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EXECUTIVE SUMMARY 
 
Research Synopsis: ​Over an 18 month period, beginning around January 2019, Subspace 
Labs conducted primary research and development towards the creation of a persistent, 
decentralized database anchored to a public, permissionless blockchain. While we did design 
and implement a novel architecture for a decentralized database service, known as Subspace 
Database (SSDB), we were not able to launch the service as we could not find a sufficient 
blockchain to anchor on to. Instead, we were forced to spend the majority of our research time 
(with a requested no-cost extension) to design and implement a suitable public, permissionless 
blockchain, based on proofs of space and time. Demonstrating the security of the blockchain 
architecture proved far more difficult than simply devising a working construction and it took 
multiple iterations of design and implementation work before we came upon a fully secure 
protocol. The end result was a secure, working ​implementation​ of a novel blockchain protocol in 
less than 10,000 lines of Rust and described separately in a​ technical white paper​. 
 
Main Results: ​The main contribution of this research is the design and development of a 
fundamentally new Layer I blockchain protocol, known as the Subspace Network Ledger (SNL). 
Compared to standard Nakamoto consensus, this protocol has much higher transaction 
throughput, much faster confirmation latency, and is several orders of magnitude more energy 
efficient (measured in watts per transaction). Most importantly, since it is based on 
proofs-of-storage it far more decentralized and ASIC resistant — anyone who has a hard drive 
may participate in consensus. Remarkably, it maintains the same security guarantees as 
Nakamoto consensus, namely that no attacker may successfully propose a double spend 
transaction who control less less than one-half of the storage resources pledged to the network. 
Compared to other proposed proof-of-stake and proof-of-space protocols it remains 
fundamentally open and permissionless, players may come and go at any time and do not rely 
on any special purpose nodes to maintain the security of the protocol. 
 
Remaining Work: ​All that remains is to actually launch the blockchain as a public decentralized 
network, in order to demonstrate its security in the wild and show that sufficient demand exists 
for a secure storage protocol amongst space farmers. We plan to submit our final outcomes 
report within the next 90 days detailing the results of this final experiment. Following 
demonstrated security and traction we will be applying for a Phase II grant in Q4 of 2020, in 
order to complete and launch the Layer II network we originally set out to build.  
 
 
  

 

https://github.com/subspace/subspace-core-rust
https://drive.google.com/file/d/13ou7lrjrn06J4-6X9yncO0NcFgIDl6Gy/view?usp=sharing
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ORIGINAL PROPOSAL REVIEW  
 
Goals: ​We set out to create a decentralized database service that would allow developers to 
easily build web and mobile applications in which users would have full control and ownership 
over their personal data. The envisioned Subspace Network would allow anyone to monetize 
slack disk space on their personal computers or mobile devices, in the form of a native network 
utility token ​subspace credits​. Developers and end users would then be able to reserve space 
on the network, in the form a simple, persistent key-value store database, by paying a monthly 
storage cost, also using Subspace Credits. From a developer point of view, the experience 
would be very similar to using Google Firebase or Amazon Dynamo DB. However, instead of 
the data being stored within a corporate data center, it would be stored across a decentralized 
device network. End users would also be able to pay their own cost of storage, similar to how 
they are currently able to pay for Google Drive or Apple iCloud space, allowing them to have full 
control over their data, through their associated Subspace private keys, in the same way that a 
Bitcoin user has full control over their money, through their Bitcoin wallet. 
 
Architecture: ​At a high level, the original architecture called for a two-tiered network, divided 
between a core blockchain network and a distributed data network, similar to the distinction 
between the Bitcoin blockchain [1] and the Lightning network [2]. Layer I consisted of a 
Nakamoto style blockchain with consensus based on proof-of-space, known as the Subspace 
Ledger. The ledger would maintain the balance of all Subspace Credits, record smart storage 
contracts for the database protocol, and manage payments between storage hosts (device 
owners) and storage clients (developers and end users) in a fully autonomous fashion. Layer II, 
known as Subspace Database (SSDB), would then handle the actual data storage and retrieval, 
in a fully decentralized manner. SSDB called for a not-trivial technology stack including a 
WebRTC transport layer, a gossip network, a distributed hash table, a privacy-preserving 
cryptographic database schema, a proof-of-replication for storage, an ephemeral globally 
replicated hash table, and a byzaninte fault tolerant consensus algorithm to enforce 
membership uptime.  
 
Expected Key Challenges:  
 

1. Designing a novel WebRTC overlay network for Layer II that would allow for a 
low-latency reads and writes from SSDB across all expected host and client platforms. 

2. Implementing or adapting a proof-of-space blockchain for Layer I, to be developed by 
another research team, as opposed to designing one ourselves from scratch. 

3. Maintaining security against known attacks presented in the literature, primarily for Layer 
II, as we expected security of Layer I to be implied.  

