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OPTIMIZING ROCK 
STRENGTH 
MODELLING 

More accurate rock strength 
estimations allows for more stable 
blasting ore size, reduced blasting 
costs, improve slope stability in open 
pit mines, and reduced rockfall in UG 
mines.



STUDY CASE
GOLD DEPOSIT

Create a more accurate rock 
strength (blasting sensitivity) 
model to ensure more stable 
blasting performance.

➤ Reduce ore dilution and blasting cost by identifying 
easy-to-break material and reducing explosive usage 
when blasting this material. 

➤ Reduce occurrence of oversized ore by identifying 
hard-to-break material and increasing explosive 
usage when blasting this material.

MINE PROFILE 
• Gold epithermal deposit
• 775k drillholes/grade control samples
• Open pit mine in high rainfall climate

VALUE 
PREPOSITION

MAIN 
GOALS



STUDY CASE
GOLD DEPOSIT

Modelling Error 
Drillholes → Blocks
Deviation from test drillhole assays

EVALUATION 
METRICS

TYPES OF
ERRORS 1

Mapping Error 
Blocks → Blasting Sensitivity Index
Deviation from expected blasting 
sensitivity

2
Average BSI Deviation 
Modelled vs measured-by-proxy BSI
ARD = Abs(K(M(D)) – M(D))

ABD
Average BSI Deviation 
Predicted BSI vs Measured BSI
ARD = Abs(M(D) – BSI)

ABD
Recall of Blasting Sensitive Ore
Percentage of ore measured as undersized 
(<2.4), predicted as undersized.

Rec Soft 
[BSI < 2.4]

R^2
Chi-square
What is the goodness of fit between 
predicted and real BSID = drillhole data

K = spatial estimation typically through kriging
M(D) = blasting sensitivity mapping

Precision of Blasting Sensitive Ore
Percentage of ore predicted as undersized 
(<2.4), measured as undersized.

Prc Soft 
[BSI < 2.4]



STUDY CASE
GOLD DEPOSIT

BASELINE MODEL

The baseline estimate uses average logged rock quality index (RQD) as an estimate for blasting sensitivity.
0-2 = undersized drift-prone particle size post-blasting, 3 preferred particle size, 4-6 oversized particle size

Xth percentile strongest by RQD estimated as Xth percentile strongest by BSI
Ex: 90th percentile strongest RQD estimated as 90th strongest BSI

Baseline (#1): 
RQD as Proxy

Linear regression where BSI = A*RQD + b. A, b are 
computationally optimized via regression. 

Baseline (#2): 
RQD Linear Fit

The RQD estimate used an average of a mechanically tested rock strength and logged fracture-based rock quality. For simplicity, it is collected referred to as RQD.



STUDY CASE
GOLD DEPOSIT

BASELINE (#1) MODEL 
ANALYSIS

0.826

1. MODELLING ERROR 

ABD 1.162

2. MAPPING ERROR 

ABD

Using a percentile-based mapping from RQD to 
BSI produces poor fit and high average 
deviation.

-0.317R^2

85.4%Rec Soft
BSI < 2.4

52.7%Prc Soft
BSI < 2.4



STUDY CASE
GOLD DEPOSIT

BASELINE (#2) MODEL 
ANALYSIS

0.985

1. MODELLING ERROR 

ABD 0.883

2. MAPPING ERROR 

ABD

0.279R^2

41.3%Rec Soft
BSI < 2.4

68.2%Prc Soft
BSI < 2.4

Using a linear regression mapping from RQD to 
BSI produces lower deviation, better fit however 
this comes at a price of model avoiding 
predicting on extremes (very weak/strong rock).



STUDY CASE
GOLD DEPOSIT

LINEAR MODELS 

➤ Linear models are a useful starting point for any mapping function.

➤ The primary advantage of linear models over models with hard boundaries is that they are well equipped to 
handle impossible element ratios that may arise from using modelled grade as input

➤ We identify the best linear models that predict rock strength using 1,2, 3, & 4 features.

Best 3-Features 
Linear Model 

Best 1-Feature 
Linear Model 

Best 2-Features 
Linear Model 

Best 4-Features 
Linear Model 

RQD RQD ALTR
RQD ALTR

LITH OX

RQD ALTR

LITH



STUDY CASE
GOLD DEPOSIT

LINEAR MODELS 

0.985

1. MODELLING ERROR 

ABD

2. MAPPING ERROR 

0.883ABD 41.3%Rec 68.2%Prec 0.279R^2 0.967

1. MODELLING ERROR 

ABD

2. MAPPING ERROR 

0.867ABD 51.3%Prec 67.8%Rec 0.425R^2

BSI = λ1RQD + λ0 BSI = λ1RQD + Σ(λi *ALTERATION(i)) + λ0



STUDY CASE
GOLD DEPOSIT

LINEAR MODELS 

1.034

1. MODELLING ERROR 

ABD

2. MAPPING ERROR 

0.750ABD 59.1%Rec 69.7%Prec 0.461R^2 0.964

1. MODELLING ERROR 

ABD

2. MAPPING ERROR 

0.686ABD 64.7%Prec 77.0%Rec 0.539R^2

BSI = λ1RQD + Σ(λi *ALTERATION(i)) + Σ(λj *LITHO(j)) + λ0 BSI = λ1RQD+ λ2OX + Σ(λi *ALTERATION(i)) + Σ(λj *LITHO(j)) + λ0



