
TIMAX2

COMMAND PROGRAMMING

Software versions 3.9.x, 4.x.x, and 5.x.x March, 2019  

OutBoard Electronics Unit4 Church Meadows, Haslingfield Road, Barrington, Cambs CB22 7RG, UK

Ethernet Address Protocols
The TiMax unit receives ethernet UDP packets sent to its current IP address and to port 0xE7C3 (59,331).

When using default settings (i.e. no fixed-IP set), a TiMax unit during boot up uses the DHCP protocol to request a dynamically-assigned IP
address from a DHCP server on the local area network (often hosted within the network’s router). If no response is received from a DHCP
server, the unit will self-assign an unused IP address after a short delay. These methods enable the unit to acquire a unique IP address
without user intervention.

When IP addresses on a local area network are manually-managed, a fixed IP address can be assigned to a TiMax unit via the unit’s front
panel (or from the Information / Configuration window Hardware tab in software). When a fixed IP has been set, the unit does not use DHCP
and does not self-assign an address during boot up.

When launched, TiMax software discovers TiMax units on its local area network by broadcasting an “inquiry” packet to the TiMax port
(0xE7C3). Generally, a TiMax unit and the computer running the TiMax software must be on the same subnet for the packet to reach the
TiMax unit. (For example, if the subnet mask is “255.255.255.0”, addresses 192.168.1.33 and 192.168.1.123 are on the same subnet.) All
TiMax units which are reachable on the local network will reply to inquiry with a packet that contains the IP address of the unit. After
receiving this reply, the software thereafter transmits all packets directly to each TiMax unit using the unit’s IP address. Only the “inquiry”
packet is ever broadcast. The software broadcasts an inquiry packet periodically, so it knows when another TiMax unit joins the network.

If a local area network does not support broadcast messages, the “inquiry” method does not work. In this case, the unit should be set to a
fixed IP address and the connection made via the software’s “Connect at IP “ command (in the “Unit” menu). Once the fixed IP is entered,
the software can connect directly with the TiMax unit at that address without having to broadcast an inquiry packet.

Ethernet Commands
This section specifies transmission and formatting details for commands commonly used to control the TiMax2 SoundHub via the ethernet
port. These commands are a small subset of the total TiMax2 command set, but include all commands needed to build interfaces that
control levels, including mutes and solos, and that run cues.

The command formats specified in the table below comprise the data portion of a UDP packet. One TiMax2 command is sent per UDP
packet. Only UDP packets with valid IP address, port, CRC, IP checksum and UDP checksum are processed by the TiMax2 firmware.
(CRC generation is normally done in ethernet hardware. IP and UDP checksums are normally generated in the UDP socket software. Packet
programmers do not usually have to be concerned with these details.)

The first two bytes of command data are always 0x7D 0x00 (except the Inquiry command). This two-byte prefix is used to 32-bit align all
following data. The third and fourth bytes specify the TiMax2 command code. Command parameters occupy the bytes following the
command code. Multi-byte binary numbers are sent in big-endian format, as described in the following tables.

TiMax2 Command Programming software version 5.7.x	 "1

Ethernet Command Format Table All constant values are displayed in hexadecimal.

Command 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Group Level 7D 00 44 04 00 00 00 00 00 gn 00 00 am al