4. Implementing in a manner that is host and client agnostic, by using a Javascript as the 
primary language, relying on its rich ecosystem for cross-platform development. 
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LAYER II NETWORK DESIGN  
  
Prior Work: ​Before submitting our Phase I proposal, we had created a proof-of-concept (PoC) 
implementation of the protocol in vanilla Javascript. This did not include a blockchain, nor was it 
designed to be secure against the full range of attacks. This PoC did demonstrate that data 
stored on a mobile device could be retrieved within a browser over a simple web app, using a 
WebRTC transport layer. The key lesson learned from this exercise was that Javascript was not 
the best language choice, as it is weakly typed and prone to quirky behaviors that are hard to 
debug. 
 
Development Framework:​ We began the research by starting over with a new codebase 
written in Typescript, a strongly typed version of Javascript with the tagline: ​Javascript that 
Scales​. We also adopted a modular approach, creating different repositories for different 
functionalities that could be swapped out between different implementation targets such as 
server, desktop, web, and mobile runtimes much more easily. This allowed us to focus more on 
running experiments and less on debugging errors.  
 
Sharding Schema: ​The next major change was to revise the sharding schema, or the strategy 
by which client data would be distributed across the host network in a way that was 
fault-tolerant, load-balanced, and efficiently retrievable. Our original sharding implementation 
used a simple random peer sampling (RPS) algorithm that would lead to imbalances over time, 
required long query times, and was not sybil resistant. After a substantial review of the literature 
on sharding (not to confused with ​blockchain​ ​sharding)​, we decided to implement a novel, 
hybrid approach that combined rendezvous hashing [3] and jump-consistent hashing [4].  
 
Basic Design: ​Let us begin by noting that client data is never stored on a single host. Instead 
the contract is divided into shards and each shard is replicated across many different hosts on 
the network. The default implementation calls for a 1 GB storage contract consisting of 10x100 
MB shards, with each shard replicated on four unique hosts. The end result is then 40 shards, 
each stored on a different host with 4 GB of total network space utilization. We now have two 
challenges for clients. First, given a read or write request, how do they know which shard the 
record is assigned to? Second, after the shard has been identified, how do they know which 
host on the network is currently storing the shard? 
 
Jump Hash: ​The first problem, assigning records to shards, can be efficiently solved using a 
jump-consistent hash. Given a fixed set of shards (defined in the storage contract) and a unique 
value (the unique record id), a jump consistent hash allows us to efficiently and deterministically 
compute the correct shard for the record. Moreover, as new records are added they are 
assigned to different shards uniformly, achieving near-perfect load balancing.  
 
Rendezvous Hash: ​The second problem, assigning shards to hosts, may be solved with a 
rendezvous hash. Once a host pledges space to the network, via a smart storage contract 
posted to the underlying blockchain, they must join the tracker, an eventually consistent, 
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in-memory data-structure maintained locally by each peer on the network. The tracker maintains 
the contact info for all hosts on the network and serves as the routing table for clients making 
read and write requests to the network. When a host joins the tracker it is assigned a shard set 
through a rendezvous hash algorithm. Rendezvous hash efficiently solves the distributed 
k-agreement problem — given the same version of the tracker, any peer on the network will 
arrive at the same set of hosts for a given shard. Rendezvous hash also allows for weighting 
different hosts by their space pledged so that shards are evenly balanced between hosts on the 
network. Critically, as the tracker changes, reassignment of shards between hosts is kept to the 
theoretical minimum. While all peers on the network (including clients) are required to maintain 
an up-to-date copy of the tracker, computing the rendezvous hash is extremely efficient.  The 
tracker itself is tiny, roughly 100 bytes per host (1 MB for 10k hosts) and may be further divided 
into multiple subnets for further scaling.  
 
Distributed Hash Table (DHT): ​With respect to the networking stack, we were able to simplify 
the design while making it more robust. We originally proposed combining a Kademlia DHT [5] 
with a gossip network [6] over a WebRTC transport. Further analysis (and devising a more 
efficient sharding schema) showed that a K-DHT was no longer necessary, as its role was 
already filled by the tracker. The critical insight was that the tracker could be used not only as a 
means to track the uptime of hosts for fair storage payments but also as a routing table, 
effectively serving as a highly replicated local hash table, similar to a single-hop DHT [7]. A 
K-DHT would only serve to increase the latency of reads and writes, as a query would need to 
hop across many hosts on the network before the destination was found. While this would allow 
for more scalability, the tracker alone could already scale to a large number of hosts while it 
could later be extended to be more distributed if scalability proved to be an issue.  
 
Transport Protocols: ​We did implement the WebRTC protocol with a gateway server that 
implemented the ICE protocol for NAT traversal for bootstrap nodes. However we learned that 
working with WebRTC is difficult and that many open connections are resource intensive on the 
client. Since WebRTC was only really needed for browser support, we extended the network 
module to also support TCP and UDP sockets, and then made the transport conditional on the 
relationship between two peers. For example, two desktop or mobile peers could connect much 
more efficiently over TCP, while a browser could only connect over WebRTC. While we initially 
attempted to reuse existing open source libraries for peer-to-peer networking, we found them to 
be either too general purposes, with a high degree of overhead, or custom-build for a different 
use-case. Instead we had to construct or own networking library, effectively from scratch. While 
this took significantly more time it did result in a very fast and efficient implementation. 
 
