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ABSTRACT

Autoregressive (AR) automatic speech recognition (ASR) mod-
els predict each output token conditioning on the previous ones,
which slows down their inference speed. On the other hand, non-
autoregressive (NAR) models predict tokens independently and
simultaneously within a constant number of decoding iterations,
which brings high inference speed. However, NAR models gener-
ally have lower accuracy than AR models. In this work, we propose
AR pretraining to the NAR encoder to reduce the accuracy gap
between AR and NAR models. The experiment results show that
our AR-pretrained MaskCTC reaches the same accuracy as AR
Conformer on Aishell-1 (both 4.9% CER) and reduce the perfor-
mance gap with AR Conformer on LibriSpeech by relatively 50%.
Moreover, our AR-pretrained MaskCTC only needs single decoding
iteration, which reduces inference time by 50%. We also investigate
multiple masking strategies in training the masked language model
of MaskCTC.

Index Terms— Non-autoregressive ASR, autoregressive ASR,
MaskCTC, end-to-end speech recognition

1. INTRODUCTION

The performance of automatic speech recognition (ASR) has greatly
benefits from the rapid development of sequence-to-sequence mod-
eling. Many autoregressive (AR) ASR models [1, 2, 3, 4] from recent
studies have achieved superior performance in ASR tasks. However,
AR models predict each token one by one depending on the previ-
ously predicted ones. This conditional dependency makes inference
time proportional to output sequence length, which leads to slow in-
ference speed.

In contrast to AR ASR models, non-autoregressive (NAR)
ASR models are able to generate output tokens in parallel within
a constant number of decoding iterations. CTC generates frame-
wise input-output alignments based on the conditional indepen-
dence assumption between output tokens [5]. However, this as-
sumption degrades the performance of CTC. Some recent models
[6, 7, 8, 9, 10, 11] relax this assumption and make token predic-
tions based on intermediate decoding results. MaskCTC [9] masks
low-confidence tokens in a CTC output sequence and re-predicts
the masked tokens based on the observed high-confidence tokens.
Align-Refine [6] refines the CTC alignments iteratively using the
non-causal Transformer as the decoder.

In general, NAR models are outperformed by AR models in
terms of accuracy. To reduce this performance gap, some methods
are proposed to better handle the dependencies among tokens and
give more accurate length prediction. [12] has utilized pre-trained
wav2vec2.0 [13] and BERT [14] model to improve the recognition
performance of MaskCTC. [15] has designed a dynamic length pre-
diction algorithm to enable flexible length prediction of output se-

quence for MaskCTC. However, those methods either require exter-
nal acoustic and language models or have minor improvement on the
model performance. On the other hand, [16] has proposed knowl-
edge transfer and distillation from AR models to improve MaskCTC.
But it makes model training complicated and increases the compu-
tational complexity.

In this work, we propose AR pretraining to NAR encoder, aim-
ing to reduce the performance gap between AR models and NAR
models. To demonstrate the effectiveness of our methods, we im-
prove MaskCTC by using pretrained Conformer encoder from AR
models to initialize MaskCTC during training. To alleviate the train-
test condition mismatch, we also propose to use CTC outputs as
the decoder input directly during MaskCTC training with different
masking strategies. The proposed AR-pretrained MaskCTC reaches
the same performance as AR models on Aishell-1 benchmark and
greatly reduces its gap with AR models on LibriSpeech.

2. RELATED WORK

In this section, we first review the autoregressive (AR) ASR and
the non-autoregressive (NAR) ASR. We briefly introduce CTC and
MaskCTC as examples of NAR models.

We define end-to-end (E2E) ASR as a sequence mapping from
an input sequence X = (x1, x2, . . . , xT ) of length T , to a output
sequence Y = (y1, y2, . . . , yL) of length L, where xt is the acoustic
feature at time t and yl is the output token at position l.

