relay
Chain
g
X ' : Bridge
Parachain Parachain Parachain Eaachan
Polkadot :
Network :
I
Sub Tx Sub Tx Sub Tx t
>
|
~ i
l Block 0
2
Archival
History
Farmer
Subspace (Block DB)
Network Block
Block(i)
Subspace ,
——
Network T
— A |
' *
‘ | Block(i + 1)
| : | Plot
L N S - Unique

Replicas

ol

Greater
Scalability

A release valve for
blockchain bloat

Off-Chain Storage

State Management

Integration Benefits
Subspace @ Everyone

<

Higher
Decentralization

Reduced reliance on
traditional infra

Node Synchronization

Distributed Archival Nodes

Better
Interoperability

Validated archiving allows
for trustless bridging

Common Query API

Cross-Chain Messaging

Mainnet

]

]

BB R
§ @D

Rollups

Ethereum Ecosystem

Where will all of this data live?

Beacon Chain Shard Chains

)
—
)
-/

Of----—-+{w}—{©
O}--—---»{0}—{w

)
4
o)
~——

)
—

Of----—-+{0w}—{w

of-of+e

.
.
.

4

Thanks!

And we’'re hiring security researchers ;-)