Initial Results: ​By this point in the research we had effectively solved the first research 
question, by devising and implementing the correct distributed systems architecture and 
transport protocols needed to make SSDB (Layer II) work as envisioned. This milestone was 
completed within the first three months of our grant period. We then turned to the much more 
challenging cryptographic problems of selecting and implementing a distributed ledger, a 
proof-of-space, and a proof-of-replication.  
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INITIAL LAYER I LEDGER DESIGN AND CRYPTO PRIMITIVES  
 
Mockchain: ​In the first iteration we began by implementing a very simple mock blockchain or 
mockchain​, to fully map the workflow and test the end-to-end system. At this point we were 
expecting to implement a chain based on the design for the Chia network [8], which alternates 
proofs-of-space and proof-of-time to achieve a mining dynamic like Bitcoin at a fraction of the 
electricity cost. A proof-of-space consensus chain was desired (as opposed to the more 
common proof-of-work and more popular proof-of-stake mechanisms) as it dovetailed nicely 
with the proof-of-space that the host was already required to produce in order to demonstrate 
that it had the storage needed to actually be a host on the network, which allowed it join the 
tracker. This would allow the host to retain the proof-of-space on its free storage capacity and 
use this to “farm” (participate in consensus) on the blockchain while simultaneously storing 
useful data for the network. Note that as storage on the Layer II network is load balanced, any 
host can only utilize as much space as the network itself utilizes — e.g. if the network is at 30% 
capacity than any individual host will only have 30% of its locally pledged space occupied with 
client data. The remainder of the space would then be filled with the proof-of-space which would 
secure the ledger and allow for further incentives and rewards through farming.  
 
Existing PoS Chains: ​At the time there was no code available for the Chia network nor was 
there a white paper that formally described the system design and security. Instead, Chia had 
published some rather abstract papers on their proof-of-space and proof-of-time, while their 
founder Bram Cohen had given several public talks that outlined the protocol at a high level. We 
set about to create a minimal implementation of their design using a naive a proof-of-space 
(insecure) with mock proofs-of-time based on simple random timeouts. The goal was to expend 
as little effort while retaining the essence of the system and fully expecting code to released in 
the near future. Note that two other competing protocols, Filecoin [9] and Spacemesh [10], were 
basically at the same stage of development at this time, while the only live proof-of-space 
blockchain, Burstcoin, had already been shown to have several fundamental security flaws [11]. 
 
Implementation: ​Even though the mockchain was an insecure, minimal implementation it took 
much more time than expected as we had to go back and study several of the fundamental 
properties of blockchains as we learned that much of our understanding proved to be more 
folklore than fact. While time consuming, this effort was useful in that it allowed us to reconsider 
the abstractions between the Layer I and Layer II network, specifically with respect to the 
distinction between immutable (permanent) and mutable (ephemeral) storage. The key insight 
was that we could implement the chain in such a way that the archival state of the chain could 
be stored immutably on SSDB in a distributed fashion, rather than requiring all full nodes 
(farmers or hosts) to store a full copy of the ledger. This allowed for massive horizontal scaling 
of ledger state in a way that was not possible with a Layer I network alone. Furthermore, we 
were able to combine the mockchain with the Layer II network and demonstrate that the system 
basically worked (though insecure).  
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CONCURRENT NON-RESEARCH ACTIVITIES 
 
User Research: ​In parallel with these research efforts we also sought to get early feedback 
from potential users on various aspects of the Subspace Protocol. We conducted over thirty 
customer interviews as part of the Beat the Odds Bootcamp program, mostly with protocol 
engineers and application developers. The key takeaway was that we had to focus on developer 
experience (DX), as the current landscape of crypto protocols was so hard to understand, poorly 
documented, and difficult to use by mainstream and decentralized developers alike. We then 
focused on refining our developer focused API and documentation over several follow up 
interviews and eventually decided on a ​simple API​ that was included in the first iteration of the 
protocol. 
 
Fundraising: ​Prior to applying for our Phase I grant we had raised $35k in funding from angel 
investors. While talking with investors we received many questions on our token economic 
policy and what kind of market dynamics we expected to see within the storage space. This led 
us to write a ​Token White Paper​ [12] which described a token distribution and fundraising plan, 
analyzed the underlying value of our network, and presented an appropriate decentralized 
governance model. Over the course of the grant we raised an additional $240k in equity 
investment from venture investors.  
 
