
Technical Overview
subspace.network

https://www.subspace.network/

Agenda
Stanford CBR Seminar

1. Introduction to Subspace
2. Honest Consensus Protocol
3. Arrive at a Secure Construction

Bonus – Storage & Execution Protocols

Background
How to tally votes in Nakamoto Consensus?

Proof of Work
one-CPU-one-vote

Proof of Stake
one-Coin-one-vote

Proof of Capacity
one-Disk-one-vote

Background
Storage required to run a node

Light Client
minimal state

Full Node
full state

Archival Node
full state + history

10.5 TB403 GB

633 GB4.7 GB

~ 300 GB

~ 123 GB

58 MB 1 GB 233 KB

Problem
The Farmer’s Dilemma

✓ Retain the history
✓ Maintain the state
✓ Verify new blocks

✗ Ignore the history
✗ Discard the state
✗ Trust new blocks

Honest

Rational

Higher RoI ($ / TB)History

State

Plot

1 TB
Disk Plot1 TB

Disk

Solution: Subspace
How to make PoC Incentive-Compatible

Incentivize nodes to store the history
Proof-of-Archival-Storage (PoAS) Consensus

Spread the history across all nodes
Distributed Storage Network (DSN)

Separate consensus and compute
Decoupled Execution (DecEx)

Public Testnet
Open Farming for All

https://telemetry.subspace.network/

https://telemetry.subspace.network/

Permanent Archival Storage
Subspace Relayer

https://testnet-relayer.subspace.network/

https://testnet-relayer.subspace.network/

Consensus Layer
How to agree on transaction ordering

PoAS Consensus Layer
Proof of Archival Storage

Two Phase Protocol

1. Initial Setup Phase (plotting) –
create a unique copy of the history

2. Challenge-Response Phase
(Consensus) – audit the history
and produce blocks

Archiving
Preparing the history

For each new block

1. Append to a buffer of some size
2. When buffer is full
- Slice into a set of source records
- Erasure code a set of parity records

with some rate
- Merkelize the entire record set
- Append a merkle proof to each

record, yielding a piece set
3. Commit to a root chain block

Plotting
Initial Setup Phase

For each 4096 byte piece of history

1. Encode using SLOTH-256-189 where key
is hash of public key

2. Create a tag (commitment) to the
encoding

3. Write the encoding to disk (plot)
4. Store the tag prefix within a Binary

Search Tree (BST)

4kb 4kb

Tag

DISK
PLOT

BST

Piece

SLOTH

Encoding

Farming
Continuous Challenge-Response Phase

For each timeslot

1. Issue a random challenge
2. Query BST for nearest tag to the challenge

by XOR distance
3. If within dynamic solution range: compile a

Proof-of-Replication (PoR)
a. Sign the tag and challenge
b. Attach encoding and public key
c. Broadcast to the network

4. All nodes verify the PoR
a. Ensure tag w/in solution range
b. Decode and verify witness
c. Check the signature

4kb

Tag

Encoding

PoR

Slot
Challenge

How PoAS Compares
A permissionless proof-of-useful-storage

Proof-of-Space
useless data

Proof-of-Storage
useful data

Permissionless
dynamic availability

Permissioned
farmer registration

Securing Consensus
Against all known attack vectors

Security Properties
Goals & Assumptions

Assuming 51% of the resources are
controlled by economically rational
nodes. Given the proper security
parameters, the the protocol shall:

1. Maintains the safety and liveness
properties of Nakamoto consensus

2. Maintains the fairness of
one-disk-one-vote

Against all known attacks…

https://eprint.iacr.org/2016/035.pdf

https://eprint.iacr.org/2016/035.pdf

Security Outline
Categorizing Attacks

Secure Proof-of-Storage
- Lazy Farming
- On-Demand Encoding
- Compression Attacks

Secure Randomness
- Grinding Attacks
- Public Simulation
- Private Simulation

Secure Notion of Time
- Prediction Attacks
- Long-Range Attacks
- Desync. Attacks

1

2

3

Lazy Farming
Breaking archival storage

Honest

Attacker
Honest farmer downloads the
full history and creates a single

unique replica with one identity

Lazy farmer downloads a
single piece of the history and
encodes it many times under

different identities

Solution
Salt challenge with identity

s.t. each BST is unique

4kb4kb

On-Demand Encoding
Mining PoAS

Honest

Attacker
Honest farmer pre-encodes

their plot to disk and queries
BST on each challenge

Attacker attempts to create the
same number of encodings

on-demand within the window

Solution
Tune encoding delay s.t.

mining always uses more
energy than farming

Compression Attack
Discarding the Plot

Honest

Attacker
Honest farmers retains

a large (1TB) plot and a small
(8 GB) binary search tree (BST)

An attacker could “compress”
their plot by only storing

 the BST, many times...