2.1. Autoregressive (AR) ASR

AR ASR predicts each output token yl one by one in the left-to-right
order by conditioning on previously generated tokens y<l as shown
below:

P (Y |X) =

L∏
l=1

P (yl|y<l, X) (1)

2.2. Non-autoregressive (NAR) ASR

NAR ASR predicts output tokens in parallel by conditioning on in-
termediate decoding results and input X .

2.2.1. Connectionist Temporal Classification (CTC)

CTC generates frame-level alignments between input X and output
alignment A = {at ∈ V ∪ ϵ|t = 1, 2, . . . , T}, where V is the
vocabulary set and ϵ is a blank symbol. It bases on the conditional
independence assumption among all output tokens and predicts the
probability P (Y |X) by combining all possible paths as:



PCTC(Y |X) =
∑

A∈β−1(Y )

P (A|X)

=
∑

A∈β−1(Y )

T∏
t=1

PCTC(at|X)

(2)

where β−1(Y ) represents all possible alignments compatible
with Y.

To reach fast convergence and robust alignment, we use the hy-
brid CTC/attention architecture to train AR models [17]. The AR
objective is also known as the attention objective under this hybrid
architecture. The joint training objective is defined as follows with a
combination of Eq.(1) and Eq.(2):

LAR = λ logPCTC(Y |X) + (1− λ) logPatt(Y |X) (3)

where λ satisfies 0 ≤ λ ≤ 1.

2.2.2. MaskCTC

MaskCTC adopts an encoder-decoder architecture based on Trans-
former blocks [9, 1]. It applies CTC objective to encoder outputs
and uses the conditional masked language model (CMLM) as the de-
coder [18]. During training, a subset of ground truth tokens Ymask is
randomly masked by a special token ⟨MASK⟩. The CMLM decoder
is trained to predict Ymask based on the rest unmasked tokens Yobs

as follows:

Pcmlm(Ymask|Yobs, X) =
∏

y∈Ymask

P (y|Yobs, X) (4)

MaskCTC is trained with a joint CTC and mask-predict objec-
tive as formulated below:

LNAR =λ logPCTC(Y |X)+

(1− λ) logPcmlm(Ymask|Yobs, X)
(5)

During inference, we first obtain a CTC output through greedy
decoding. After collapsing the repetitive tokens and removing the
blank symbol, we mask tokens with posterior CTC probabilities
lower than the probability threshold Pthres. The remaining un-
masked tokens are passed to the CMLM decoder to generate the
masked tokens. The CMLM decoder gradually refills the CTC
output sequence within K decoding iterations, given all the high-
confidence tokens as bi-directional context.

Table 1. The character error rates (CER) (%) of CTC greedy search
and decoder output of different AED-based AR and NAR models on
Aishell-1 test set

Model Greedy CTC(%) Decoder(%)
–Autoregressive
AR Conformer 5.3 4.9
–Non-autoregressive
Conformer CTC (16-layers) 6.6 -
Conformer MaskCTC 5.4 5.2

3. AUTOREGRESSIVE PRETRAINING FOR
NON-AUTOREGRESSIVE ASR

In general, NAR ASR models are outperformed by AR models in
terms of accuracy. Multiple factors may contribute to this perfor-
mance difference. First, CTC makes the conditional independence
assumption among output tokens to predict all tokens in parallel. To
reduce the performance gap with AR models, MaskCTC relaxes the
conditional independence assumption and makes token predictions
based on a set of observed tokens from the intermediate output se-
quence. Second, NAR models cannot adjust output sequence length
after the initial prediction. For example, MaskCTC fixes the length
of an output sequence with that of the CTC output, making it hard
for the CMLM decoder to correct deletion and insertion errors in the
CTC output.