BitBot Hardware: ​In our Phase I proposal we described a potential business model based on 
selling plug and play home electronic devices that could easily run the protocol. We began 
experimenting with ARM based single board computers, off the shelf hard disks and simple 3D 
printed enclosures. After devising a prototype that we could produce in small batches, we 
developed a simple software stack and were able to run the initial version of the protocol on this 
device. Based on demos and feedback to early users we decided to pivot slightly and modify the 
device to run existing crypto protocols, specifically Bitcoin and Ethereum. This was not as a 
miner with financial incentives, but a full node and wallet that simply provided trustless way to 
access the protocol. We setup a ​point of sale website​ and conducted a short 30 day marketing 
experiment to see if we could sell 50 devices to justify a small production run. We ran into many 
issues with payment providers delisting us as a scam and also being banned from advertising 
networks due to the crypto association. While we sold a few devices we came nowhere near our 
campaign goal. The key lesson learned was that very few people were willing to invest money in 
a crypto hardware product that had no direct financial incentives. This reinforced our view that 
the BitBot only made sense as a storage farmer for our network and we decided to postpone 
further development on monetization with hardware until we had the protocol fully operational.  
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PRIMARY RESEARCH PROBLEM 
 
Within the first six months of the proposed nine month research timeline we had 
 

1) Implemented and validated a basic version of the Layer II network (SSDB) 
2) Implemented and validated a mock version of the Layer I blockchain 
3) Gained valuable early feedback, conducted marketing experiments, and raised funding 

 
We now had to make a choice.  We could optimistically move forward with securing the Layer II 
network and fully implement across all host and client environments, hoping that a secure Layer 
I blockchain would be developed in the next three to six months that we could then integrate. 
Alternatively, we could pessimistically predict that such a blockchain would not be ready for 
some time, or may not actually be suitable for our Layer II network, and instead do the hard 
work and attempt to design our own. At the outset of the research we would have expected the 
second approach to be far beyond our technical abilities, but through the process of building the 
mockchain and implementing several new cryptographic primitives we now felt this was within 
our reach. We chose the latter.  
 
We began as we had with all other problems, with an in depth literature review of 
proofs-of-space, proofs-of-storage and storage based consensus mechanisms for blockchains. 
The goal was to mimic the Bitcoin model of Nakamoto consensus [1] as much as possible, 
mainly by keeping the protocol simple while maintaining the security threshold at one-half of 
network resources, with work being replaced by space. There were a few early proposal (circa 
2014) that we found noteworthy including the original Filecoin white paper [13] , Permacoin [14], 
and a proof-of-unique-blockchain-storage [15]. These proposals were all based on a 
proof-of-storage (useful data) vs a proof-of-space (random data). We followed this thread and 
stumbled across the idea of hourglass schemes [16] which was later re-stated as a 
proof-of-replication [17] by the Filecoin project. From these proposals and primitives we 
formulated a basic construction that eventually led to a simple, secure storage-based 
blockchain.  
 
In a nutshell, consensus would be based on proof-of-storage of the blockchain itself. Each new 
block would specify an audit for some piece of a past block. As all farmers would store the 
block, pieces would be qualitatively differentiated by having each farmer store a unique 
encoding of the block based on their identity. In order to prevent farmers from computing this 
on-demand (instead of ahead of time) the encoding would be inherently sequential and slow in 
the forward direction. This would result in each farmer storing as many unique replicas of the 
ledger as its disk space allowed and having consensus power proportional to its disk space. 
While the high level idea sounds simple enough, the implementation was extremely tricky. After 
much trial and error, we did work out the details and come across simple, secure, and scalable 
protocol. Fortunately, we recognized this would take more time than originally planned and filed 
a no cost extension adjusting our initial nine-month research timeline to an eighteen-month plan. 
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PRIMARY RESEARCH RESULTS  
 
The search for the correct construction played out over the next twelve months. Key questions 
included: defining the correct audit strategy, choosing the appropriate proof-of-replication, 
having the right notion of time, managing high-throughput chain growth with the right ledger data 
structure, and demonstrating the security of the protocol against all known attacks in the 
literature. The end result was a ​technical white paper​ [18] (revised many times) and two 
different implementations in code that eventually led to a working construction demonstrated 
over a test network.  
 
Slicing the Ledger: ​The first challenge involved defining the sampling strategy by which 
farmers could prove that they were storing one or more unique replicas of the archival history of 
the ledger. To simplify and normalize this process, the ledger is divided into an ever-growing set 
of constant sized (4096 byte) pieces, as each block may be a different size (based on the 
number of transactions) and we require uniform sampling. 
 
Single Piece Audits: ​The simplest and perhaps most straightforward choice is to audit exactly 
one piece, chosen at random, for each challenge. In effect, we are then sampling the replication 
factor of the ledger (under an assumption of load balanced replication). For example, if there are 
256 replicas of the ledger, then for each audit of a single piece, we should see 256 encodings 
sampled by the entire network. We may then measure the quality of the encoding by computing 
a tag, as a Hash-Based Message Authentication Code (HMAC) over the encoding and the the 
challenge. We can then measure the quality of the tag by comparing it to to a target that is 
adjusted in relation to the expected number of encodings and some desired mean quality. This 
audit strategy requires that for each challenge, every encoding of the audited piece must be 
read from disk and hashed. In other words, the computational work done for consensus is 
linearly proportional to the replication factor of the ledger. Likewise, the security is also linearly 
proportional to the replication factor, as the most obvious attack involves attempting to create 
more encodings on-demand than exist across the honest network. The efficacy of on-demand 
encoding depends heavily on the chosen proof-of-replication and the target delay parameter. 
We may ratchet up the security threshold by increasing the scope of the audit, or specifying 
more than one piece which may be used as a valid encoding for a challenge, at the cost of 
requiring more honest work for each challenge as well.  
 
