
Technical Overview
subspace.network

https://www.subspace.network/


Agenda
Stanford CBR Seminar

1. Introduction to Subspace
2. Honest Consensus Protocol 
3. Arrive at a Secure Construction

Bonus – Storage & Execution Protocols



Background
How to tally votes in Nakamoto Consensus?

Proof of Work
one-CPU-one-vote

Proof of Stake
one-Coin-one-vote

Proof of Capacity
one-Disk-one-vote



Background
Storage required to run a node

Light Client
minimal state

Full Node
full state

Archival Node
full state + history

10.5 TB403 GB

633 GB4.7 GB

~ 300 GB

~ 123 GB

58 MB 1 GB 233 KB



Problem
The Farmer’s Dilemma

✓ Retain the history
✓ Maintain the state 
✓ Verify new blocks

✗ Ignore the history
✗ Discard the state 
✗ Trust new blocks

Honest

Rational

Higher RoI ($ / TB)History

State

Plot

1 TB
Disk Plot1 TB

Disk



Solution: Subspace
How to make PoC Incentive-Compatible

Incentivize nodes to store the history
Proof-of-Archival-Storage (PoAS) Consensus

Spread the history across all nodes
Distributed Storage Network (DSN)

Separate consensus and compute
Decoupled Execution (DecEx)



Public Testnet
Open Farming for All

https://telemetry.subspace.network/

https://telemetry.subspace.network/


Permanent Archival Storage
Subspace Relayer

https://testnet-relayer.subspace.network/ 

https://testnet-relayer.subspace.network/


Consensus Layer
How to agree on transaction ordering



PoAS Consensus Layer
Proof of Archival Storage

Two Phase Protocol

1. Initial Setup Phase (plotting) – 
create a unique copy of the history

2. Challenge-Response Phase 
(Consensus) –  audit the history 
and produce blocks



Archiving
Preparing the history

For each new block

1. Append to a buffer of some size
2. When buffer is full
- Slice into a set of source records
- Erasure code a set of parity records 

with some rate
- Merkelize the entire record set
- Append a merkle proof to each 

record, yielding a piece set
3. Commit to a root chain block



Plotting
Initial Setup Phase

For each 4096 byte piece of history

1. Encode using SLOTH-256-189 where key 
is hash of public key 

2. Create a tag (commitment) to the 
encoding

3. Write the encoding to disk (plot)
4. Store the tag prefix within a Binary 

Search Tree (BST)

4kb 4kb

Tag

DISK 
PLOT

BST

Piece

SLOTH

Encoding



Farming
Continuous Challenge-Response Phase

For each timeslot

1. Issue a random challenge 
2. Query BST for nearest tag to the challenge 

by XOR distance
3. If within dynamic solution range: compile a 

Proof-of-Replication (PoR)
a. Sign the tag and challenge
b. Attach encoding and public key
c. Broadcast to the network

4. All nodes verify the PoR
a. Ensure tag w/in solution range
b. Decode and verify witness 
c. Check the signature

4kb

Tag

Encoding

PoR

Slot 
Challenge



How PoAS Compares
A permissionless proof-of-useful-storage

Proof-of-Space
useless data

Proof-of-Storage
useful data

Permissionless
dynamic availability

Permissioned
farmer registration



Securing Consensus
Against all known attack vectors



Security Properties
Goals & Assumptions

Assuming 51% of the resources are 
controlled by economically rational 
nodes. Given the proper security 
parameters, the the protocol shall:

1. Maintains the safety and liveness 
properties of Nakamoto consensus

2. Maintains the fairness of 
one-disk-one-vote 

Against all known attacks…

https://eprint.iacr.org/2016/035.pdf 

https://eprint.iacr.org/2016/035.pdf


Security Outline
Categorizing Attacks

Secure Proof-of-Storage
- Lazy Farming
- On-Demand Encoding
- Compression Attacks

Secure Randomness
- Grinding Attacks
- Public Simulation
- Private Simulation

Secure Notion of Time
- Prediction Attacks
- Long-Range Attacks
- Desync. Attacks

1

2

3



Lazy Farming
Breaking archival storage

Honest

Attacker
Honest farmer downloads the 
full history and creates a single 

unique replica with one identity

Lazy farmer downloads a 
single piece of the history and 
encodes it many times under 

different identities

Solution
Salt challenge with identity 

s.t. each BST is unique

4kb4kb



On-Demand Encoding
Mining PoAS

Honest

Attacker
Honest farmer pre-encodes 

their plot to disk and queries 
BST on each challenge

Attacker attempts to create the 
same number of encodings 

on-demand within the window 

Solution
Tune encoding delay s.t. 

mining always uses more 
energy than farming



Compression Attack
Discarding the Plot

Honest

Attacker
Honest farmers retains

a large (1TB) plot and a small  
(8 GB) binary search tree (BST) 

An attacker could “compress” 
their plot by only storing

 the BST, many times...