Since the encoder is common in both AR and NAR models, it
is worth investigating the effect of the encoder on the performance
gap between NAR and AR models. Given that we use the hybrid
CTC/attention architecture for all AR and NAR models, we can
use CTC outputs with greedy search to evaluate their encoders. As
shown in Table 1, we find that the CTC of AR Conformer performs
better than that of Conformer MaskCTC and pure CTC model. The
CER of greedy CTC outputs of AR Conformer is 5.3%, which is
0.1% better than that of MaskCTC and 1.3% better than that of the
pure CTC model. It implies that the encoder is trained more effi-
ciently under the AR objective.

Based on this observation, we propose AR pretraining for NAR
speech recognition in order to improve the performance of NAR
models. With better initialization using pretrained encoder from the
AR counterpart, we can train the encoder of MaskCTC to be more
powerful to capture context information from sequential data. It can
help improve the model performance by compensating the relaxed
conditional independence assumption made by MaskCTC. Further-
more, since encoder is a common component, other NAR models,
such as CTC[5] and Align-Refine [6], can also benefit from our AR
pretraining method.

3.1. Training CMLM decoder with CTC outputs

MaskCTC uses ground truth as decoder input during training while
using CTC greedy output sequence during inference. This is be-
cause, at the early stage of training, CTC contains so many errors
that makes it difficult to train the CMLM decoder. However, this
mismatch between training and testing conditions can degrade the
model performance. According to Table 1, the CTC of AR Con-
former has a CER of 5.3% using greedy search. It suggests that the
CTC greedy output from a pretrained AR model is accurate and reli-
able to a considerable extent. Therefore, we propose to use the CTC
greedy output as the decoder input directly to alleviate the train-test
condition mismatch. During training, if the length of a CTC output
sequence equals the length of the corresponding ground truth, we
will use the CTC output as the CMLM decoder input. Otherwise we
keep using the ground truth as the CMLM decoder input.

3.2. Masking strategies for CTC outputs

We propose two masking strategies to process CTC outputs as de-
coder inputs during training:

• Confidence Masking: Same as MaskCTC inference, we first
obtain a CTC output sequence by greedy search and then
mask a subset of CTC tokens that have confidence scores
lower than Pthres with the special symbol ⟨MASK⟩. We set



Table 2. Model comparison on CERs on Aishell-1
Model # of Params(M) Greedy CTC(%) Decoder(%)

–Autoregressive
AR Conformer 46.25 5.3 4.9
–Non-autoregressive
Conformer CTC (16 layers) 45.09 6.6 -
A-FMLM [11] - - 6.7
LASO-big [19] - - 6.4
CASS-NAT [7] 29.7 - 5.8
NAT-UBD [20] 29.7 - 5.5
CTC-enhanced [10] 29.7 - 5.9
AL-NAT [8] 71.3 - 5.3
Transformer MaskCTC (K=5) 30.4 5.9 5.4
Conformer MaskCTC (K=5) 46.25 5.4 5.2

+ AR Pretraining (K=5) 46.25 5.0 4.9
+ AR Pretraining (K=1) 46.25 5.0 4.9

+ CTC & Confidence Masking 46.25 4.9 4.9
+ CTC & Random Masking 46.25 4.9 4.9

a strict threshold Pthres to make more tokens masked during
training, which helps to get fast convergence.

• Random Masking: For each CTC output sequence of length
L, we decide the number of masked tokens N using a uni-
form distribution U(0, L) and then randomly replace N CTC
tokens with symbol ⟨MASK⟩ from the output sequence.

4. EXPERIMENTS

4.1. Datasets

We evaluate our proposed method on Aishell-1 Mandarin corpus
(178 hours) [21] and LibriSpeech English corpus (960 hours) [22].
For Aishell-1, a vocabulary size of 4,233 Chinese characters is used.
For LibriSpeech, a vocabulary size of 5,000 sub-word units is used.