Best Encoding Audits: ​Another option is to base the audits not on all encodings for a single 
piece, but for every encoding across the entire network. This may actually be done very 
efficiently if we hash each encoding and place the hash in a binary search tree, which is small 
enough to fit in main memory. We then find the closest encoded hash for a given challenge, 
measured by XOR distance or Hamming weight, with computational complexity logarithmic in 
the size of the plot, resulting in a single disk read for the highest quality encoding. Now the work 
done by the honest network is logarithmic in the space pledged, allowing it to scale gracefully as 
the network reaches many petabytes or exabytes of space, while the complexity of a brute-force 
on-demand encoding attack is proportional to the total space pledged by the honest network.  
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Compression Attacks: ​While the second approach is more elegant, it suffers from a subtle 
attack that proved difficult to resolve. The attack involves honestly pre-computing encodings but 
only retaining the encoded hashes stored withing the binary search tree. Note that while small 
enough to fit in RAM, these trees may also be stored on a Solid State Drive (SSD) which has 
low enough read latencies to not impose a meaningful delay on evaluation. Since the binary 
search tree is approximately 100x smaller than the plot itself, the attacker can leverage its 
storage by the same degree. During the audit process the attacker only has to identify the single 
best encoding across all of its trees and then re-derive that single piece on-demand. A 
motivated attacker, given sufficient pre-computation time, could employ this strategy to mount a 
51% attack with as little as 1% of the storage on the network. Moreover, any farmer could “mine” 
its plot and gain a share of the farming rewards out of proportion to the disk space pledged.  
 
Salted Hashes: ​The solution we eventually devised was actually quite simple. Note that we 
audit based on some encoded hashes, which are easy to re-derive for the honest node, who 
retains them on disk, while expensive to re-derive for the attacker, since they have been 
deleted. If we then periodically salt these encoded hashes with some random value that may not 
be predicted ahead of time, such as the hash of the last state block, we make it such that the 
cost of re-deriving hashes is negligible for the honest node, while very expensive for the 
attacker. The trick lies in finding the right value for this re-plotting window, which we plan to set 
as a daily interval until the network grows beyond a few petabytes, after which we will gradually 
ratchet up to a weekly interval.  
 
Proof-of-Replication: ​Another key challenge lay in selecting the correct Proof-of-Replication 
(PoR) for encoding itself. The ideal PoR would be based on a well-studied cipher that was 
inherently sequential in the forward direction, inherently parallelizable in the reverse direction, 
with an efficient and widely available hardware implementation. This led us to focus on the 
Advanced Encryption Standard (AES) [19] and the AES-NI hardware instruction set [20]. We 
wanted to ensure that an ASIC manufacturer could not devise a better instruction set that would 
give an attacker a meaningful advantage over the honest network, so we completed a ​detailed 
study of AES​ [21] on various hardware platforms including the CPU, GPU, FPGA, and ASIC. 
The basic takeaway was that it would be possible to build an ASIC that could be between three 
and six times faster than AES-NI, an acceptable security margin for our protocol. We also 
looked heavily at time-asymmetric permutations that require far less work to decode than 
encode, as this would improve the energy-efficiency of the network and the speed at which 
solutions could propagate across the network (as each solution has to be verified before 
forwarding). This led us to develop a custom permutation, heavily inspired by Sloth algorithm 
[22] (slow time-hashed puzzle) and essentially an application of an earlier modular square client 
puzzle [23]. In the end, we decided to use the Sloth-based permutation due to its superior 
decoding efficiency. The analysis of the ASIC resistance of Sloth boils down to the choice of the 
prime size and the degree to which parallel computation may speed up the evaluation time. For 
a 256 bit prime, that parallelism is already accounted for on moder x86 architectures, while still 
offering a 100x speedup. We also thwart known ASIC techniques by using a different 256 bit 
base prime for each index of the block cipher. 
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Notion of Time: ​In a proof-of-work blockchain such as Bitcoin, the time between blocks is a 
by-product of the proof-of-work. In a resource efficient blockchain such as proof-of-space or 
stake time has to be simulated. Burst, the first proof-of-space blockchain, handled this with a 
notion of deadlines, or time before which a block would not be recognized by the honest 
network. Spacemint (and most proof-of-stake protocols) instead use a notion of timeslots, which 
ends up creating more work for the honest network. Chia proposes using an actual 
proof-of-time, or a inherently sequential proof-of-work, in order to deal with the subtle yet 
devastating history rewriting attack. As we show later, Subspace resists the history rewriting 
attack, and this is not needed. Instead we chose to go with the simplest approach and simulate 
proofs-of-time, as Burst did. The difference is that we would rather have a short block time, as 
close to the network delay as possible, so as to have a higher transaction throughput and lower 
confirmation latency. This also significantly reduces the time that an attacker has to carry out a 
time-space trade-off attack by encoding on-demand. The result is we produce roughly three 
blocks per second, with up to 128 transactions per block, for a throughput of up to 500 
transactions per second on a single chain, with confirmation latency at K=18 of six seconds.  
 