Solution
Require farmers to commit to

their plots at some interval
yielding a “salted” BST

Securing Randomness
Maintaining the chain structure

Content Grinding
Segregate the content and proof

Public Simulation (Equivocation)
Burn plots by blocklisting signing keys

Private Simulation
Recycle the challenge over many rounds

Clock Content PoR

C-Correlation

As the slot update interval (prediction
window) is increased, the security threshold
increases from 27% to 50%. At an window of
32 blocks (3 mins), the security is up to 42%.
At a window of 256 blocks (26 mins), the
security is up to 47%

But prediction window allows for:
- Bribery Attacks
- Improved On-Demand Encoding 0 200 400 600 800 1000

Se
cu

ri
ty

 t
h

re
sh

ol
d

Prediction window length in number of blocks

0.25

0.30

0.35

0.40

0.45

0.50

Reducing Predictability

https://arxiv.org/abs/1910.02218

https://arxiv.org/abs/1910.02218

Long-Range Attack
Rewriting History from Genesis

Fr
ac

ti
on

 o
f S

to
ra

g
e

Time

Adversarial Storage

Honest Storage

0%

5% 20%

60%

Almost instantaneously

Originally considered hard for PoAS due to
replotting time, but there are efficient forms of
the attack…

Proof-of-Time
Sealing the History

1. Iterate a permutation over the
random beacon

2. Periodically commit to the history
3. Use the output as the challenge
4. Inspired by PoS Arrow of Time (PoSaT)
5. Long range attack is much harder
6. Prediction window is much shorter
7. Use iterated AES to reduce Amax
8. No difficulty reset (soft fork)
9. Executors run the PoT Chain

10. Farmers optimistically follow
11. Anyone can prove invalid PoT

Clock Content PoR PoT

Proof-of-Time
Maintaining the arrow of time

VRF Signatures

PoT chain

Slot challenges
c3 c4 c5 c6 c7

Inspired by PoSaT (PoS with Arrow of Time)
https://arxiv.org/abs/2010.08154

https://arxiv.org/abs/2010.08154

Security Properties
Next Steps

Assuming 51% of the resources are
controlled by economically rational
nodes. Given the proper security
parameters, the the protocol shall:

1. Maintains the safety and liveness
properties of Nakamoto consensus

2. Maintains the fairness of
one-disk-one-vote

Against all known attacks…

https://eprint.iacr.org/2016/035.pdf

https://eprint.iacr.org/2016/035.pdf

Compute Layer
How to agree on the global state

4

21

3

In a standard blockchain, each full node will...

We separate these roles
between two types of nodes

Verify new transactions

Maintain chain state

Propose new blocks

Maintain chain history

Storage
Farmers

Prove they are storing the
actual blockchain history

Staked
Executors

Prove they are holding coins
and tracking the latest state

Decoupled Execution
Separation of Concerns

SSC

History State

Decoupled Execution
Maintaining Security

1. Farmers produce blocks
2. Executors apply blocks
3. Executors produce ERs proportional

to their staked credits
4. Invalid ERs will lead to fraud proofs
5. Farmers can verify fraud proofs,

leading to executors being slashed
6. Assumes at least one honest full node

that is not under eclipse attack

Decoupled Execution
Vertical Scaling

ExecutorsFarmers
Produce blocks and
order transactions

Verify, batch, and
apply transactions

SSC
1. User’s generate transactions and

broadcast to executors
2. Executors verify the user has funds to

cover the transaction fee
3. Executors produce transaction

bundles proportional to their stake
4. Farmers include include bundles into

blocks, providing an ordering
5. Executors apply the bundles and

generate a new state root
6. Block size not limited by network

delay, but farmer bandwidth
7. Data Availability Sampling (DAS) will

allows scaling to executor bandwidth
History State

How it Compares

Lazy Execution
Client Side

Eager Execution
Standard Model

Eventually Eager Execution

Storage Layer
How to ensure data persists

Distributed Storage Of Subspace
How to store and retrieve our own history

Assuming a very large history, we must
ensure it remains

- Durable
- Load Balanced
- Retrievable
- Efficient Sync

To achieve this we employ
- Erasure coding
- Consistent Hashing
- Light Kademlia DHT
- Super Light Client

Storage Fee Pricing
Incentivizing Permanent Storage

1 10 100 1000

Cost of Storage (CoS)
Subspace Credits / byte (CPB)

CPB

Replication factor (log scale)

CoS is normally constant
- op_return → satoshis / byte
- call_data → gwei / byte

Our CoS (storage fee) is dynamic
- RF increases, fees get lower
- As RF decreases, fees get higher

Portion of fees are placed in an
endowment and paid out gradually

∑ Circulating Credit Supply

∑ Space Pledged - ∑ Space Reserved
→

How it compares?
AMM for On-Chain Storage

Permanent
Storage

Temporary
Storage

Proof-of-Capacity
(PoC) Consensus

SUPPLY DEMAND

Distributed
Storage Networks

Application Layer
How Ethereum can benefit from Subspace

Storage API
How to store and retrieve any data

Subspace.js – Developer SDK

put(object) → object_id
- wrap in subspace transaction
- include within a block
- store mapping on DHT
- pieces are spread across plots

get(object_id) → object
- retrieve mapping from DHT
- retrieve pieces from plots
- reconstruct object and verify

10k Foot Overview
Subspace 🤝 Dotsama

Integration Benefits
Subspace 💜 Everyone

Greater
Scalability

A release valve for
blockchain bloat

Higher
Decentralization

Reduced reliance on
traditional infra

Better
Interoperability

Validated archiving allows
for trustless bridging

Off-Chain Storage

State Management

Node Synchronization

Distributed Archival Nodes

Common Query API

Cross-Chain Messaging

Ethereum Ecosystem
Where will all of this data live?

Mainnet Beacon Chain Shard ChainsRollups dApps

NFT Metadata

Metaverse Assets

Media Files

…

…

…

Thanks!
And we’re hiring security researchers ;-)