4.2. Experimental setup

For ASR models in all tasks, we train Conformer encoders of 12
blocks and Transformer decoders of 6 blocks. In Aishell-1 exper-
iments, each attention layer in the encoder-decoder architecture
consists of 256 hidden units and 4 attention heads, and each feed-
forward layer has 2048 hidden units. The depth-wise convolutional
layers of Conformer have a kernel size of 15. In LibriSpeech experi-
ments, each self-attention layer has 512 hidden units and 8 attention
heads. The depth-wise convolutional layers of Conformer have a
kernel size of 31.

We use 80 dimensional mel-scale filterbank features for all the
models. SpecAugment [23] and speed perturbation [24] is applied
to the input data. Network parameters are trained with 50 epochs for
AR models and 100 epochs for NAR models using Adam optimizer
[25]. For AR models, we set warm-up steps to be 30,000 for Aishell-
1 and 40,000 for LibriSpeech. For NAR models, we set warm-up
steps to be 15,000 for both datasets. The hybrid CTC/attention ar-
chitecture [17] with a CTC weight of 0.3 are used for all models
during training.

The inference models are all generated by averaging the model
parameters of 10 epochs with the best validation accuracy. Some
detailed configurations for specific evaluated models are provided in
Section 4.3.

All the models are trained using ESPnet recipes [26]. We evalu-
ate the model performance without external language models.

Table 3. CER and RTF comparison between AR and NAR models on
Aishell-1

Model CER(%) RTF
–Autoregressive
AR Conformer (beam size=20) 4.9 0.779
–Non-autoregressive
MaskCTC (K=5) 5.4 0.012
Conformer CTC (Greedy Search) 6.6 0.003
AR-pretrained Conformer MaskCTC (Greedy CTC) 5.0 0.003
AR-pretrained Conformer MaskCTC (K=1) 4.9 0.006

4.3. Evaluated models

In our experiments, we compare the performances of three baseline
models: AR Conformer, Conformer CTC and MaskCTC. Detailed
model configurations for each baseline are given below.

• AR Conformer: An AR model trained with the joint CTC-
attention objective in Eq.(1). During inference, we use a de-
fault beam size of 20 for Aishell-1 and beam size of 60 for
LibriSpeech as suggested in [26].

• Conformer CTC: An NAR model simply trained with the
CTC objective. We use a 16-layer Conformer encoder to
match the model size with others. We apply CTC greedy
search for inference.

• Conformer MaskCTC: An NAR model trained with Eq.(5).
As defined in Section 2.2.2, we set the number of decoding
iteration K to 5 and threshold Pthres to 0.9 during inference.
To obtain CTC greedy output, we set Pthres to 0.0. With
AR pretraining, we use the encoder and CTC from the above
Conformer model for initialization. When using confidence
masking, we set Pthres to 0.99 for training.

5. RESULTS

In Table 2, we summarize the published results reported on Aishell-
1. It can be observed that a clear CER performance gap is present



Table 4. Model comparison on word error rates (WERs) for LibriSpeech.
Model # of Params(M) Enc. Layers Dec. Layers Greedy CTC(%) Decoder(%)

test-clean test-other test-clean test-other
–Autoregressive
AR Conformer 116.15 12 6 2.8 6.5 2.3 5.4
–Non-autoregressive
Transformer CTC [27] - 16 - 4.6 13.0 - -
Conformer CTC [28] 115.7 17 - 2.7 5.9 - -
Imputer [27] - 16 - - - 4.0 11.1
Align-Refine [6] - 12 6 4.6 11.5 3.6 9.0
CASS-NAT [7] - 12 - - - 3.8 9.1
AL-NAT [8] - 12 6 - - 3.2 7.4
Conformer MaskCTC [16] 115.0 12 6 - - 4.1 10.2

+ Knowledge Transfer [16] 115.0 12 6 - - 3.3 7.8
Conformer MaskCTC (K=5) 116.15 12 6 2.9 6.5 2.8 6.2

+ AR Pretraining (K=5) 116.15 12 6 2.6 5.8 2.5 5.7
+ AR Pretraining (K=1) 116.15 12 6 2.6 5.8 2.5 5.7