Managing Chain Growth: ​The final problem was figuring out the right data structure to handle 
the small network delay and high block throughput such that all nodes would quickly converge 
to the same shared ledger history. We also had to account for the added problem of simulation, 
or that each node can try many different proofs to create a large tree and then choose the 
fastest (or highest quality) path through the tree. We do this my making a manageable degree of 
simulation (roughly 10) the default strategy and carefully prune branches of the block tree as 
new blocks are confirmed, resulting in a single longest chain [24]. We also experimented heavily 
with the Prism family [25, 26, 27] of protocols and explored the GHOST [28] heaviest sub-tree 
rule as well. In the end we decided that the simplest approach to stick with a single chain, since 
so much else of what we were doing was already radically different.  
 
Code Implementation: ​Our first attempt at the Ledger was implementing the mockchain within 
the SSDB project in Typescript. While a valuable learning exercise, it was clear that the 
complexity of a blockchain required a project entirely of its own. In the second attempt we 
implemented the Ledger as a​ stand-alone Typescript project​ and made steady progress for a 
while. However, as we moved further along with the implementation the it became more and 
more difficult to debug issues with the protocol. Even though Typescript provides strongly typed 
interfaces, Javascript itself is still a garbage collected language with automated memory 
management. We found that the overhead of the Javascript runtime paired with the opaqueness 
of the memory management paradigm led to many strange behaviors and memory leaks where 
the garbage collector was not freeing variables as expected. The end result was that the 
Typescript project would simply not run for a large plot or blockchain. Finally it became clear that 
we would need to write the Ledger in a systems language such as C, C++ or Rust. Much of the 
blockchain community has migrated to the Rust ecosystem, and for good reason. Rust provides 
automated memory management in a way that provides the efficiency of a language like C 
without the overhead of a garbage collector. The end result, after eighteen months of trial and 
error, was a working ​implementation​ in less than 10,000 lines of Rust. 
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LAYER I SECURITY SUMMARY 
 
Following Nakamoto consensus, no attacker who controls less than one-half of the physical 
storage resources dedicated to the network may produce a chain faster than the honest 
network. Likewise, block confirmation is probabilistic, and we may apply a k-deep confirmation 
rule based on an assumption of relative attacker power to determine a reasonable wait period 
before considering a block “confirmed”. This must be adjusted slightly to handle prediction 
attacks and weak clock synchronization.  
 
Time-Space Trade-Off Attacks: ​Since every encoding on the network is audited during each 
round of consensus, then even for a small network, an attacker may only gain a negligible 
advantage by plotting-on-demand. In other words, even a massively parallel attacker could not 
encode many pieces on demand within the block time, if relying on computation alone. 
 
Compression Attacks: ​An attacker may attempt to honestly pre-compute encodings and then 
retain only the encoded hashes for many different node ids, effectively compressing their plots 
by several orders of magnitude, in order to gain block rewards out of proportion to their storage 
power or mount a double-spend attack with less than one-half of the storage resources. We 
defend against these attacks by salting the encoded hashes with a random value, based on the 
archival state of the ledger, which updates at a regular interval. Now the attacker must 
continuously regenerate encodings in order to maintain their advantage, driving up the electricity 
costs drastically, while double spend attacks quickly become infeasible due to the massive 
computational resources needed to out-plot the network in such a short time interval. 
 
Long-Range Attacks: ​Proofs-of-time were proposed by Chia network to prevent the history 
rewriting attack on proof-of-space blockchains. Any such long-range attack on Subspace is 
constrained by the fact that all space plotted by the network is a commitment to the canonical 
archival state, in contrast with all proof-of-space blockchains were all plots are valid for any 
history. An attacker would have to quickly re-plot while generating the alternate history and 
simultaneously convince all honest nodes to abandon their plot and switch to the new plot. This 
allows us to use resource-efficient simulated proofs-of-time, removing the reliance on time lords 
and allowing the protocol to be truly decentralized. Note that this only requires weakly 
synchronized clocks and agreement on genesis time to prevent producing blocks into the future. 
 
Costless Simulation Attacks: ​Since proofs-of-replication are computationally cheap to 
evaluate for nodes who honestly pre-plotted, the rational strategy is to solve on every fork, or 
branch, of the pending block tree, to hedge ones bets. It has been shown that the maximum 
advantage for “simulating” different trees approaches ​e ​(Euler’s Number) and that 99% of this 
advantage is subsumed within the first ten simulations [8, 24]. Following these protocols, we 
make simulation the default behavior. We note that the balance attack [26] against this strategy 
is not feasible in our case as the block time is already at the network propagation delay. This 
means that any balance attacker would see a slower growth rate for blocks that it selectively 
reveals, making the balance attack ineffective. 
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KEY DELIVERABLES PRODUCED 
 
The following products can be seen as our ​proof-of-work ​for this research ;-) 
 
Subspace Database Network (Code): ​Q1 2019 ​ ​www.github.com/subspace/subspace  
 
The Layer II Database network implemented in Typescript, including the mock blockchain. This 
project could not be launched without a secure Layer I blockchain.  
 