Solution
Require farmers to commit to 

their plots at some interval
yielding a “salted” BST



Securing Randomness
Maintaining the chain structure

Content Grinding
Segregate the content and proof

Public Simulation (Equivocation)
Burn plots by blocklisting signing keys

Private Simulation 
Recycle the challenge over many rounds

Clock Content PoR



C-Correlation

As the slot update interval (prediction 
window) is increased, the security threshold 
increases from 27% to 50%. At an window of 
32 blocks (3 mins), the security is up to 42%. 
At a window of 256 blocks (26 mins), the 
security is up to 47%

But prediction window allows for:
- Bribery Attacks
- Improved On-Demand Encoding 0            200           400           600           800            1000     
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Prediction window length in number of blocks
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Reducing Predictability 

https://arxiv.org/abs/1910.02218 

https://arxiv.org/abs/1910.02218


Long-Range Attack
Rewriting History from Genesis
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Adversarial Storage

Honest Storage

0%

5% 20%

60%

Almost instantaneously 

Originally considered hard for PoAS due to 
replotting time, but there are efficient forms of 
the attack…

 



Proof-of-Time
Sealing the History

1. Iterate a permutation over the 
random beacon

2. Periodically commit to the history
3. Use the output as the challenge
4. Inspired by PoS Arrow of Time (PoSaT)
5. Long range attack is much harder
6. Prediction window is much shorter
7. Use iterated AES to reduce Amax
8. No difficulty reset (soft fork)
9. Executors run the PoT Chain

10. Farmers optimistically follow
11. Anyone can prove invalid PoT

Clock Content PoR PoT



Proof-of-Time
Maintaining the arrow of time

VRF Signatures

PoT chain

Slot challenges
c3 c4 c5 c6 c7

Inspired by PoSaT (PoS with Arrow of Time)
https://arxiv.org/abs/2010.08154 

https://arxiv.org/abs/2010.08154


Security Properties
Next Steps

Assuming 51% of the resources are 
controlled by economically rational 
nodes. Given the proper security 
parameters, the the protocol shall:

1. Maintains the safety and liveness 
properties of Nakamoto consensus

2. Maintains the fairness of 
one-disk-one-vote 

Against all known attacks…

https://eprint.iacr.org/2016/035.pdf 

https://eprint.iacr.org/2016/035.pdf


Compute Layer
How to agree on the global state



4

21

3

In a standard blockchain, each full node will...

We separate these roles 
between two types of nodes

Verify new transactions

Maintain chain state

Propose new blocks

Maintain chain history

Storage
Farmers

Prove they are storing the 
actual blockchain history

Staked
Executors

Prove they are holding coins 
and tracking the latest state

Decoupled Execution
Separation of Concerns

SSC

History State



Decoupled Execution
Maintaining Security

1. Farmers produce blocks
2. Executors apply blocks
3. Executors produce ERs proportional 

to their staked credits
4. Invalid ERs will lead to fraud proofs
5. Farmers can verify fraud proofs, 

leading to executors being slashed
6. Assumes at least one honest full node 

that is not under eclipse attack



Decoupled Execution
Vertical Scaling

ExecutorsFarmers
Produce blocks and 
order transactions

Verify, batch, and 
apply transactions

SSC
1. User’s generate transactions and 

broadcast to executors
2. Executors verify the user has funds to 

cover the transaction fee
3. Executors produce transaction 

bundles proportional to their stake
4. Farmers include include bundles into 

blocks, providing an ordering
5. Executors apply the bundles and 

generate a new state root
6. Block size not limited by network 

delay, but farmer bandwidth
7. Data Availability Sampling (DAS) will 

allows scaling to executor bandwidth
History State



How it Compares

Lazy Execution
Client Side 

Eager Execution
Standard Model

Eventually Eager Execution



Storage Layer
How to ensure data persists



Distributed Storage Of Subspace
How to store and retrieve our own history

Assuming a very large history, we must 
ensure it remains

- Durable
- Load Balanced
- Retrievable
- Efficient Sync 

To achieve this we employ
- Erasure coding 
- Consistent Hashing
- Light Kademlia DHT
- Super Light Client



Storage Fee Pricing
Incentivizing Permanent Storage

1 10 100   1000

Cost of Storage (CoS)   
Subspace Credits / byte (CPB) 

CPB

Replication factor (log scale)

CoS is normally constant
- op_return → satoshis / byte
- call_data → gwei / byte

Our CoS (storage fee) is dynamic
- RF increases, fees get lower
- As RF decreases, fees get higher 

Portion of fees are placed in an 
endowment and paid out gradually

∑  Circulating Credit Supply

∑  Space Pledged  - ∑  Space Reserved
→



How it compares?
AMM for On-Chain Storage

Permanent 
Storage

Temporary 
Storage

Proof-of-Capacity 
(PoC) Consensus 

SUPPLY DEMAND

Distributed 
Storage Networks



Application Layer
How Ethereum can benefit from Subspace 



Storage API
How to store and retrieve any data

Subspace.js  – Developer SDK

put(object) → object_id
- wrap in subspace transaction
- include within a block
- store mapping on DHT
- pieces are spread across plots

get(object_id) → object
- retrieve mapping from DHT
- retrieve pieces from plots
- reconstruct object and verify



10k Foot Overview
Subspace 🤝 Dotsama



Integration Benefits
Subspace 💜 Everyone

Greater
Scalability

A release valve for 
blockchain bloat

Higher
Decentralization

Reduced reliance on 
traditional infra

Better 
Interoperability

Validated archiving allows 
for trustless bridging

Off-Chain Storage 

State Management 

Node Synchronization

Distributed Archival Nodes

Common Query API

Cross-Chain Messaging 



Ethereum Ecosystem
Where will all of this data live?

Mainnet Beacon Chain Shard ChainsRollups dApps

NFT Metadata

Metaverse Assets

Media Files

…

…

…



Thanks!
And we’re hiring security researchers ;-) 