+ CTC & Confidence Masking 116.15 12 6 2.6 5.9 2.5 5.8
+ CTC & Random Masking 116.15 12 6 2.6 5.9 2.5 5.7

Table 5. CER and RTF comparison between AR and NAR models
on LibriSpeech test-other

Model CER(%) RTF
–Autoregressive
AR Conformer (beam size=60) 5.4 6.848
–Non-autoregressive
Conformer CTC (Greedy Search) 5.9 0.004
AR-pretrained Conformer MaskCTC (Greedy CTC) 5.8 0.004
AR-pretrained Conformer MaskCTC (K=1) 5.7 0.009

between AR and NAR baseline models. The AR model has the best
CER performance of 5.3% and 4.9% with CTC and decoder output
respectively. Compared with other reported NAR models, our Con-
former MaskCTC is a strong baseline, which gives a CER of 5.4%
and 5.2% using CTC and decoder output respectively. With our pro-
posed AR pre-training, it outperforms the AR model by 0.3% with
CTC output, and reaches the same CER performance with decoder
output when K = 1 is used. We do not observe any additional gain
when K > 1 is used with our proposed method, possibly due to
the more accurate CTC outputs with AR pretraining. This demon-
strates that our proposed method is effective in minimizing the CER
performance gap between AR and NAR models.

The CER and RTF performance are summarized in Table 3. The
RTF for the AR model is 0.779, which is the worst because each pre-
diction is conditional on the previous output tokens. Due to the paral-
lel token prediction nature of the NAR model, Conformer MaskCTC
with K = 5 gives a better RTF of 0.012. However, it has a worse
CER of 5.4% in comparison with 4.9% of the AR model. With
our proposed AR pretraining, the Conformer MaskCTC achieves the
same CER performance to the AR model even when K = 1 is used,
while the RTF is ∼130× better. In addition, we achieve another 2×
better RTF when CTC greedy decoding is used, while maintaining
similar CER performance.

Next, we evaluate our proposed idea on LibriSpeech. In Table
4, the decoder WER of test-clean and test-other decrease from 2.8%
to 2.5% and 6.2% to 5.7% respectively when AR pretraining is used,
in comparison to our NAR baseline. Similar improvement can also
be observed when greedy CTC decoding is used. This demonstrates
that our proposed idea outperforms other NAR models, including a
recent parallel work using knowledge transfer and distillation from
AR model [16]. We summarize the CER and RTF performance
among AR and NAR models for LibriSpeech in Table 5.

When training the CMLM decoder with CTC outputs, it only
brings a little improvement to CER on Aishell-1, yet a slight degra-
dation to WER on LibriSpeech. We hypothesise that the CTC out-
puts are close to the ground truth when AR pretraining is used, there-
fore it does not make a significant difference.

6. CONCLUSION

In this paper, we proposed AR pretraining to NAR speech recogni-
tion in order to reduce the performance gap between AR and NAR
ASR models. We demonstrated the effectiveness of the proposed
method by training MaskCTC with pretrained Conformer encoder
from AR models. The experiment results on Aishell-1 and Lib-
riSpeech showed that the AR-pretrained MaskCTC outperformed
other NAR baseline models and reached competitive performance to
AR Conformer models. It suggested that our AR pretraining method
improved the encoder and compensated the relaxed conditional in-
dependence assumption used by MaskCTC. We also investigated the
effect of using CTC outputs as decoder inputs for MaskCTC with
two masking strategies. Given no significant difference from this
method, we think it is sufficient to simply use ground truth as de-
coder inputs. Moreover, the AR-pretrained MaskCTC required only
one decoding iteration to reach the best accuracy, which improved
the inference latency considerably. Since the encoder is common
to many E2E NAR ASR models, proposed AR pretraining can be
applied to NAR models other than MaskCTC.
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