Subspace Credit Primer (Paper):​ Q2 2019: ​G-Drive Link 
  
A token white paper describing the economics and market dynamics for the Subspace Network 
 
BitBot Marketing Experiments (Website): ​Q2 2019 ​www.subspace.store  
 
A plug-and-play personal storage device and full blockchain node for the Subspace Network, 
market tested as a full blockchain node for existing protocols. Experiment showed the market 
was too small to justify production due to a lack of financial rewards for users. 
 
Subspace Core (Code):  ​Q3 2019: ​www.github.com/subpsace/subspace-core  
 
Our first attempt at implementing a proof-of-unique-blockchain-storage based ledger in 
Typescript. This project had unresolved security issues and scaling challenges with Typescript.  
 
Beyond Bitcoin: The Subspace Network Ledger (Paper):​ Q4 2019:  ​G-Drive Link 
 
Summary of the key ideas for the Subspace Network Ledger, modeled after the Bitcoin white 
paper. This paper went through (and continues to go through) many revisions as we have 
improved on the architecture. 
 
AES Security Analysis (Paper):​ Q1 2020: ​G-Drive Link 
 
An in depth study of the potential hardware speedups for the Advanced Encryption Standard 
(AES) as this serves as the basis for our proof-of-replication and proofs-of-time. 
 
Subspace Core Rust (Code): ​Q2/3 2020  ​www.github.com/subspace/subspace-core-rust  
 
Our second and final attempt to create a novel blockchain, this time done in pure rust and based 
on lessons learned from the two previous attempts. We plan to go live with this implementation 
in the Q3 of this year. 
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REMAINING PHASE I ACTIVITIES 
 
During the roughly three months remaining until our Phase I outcomes report is due we plan to 
go live with the Subspace Ledger and establish a base of long-term users. We plan to focus on 
scaling the available storage on the network, improving the user experience and ensuring there 
is sufficient demand for space amongst developers (not just supply). Once we have a stable, 
secure implementation with a strong and growing user base we will be able to continue work on 
the originally planned Subspace Database (SSDB) as a Layer II network on top of the 
blockchain. 
 
Launching Mainnet: ​While we have proven out the core consensus mechanism and security 
properties of the Subspace Ledger we still need to add a few more basic features to make it a 
minimum viable product. Luckily we have already implemented all of these features in the earlier 
Typescript iteration so it is mostly a matter of porting over the remaining code and ensuring is 
correctly integrated into the new architecture. We expect to have this complete by Sep 1st 2020. 
 
Farmer Acquisition (Supply Side)​: The initial marketing challenge will be acquiring new users 
on the supply side (space farmers). We plan to focus on PC Gamers as our first target market 
as they have powerful machines (fast plotting), lots of free disk space, their machines are almost 
always online (desktop configuration) and they are often open to experimenting with cutting 
edge technology. To facilitate this we plan to reboot our web and social media presence around 
the narrative of the Subspace Ledger. We will also be setting up a Discord community chat 
server and Discourse forum for discussion of the protocol. We plan to onboard new farmers 
slowly and carefully, with a focus on continuous improvement based on user feedback. We will 
also be focused on establishing credibility within the open-source blockchain developer 
community and attempting to leverage their skills and expertise to continue to improve the 
protocol. 
 
Improving User Experience: ​Once the protocol goes live we expect that changes to the 
back-end consensus mechanisms will be minimal and plan to devote most of our efforts towards 
building out the front-end user experience. This includes moving from a Command Line to a 
Desktop App user interface, building out a web-based blockchain explorer and wallet, and 
getting listed on exchanges to provide liquidity for the token. 
 
Developer Acquisition (Demand Side)​: One way we plan to grow demand for the protocol 
token (beyond simple speculation) is building out an immutable storage API and a developer 
console that let developers use the ledger as a back-end for their applications, much like dApp 
state may be stored on the Ethereum blockchain, though at a much lower cost, since the 
storage is sharded.  More specifically developers will be able to submit put() transactions to the 
network that store encrypted data directly on the ledger. To ensure proper scalability, once the 
ledger exceeds the storage capacity of the average farmer, we must also implement a K-DHT 
for record retrieval as described in the technical white paper. 
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PLANNED PHASE II ACTIVITIES 
 
While we had originally planned to launch both a Layer I Blockchain and Layer II Storage 
network during the Phase I grant period, we were ultimately unable to do so. We were unable to 
rely on another project for this work and had to do it ourselves, taking up considerable time and 
doubling the proposed research timeline. Now that we have a working, secure Layer I chain we 
plan to re-scope our Phase II proposal to focus on the re-design, integration, and launch of the 
Layer II storage network (SSDB).  
 