STUDY CASE
GOLD DEPOSIT

STRATUM 
DECISION TREE MODEL 

➤ Stratum’s Decision Tree Model is a proprietary 
resource modelling-specific adaption of a decision 
tree-based machine learning technique.

➤ Random Model is based on the theory that the best 
estimate is an average estimate of several simple
boundaries/equations.

➤ Ex: predict recovery based on ALT, LITH, RQD, Ca then 
average the answer.

➤ Stratum adapts the standard Random Model 
technique by allowing two-way information exchange 
between modelling & mapping to reduce occurrence 
of impossible feature ratios (as verified by site team).

DECISION TREE ARCHITECTURE

DECISION TREE
PREDICTION



STUDY CASE
GOLD DEPOSIT

STRATUM 
DECISION TREE MODEL 

0.628

1. MODELLING ERROR 

ABD 0.529

2. MAPPING ERROR 

ABD

0.629R^2

68.0%Rec Soft
BSI < 2.4

78.1%Prc Soft
BSI < 2.4

Random model outperforms traditional 
methods in both modelling and mapping error 
by leveraging geological patterns both from 
logging and geochemistry.



STUDY CASE
GOLD DEPOSIT

COMPARISON

Stratum SATS Model Baseline #2 (RQD)



STUDY CASE
GOLD DEPOSIT

MODELS RESULTS  

0.282 0.144 

Modelling Error Mapping Error

0.216 (-23%) 0.126 (-13%)

0.223 (-21%) 0.122 (-15%)

0.264* (-6%) 0.114 (-21%) 

0.203 (-28%) 0.143 (0%)

SATS Tree 0.164 (-42%) 0.077 (-47%) 

Baseline #1 (RQD Proxy)

Baseline #2 (RQD Regression)

Linear 2-Feature

Linear 3-Feature

Linear 4-Feature

ARD Average Recovery Deviation by Model

SATS Decision Tree has a 47% mapping error reduction over baseline. 
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STUDY CASE
GOLD DEPOSIT

RQD^2 Log 
cp_AG/
cp_CA

Log 
cp_CA/
cp_PB

Log 
cp_CA/
cp_AS

ALT1INT COLOR1 LITHOLOGY OXIDATION ALTERATION cp_RQD

Feature Importance Analysis for Predicting Rock Strength

Notes : (1) cp = Composite 

TOP 10 FEATURES



STUDY CASE
GOLD DEPOSIT

RESULTS OVERVIEW  

LESS MAPPING ERROR 
by leveraging structural, multi-
element patterns in blasting 
sensitivity index mapping. 

40%

LESS MODELLING ERROR
due to reduced reliance on any one grade, ratio, or 
boundary as well ability to leverage higher density 
metal assays from RC drillholes.

35%

HIGHER RECALL OF SOFT ORE
78% of over-blasted material predicted 
as over-blasted prior to blasting 
compared to 40% with only RQD.

38%

LESS DEPENDENCE ON DIAMOND DRILLING
Ability to model blasting sensitivity from logging, assay data from RC chips 
rather than exclusively diamond drillholes (RQD, RS) allows for more of resource 
within measured/indicated confidence.



STRATUM MODELS 
HOW IT WORKS

We produce a continuously updating resource model (AI 
Model) that tells companies the location of minerals in 

the ground for cost-efficient extraction

1 Input existing mine data 
to neural network 2 AI learns geological patterns 

from historical data 3 Output 3D map of precise ore 
locations for clients

Lithology
Information

Metallurgy 
tests

Multielement
A/C DHH-BH



CONVOLUTIONAL NEURAL NETWORK
Successfully capture the spatial dependencies in an 
image through the application of relevant filters

Input 
(28x28x1)

Convolution 
layers(n) 

(24x24xn)

Kernel 
(5x5)

Pool 
layers(n) 

(12x12xn)

Max Pooling 
(2x2) 

Flatten layer

...

Fully Connected 
Layer

RELU Act Fn

Output Nodes

Feature Extraction Classification

STRATUM MODELS 
HOW IT WORKS



LOW RISK   – HIGH YIELD   – AI DRIVEN


