
Web3 @ Internet Scale
subspace.network

https://www.subspace.network/

Agenda
Silicon Valley Ethereum Meetup

1. Why do we need Subspace?
2. How does it actually work?
- Consensus Layer
- Compute Layer
- Storage Layer

3. Applications for Ethereum

Background
How to tally votes in Nakamoto Consensus?

Proof of Work
one-CPU-one-vote

Proof of Stake
one-Coin-one-vote

Proof of Capacity
one-Disk-one-vote

Background
Storage required to run a node

Light Client
minimal state

Full Node
full state

Archival Node
full state + history

10.5 TB403 GB

633 GB4.7 GB

???

123 GB

58 MB 1 GB 233 KB

Problem
The Farmer’s Dilemma

✓ Retain the history
✓ Maintain the state
✓ Verify new blocks

✗ Ignore the history
✗ Discard the state
✗ Trust new blocks

Honest

Rational

Higher RoI ($ / TB)History

State

Plot

1 TB
Disk Plot1 TB

Disk

Solution: Subspace
How to make PoC Incentive-Compatible

Incentivize nodes to store the history
Proof-of-Archival-Storage (PoAS) Consensus

Spread the history across all nodes
Distributed Storage Network (DSN)

Separate consensus and compute
Decoupled Execution (DecEx)

Consensus Layer
How to agree on transaction ordering

PoAS Consensus Layer
Proof of Archival Storage

Two Phase Protocol

1. Initial Setup Phase (plotting) –
create a unique copy of the history

2. Challenge-Response Phase
(Consensus) – audit the history
and produce blocks

How it Compares
A permissionless proof-of-useful-storage

Proof-of-Space
useless data

Proof-of-Storage
useful data

Permissionless
dynamic availability

Permissioned
farmer registration

Archiving
Preparing the history

For each new block

1. Append to a buffer of some size
2. When buffer is full
- Slice into a set of source records
- Erasure code a set of parity records

with some rate
- Merkelize the entire record set
- Append a merkle proof to each

record, yielding a piece set
3. Commit to a root chain block

Plotting
Initial Setup Phase

For each 4096 byte piece of history

1. Encode using SLOTH-256-189 where key
is hash of public key

2. Create a tag (commitment) to the
encoding

3. Write the encoding to disk (plot)
4. Store the tag prefix within a Binary

Search Tree (BST)

Farming
Continuous Challenge-Response Phase

For each challenge

1. Query BST for nearest tag to the challenge
by XOR distance

2. If within dynamic solution range: compile a
Proof-of-Replication (PoR)
a. Sign the tag and challenge
b. Attach encoding and public key
c. Broadcast to the network

3. All nodes verify the PoR
a. Ensure tag w/in solution range
b. Decode and verify witness
c. Check the signature

Secure Farming
Rational Security Model

1. Prevent grinding w/block segregation
2. Discourage sybil farming w/max plot

size and locally derived challenges
3. Prevent simulation with c-correlation
4. Does not rely on NTP, uses the chain

as a source of relative time
5. Discourage space-time trade-off

attacks with the encoding delay
6. Discourage compression farming with

salted binary search trees
7. Prevent long-range attacks, mitigate

bribery and space-time trade-off
attacks with a proof-of-time

Compute Layer
How to agree on the global state

4

21

3

In a standard blockchain, each full node will...

We separate these roles
between two types of nodes

Verify new transactions

Maintain chain state

Propose new blocks

Maintain chain history

Storage
Farmers

Prove they are storing the
actual blockchain history

Staked
Executors

Prove they are holding coins
and tracking the latest state

Decoupled Execution
Separation of Concerns

SSC

History State

Decoupled Execution
Maintaining Security

1. Farmers produce blocks
2. Executors apply blocks
3. Executors produce ERs proportional

to their staked credits
4. Invalid ERs will lead to fraud proofs
5. Farmers can verify fraud proofs,

leading to executors being slashed
6. Assumes at least one honest full node

that is not under eclipse attack

Decoupled Execution
Vertical Scaling

ExecutorsFarmers
Produce blocks and
order transactions

Verify, batch, and
apply transactions

SSC
1. User’s generate transactions and

broadcast to executors
2. Executors verify the user has funds to

cover the transaction fee
3. Executors produce transaction

bundles proportional to their stake
4. Farmers include include bundles into

blocks, providing an ordering
5. Executors apply the bundles and

generate a new state root
6. Block size not limited by network

delay, but farmer bandwidth
7. Data Availability Sampling (DAS) will

allows scaling to executor bandwidth
History State

How it Compares

Lazy Execution
Client Side

Eager Execution
Standard Model

Eventually Eager Execution

Storage Layer
How to ensure data persists

Distributed Storage Of Subspace
How to store and retrieve our own history

Assuming a very large history, we must
ensure it remains

- Durable
- Load Balanced
- Retrievable
- Efficient Sync

To achieve this we employ
- Erasure coding
- Consistent Hashing
- Light Kademlia DHT
- Super Light Client

Storage Fee Pricing
Incentivizing Permanent Storage

1 10 100 1000

Cost of Storage (CoS)
Subspace Credits / byte (CPB)

CPB

Replication factor (log scale)

CoS in normally a constant
- op_return → satoshis / byte
- call_data → gwei / byte

Our CoS (storage fee) is dynamic
- RF increases, fees get lower
- As RF decreases, fees get higher

Portion of fees are placed in an
endowment and paid out gradually

∑ Circulating Credit Supply

∑ Space Pledged - ∑ Space Reserved
→

Storage API
How to store and retrieve any data

Subspace.js – Developer SDK

put(object) → object_id
- wrap in subspace transaction
- include within a block
- store mapping on DHT
- pieces are spread across plots

get(object_id) → object
- retrieve mapping from DHT
- retrieve pieces from plots
- reconstruct object and verify

How it compares?
AMM for On-Chain Storage

Permanent
Storage

Temporary
Storage

Proof-of-Capacity
(PoC) Consensus

SUPPLY DEMAND

Distributed
Storage Networks

Public Farmnet
Initial Supply

https://telemetry.subspace.network/

https://telemetry.subspace.network/

Subspace Relayer
Initial Demand

https://testnet-relayer.subspace.network/

https://testnet-relayer.subspace.network/

Application Layer
How Ethereum can benefit from Subspace

10k Foot Overview
Subspace 🤝 Dotsama

Cross-chain storage
Offsetting State Bloat

Off-chain storage
dApp Assets & Metadata

Archival storage
Relay & Parachain Blocks

Ethereum Ecosystem
Where will all of this data live?

Mainnet Beacon Chain Shard ChainsRollups dApps

NFT Metadata

Metaverse Assets

Media Files

…

…

…

Integration Benefits
Subspace 💜 Ethereum

Greater
Scalability

A release valve for
blockchain bloat

Higher
Decentralization

Reduced reliance on
traditional infra

Better
Interoperability

Validated archiving allows
for trustless bridging

Off-Chain Storage

State Management

Node Synchronization

Distributed Archival Nodes

Common Query API

Cross-Chain Messaging

Thanks!
And please ask questions :-)

Resources
Join / follow Subspace Network!

t.me/subspacelabs github.com/subspace

medium.com/subspace-network

twitter.com/NetworkSubspace

subspace.network

discord.gg/JnFs5fFj

https://t.me/subspace_network
https://github.com/subspace
https://medium.com/subspace-network
https://twitter.com/NetworkSubspace
https://subspace.network/
https://discord.gg/K56A6xrdw9