Revised Layer II Design​: The current architecture for Layer II is over twelve months old. In that 
time, the field of distributed storage has advanced significantly as well as our understanding of 
the problem. We plan to start by reconsidering and revising key aspects of this architecture.  
First, we would like to make the design more generic and extensible. Instead of focusing on a 
decentralized database, we would like to focus on decentralized cloud services more generally. 
We can then design a framework for a database, a file-system, and a serverless function 
runtime that can co-exist on the same network, possibly with the same token. Second, the 
proofs-of-space for host pledges are susceptible to time-space trade-offs. They were designed 
for an earlier iteration where the blockchain was pure proof-of-space. We need to rethink this 
entire approach and select a more recent construction of a proof-of-space or proof-of-storage. 
Third, the sharding approach we have chosen sufferers from high communications complexity 
and heavy bandwidth usage. While we expect that it will work in the wild, we would prefer if it 
did so in a more efficient manner. From a scalability perspective we would also prefer to have a 
more formal design for integrating the DHT into the current tracker, or implementing it as a 
layered hierarchy of sub-networks.  
 
Formal Security Analysis: ​The latest iteration for the Layer II network is only secure against 
the most commonly known attacks and relies on informal proofs. Based on our challenges with 
provable security for our Layer I network, we expect that formal security for Layer II will prove to 
be very challenging and should be dealt with in the earliest stages (before writing code). It is 
easy to build something that appears to work only to learn later that it is susceptible to a subtle 
attack that requires significant re-work. Given the two year timeline required for moving the 
Bitcoin Layer II Network, Lightning, from proposal [2] to working securely in production, we 
expect to encounter similar challenges and must factor that into our Phase II timeline.  
 
Focus on Developer Experience: ​Whereas the go-to-market approach for the Layer I network 
is primarily a problem of supply, the challenge for Layer II will be demand. If we cannot ensure 
demand amongst developers for this service then it will be for nought. Our marketing 
experiments have shown that this demand exists, but the crux will be in presenting our protocol 
to developers in as simple a manner as possible. During customer interviews we found that 
there are many more traditional developers interested in experimenting with decentralized web 
technologies than we would have expected. The only thing holding them back is the mental load 
required to grasp the underlying protocol and the often poor user experience. We plan to focus 
on this problem throughout our Phase II research, not just at then end, as if an afterthought.  
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CONCLUSION 
 
Goals Review: ​Returning back to our original research goals, we now see that two out of four 
were completed successfully. First, we did design and implement a novel architecture for a 
Layer II Network, Subspace Database (SSDB). Second, we did implement a blockchain 
architecture based on proofs-of-space and time. However, since we were unable to implement 
an existing chain we had to do the hard work of researching, constructing, and analyzing the 
security of a new protocol ourselves. ​This proved to be the key technical challenge of our 
research​. It took significantly more time than we had originally allocated for the grant and has 
prevented us from yet completing the last two research goals. While we did complete an 
in-depth security analysis of the Layer I blockchain, we have not yet been able to do so for the 
Layer II network. Nor have we yet implemented this Layer II network across the range of host 
and client devices. We instead plan to focus on these last two tasks during our Phase II grant. 
 
Contributions: ​The main contribution of this research is the design and development of a 
fundamentally new Layer I blockchain protocol, known as the Subspace Ledger. Compared to 
standard Nakamoto consensus, this protocol has much higher transaction throughput, much 
faster confirmation latency, and is several orders of magnitude more energy efficient (measured 
in watts per transaction). Most importantly, since it is based on proofs-of-storage it far more 
decentralized and ASIC resistant — anyone who has a hard drive may participate in consensus. 
Remarkably it maintains the same security guarantees as Nakamoto consensus, namely that no 
attacker may successfully propose a double spend transaction who control less less than 
one-half of the storage resources pledged to the network. Compared to other proposed 
proof-of-stake and proof-of-space protocols it remains fundamentally open and permissionless, 
players may come and go at any time and do not rely on any special purpose nodes to maintain 
the security of the protocol.  
 
Feasibility and Broader Impacts: ​With respect to feasibility, we have learned much over the 
last eighteen months. From a technical perspective we believe the protocol to be fundamentally 
sound and secure. The challenges revolved more around composition and correct 
implementation of existing cryptographic primitives and techniques than in designing something 
fundamentally new. Regarding commercial feasibility, we now believe that a basic token 
appreciation strategy is the most viable path to commercial success for Subspace Labs. If the 
company owns a significant fraction of the tokens at launch and slowly divests itself of those 
tokens over time, this could prove to be a significant revenue stream if the network proves 
useful for users and developers. Finally, considering the massive energy expenditures required 
to power the Bitcoin network and cryptocurrencies generally, the broader impacts of this work 
may be an environmentally sustainable model for permissionless blockchains 
 
Next Steps: ​Over the next six months we will be focused on launching and growing the Layer I 
network. Once we can demonstrate traction in the wild we will return to the original goal of 
extending with the Layer II Network, and launch Subspace Database. 
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