

Deltares

Uncertainties in predicting barrier island morphodynamic response to hurricane impact

Influence of vegetation in XBeach

Ellen Quataert, Roel de Goede, Marlies van der Lugt, Ap van Dongeren

13 April 2023

NOPP Hurricane Coastal Impacts

- Better understanding and predictive ability of hurricane impacts, to protect coastal communities
 - Flooding
 - Property destruction and infrastructure loss
 - Erosion and barrier island breaching
- 10 teams
 - Meteo forcing (COAMPS-TC)
 - DEMs and land use
 - In situ observations
 - Remote sensing
 - Modelling

Predicting hurricane impact on barrier islands

- Using XBeach to predict morphological change of barrier islands (operationally)
- Known uncertainties in model skill due to (van der Lugt et al., 2019);
 - forcing conditions

wave angle wave mag surge zs bay

computed

Predicting hurricane impact on barrier islands

- Using XBeach to predict morphological change of barrier islands (operationally)
- Known uncertainties in model skill due to (van der Lugt et al., 2019);
 - forcing conditions
 - initial topo/bathymetry

Predicting hurricane impact on barrier islands

- Using XBeach to predict morphological change of barrier islands (operationally)
- Known uncertainties in model skill due to (van der Lugt et al., 2019);
 - forcing conditions
 - initial topo/bathymetry
 - parameterization of processes
 sediment transport parameters
 bed roughness by vegetation/land cover

 In this presentation: focus on uncertainties in XBeach predictive skill due to vegetation/land cover input and parameterization

Parameterization of bed roughness by vegetation

Vegetation plays a critical role in reducing overwash velocities, thereby retaining sediment on the subaerial dune.

Current approach in XBeach modelling:

- 1. Spatial variation of roughness
 - High resolution land-cover classification maps available
 - Convert Land Cover Classes to Manning's n roughness

Classification	NLCD class name	Manning's n
Sand	Open Water	0.02
Wetland Vegetation	Emergent Herbaceous Wetlands	0.045
Water	Open Water	0.02
Dune Grass	Grassland/Herbaceous	0.034
Woody Vegetation	Shrub/Scrub	0.05
Anthropogenic coverage	Developed – Low Intensity	0.05

Mattocks, C., Forbes, C., (2008). https://doi.org/10.1016/j.ocemod.2008.06.008.

Parameterization of bed roughness by vegetation

Vegetation plays a critical role in reducing overwash velocities, thereby retaining sediment on the subaerial dune.

Current approach in XBeach modelling:

- 1. Spatial variation of roughness
 - High resolution land-cover classification maps available
 - Convert Land Cover Classes to Manning's n roughness
- 2. Temporal variation of roughness
 - Under extreme conditions vegetation washes away or is buried

Hurricane Florence

13.5

* Buscombe, D., and Ritchie, A.C. 2018. Landscape Classification with Deep Neural Networks. https://doi.org/10.3390/geosciences8070244

13.2 13.4 13.6 13.8

longshore distance [km]

12.5

14.2 14.4 2.4 12.6 12.8

longshore distance [km]

Deltares

Hurricane Michael

Breach at the St. Joseph Peninsula

Modeled: post-storm

Manning's n = 0.02 - 0.05based on NLCD land cover data

3295.5 3295 3294.5 3294 3293.5 3295.5 3295 3294.5 3294 3293.5

Manning's n = 0.02 - 0.05based on NOPP/C-CAP Fusion Product USGS

Modeled: sed-ero

Hurricane Ian

Operational forecast of morphological impact SW Florida

~230 XBeach models for the sandy GoM coast

Hurricane lan

Operational forecast of morphological impact SW Florida

- ~230 XBeach models for the sandy GoM coast
- Sallenger regimes to rapidly show morphological impact *

* Stockdon, et al. (2012). National assessment of hurricane-induced coastal erosion hazards—Gulf Mexico: U.S.G.S Report

Hurricane Ian

Operational forecast of morphological impact SW Florida

Zoomin on Lover's Key

Hurricane lan

Operational forecast of morphological impact

- Zoomin on Lover's Key
 - Breaching is predicted
 - But seem to be overestimating morphological impact
- We suspect this is due to the dynamic roughness
 - Breaches are formed when water is flowing from the bay to the ocean
 - Root depth in dynamic roughness is at the default 0.5m

Takeaways

- incorporation of high-resolution land cover-based bed roughness has led to improvements in XBeach model skill, for multiple cases
- However, still uncertainties:
 - specification of appropriate Manning's n values for different vegetation types remains subjective
 - temporal variation of roughness: root depth sensitivity
 - Importance of land cover resolution, spatial distribution may depend on the applied technique

Next steps and ongoing work:

Data collected by NOPP-project teams will provide opportunity to validate and improve our (XBeach)
model results

Deltares

Uncertainties in predicting barrier island morphodynamic response to hurricane impact

Influence of vegetation in XBeach

Ellen Quataert, Roel de Goede, Marlies van der Lugt, Ap van Dongeren

13 April 2023