Group Solo 7D 00 5B 04 00 00 00 00 00 gn 00 00 00 0/1

Group Mute 7D 00 5A 04 00 00 00 00 00 gn 00 00 00 0/1

Input Level 7D 00 41 03 00 ch 00 00 rm rl 00 00 am al

Input Solo 7D 00 47 04 00 ch 00 00 00 0/1

Input Mute 7D 00 45 04 00 ch 00 00 00 0/1

Output Level 7D 00 42 04 00 ch 00 00 rm rl 00 00 am al

Output Solo 7D 00 48 04 00 ch 00 00 00 0/1

Output Mute 7D 00 46 04 00 ch 00 00 00 0/1

Mute All Outputs 7D 00 43 04 00 00 00 00 00 0/1

Stop Cues 7D 00 28 05 00 00

Go Cue 7D 00 03 04 00 00 nm nl d1 d2 00 00 00 00

Get IO Levels 7D 00 68 06 00 00

Get Solo Mute 7D 00 75 06 00 00

Get Status 7D 00 6F 06 00 00

Auto-update 7D 00 85 06 00 00 00 00 00 01 00 00 00 00

Inquiry 6E A7 00 04

Pause Playback 7D 00 23 04 00 00 00 00 00 clo 00 00 00 chi

Resume Playback 7D 00 22 04 00 00 00 00 00 clo 00 00 00 chi

Set Realtime Clock 7D 00 83 06 00 00 00 yr mh dy dow hr mn sc

Recall Image Def 7D 00 3E 04 00 00 ch nm nl

Panspace Point 7D 00 5F 02 00 ch 00 00 rm rl 00 00 xm xl

(continued) 00 00 ym yl 00 00 nm nl 00 00 ssm ssl

gn Group numbers are 0..31 (0x00..0x1F). Group number zero is normally labeled “1” to the user, etc.

am, al Amplitude is expressed in units of 0.1 dB, with an offset of 1000. Thus an amplitude value of 1000 is 0.0 dB.
The maximum amplitude value is 1100, which is +10.0 dB. An amplitude value of 900 is -10.0 dB. An amplitude
value of zero is off (minus infinity). The amplitude value occupies two bytes in the command, with the most
significant byte first. For example, the amplitude value for 0.0 dB is 1000, which in hex is 0x3E8, am would be
0x03 and al would be 0xE8.

rm, rl Ramps are expressed in units of milliseconds. The ramp value occupies two bytes in the command, with the
most significant byte first. For example, a one second ramp is 1000 milliseconds, which in hex is 0x3E8, rm
would be 0x03 and rl would be 0xE8.

ch Channel numbers are 0..63 (0x00..0x3F). Channel number zero is normally labeled “1” to the user, etc.

0/1 Solos and mutes are activated with a “1” and deactivated with a “0”.

TiMax2 Command Programming software version 5.7.x	 "2

nm, nl,
d1, d2

Valid cue numbers are in the range 1..65531. The cue number occupies two bytes in the command, with the
most significant byte first. For example, a cue number of 858, which in hex is 0x35A, nm would be 0x03 and nl
would be 0x5A. A cue number can have one or two decimal sub numbers, e.g. “858.3.12”. If these are unused,
d1 and d2 are set to zero. If d2 is in use (non-zero), then d1 is also in use. Sub numbers can go up to 255. The
entire four-byte number for cue 858.3.12, as an example, would be 0x03 0x5A 0x03 0x0C.

Auto-
update

An auto-update message requests the unit to send an update message whenever any externally-visible data
changes. In addition to the status reply formats specified below, update messages sent via auto-update include
delay settings, playback status, module settings, etc. When using auto-update, it is necessary to filter the
desired data out from all of the data that is sent. If an auto-update message is sent once every second or so,
update messages will continue to be sent. If no auto-update message is received after approximately 5
seconds, auto-update times out and no further messages are sent until another auto-update message is
received.

Inquiry Broadcast an Inquiry message to discover all TiMax units on a local network. An Inquiry reply will be sent by
every TiMax that is reachable on the network (i.e. on the same subnet).

clo, chi Pause Playback and Resume Playback operate on a range of playback channels. The first channel number (clo)
is the lowest channel of the range, and the second channel number (chi) is the highest channel of the range.
Channel numbers are 0..63 (0x00..0x3F). Channel number zero is normally labeled “1” to the user, etc. Pause
playback on all channels, for example, is 0x7D 0x00 0x23 0x04 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0x00 0x3F. Resume Playback has an effect on a channel only if that channel has an audio file loaded (for
example, a previously-triggered cue loaded and started playback on a channel, and a Pause Playback
command paused playback on that channel).

Setting
Real-
time
clock

All values are encoded in BCD: This is a C function for BCD: char bcd (int n) { return (((n/10) << 4) + (n % 10)); }
yr: year - 2000 e.g. 16 for the Gregorian calendar year 2016 (breaks in 2100, but byte before yr is in reserve)
mh: month: 1: January – 12: December
dy: day of month: 1 – 31
dow: day of week: 1: Monday – 7: Sunday
hr: hour: 0 – 23
mn: minute: 0 – 59
sc: second: 0 – 59

Recall
image

The image definition number occupies two bytes in the command, with the most significant byte first. For
example, to recall image definition 300, which in hex is 0x12C, nm would be 0x01 and nl would be 0x2C. The
ramp time used is set in the system preset (Tracking Recall Image Definition Ramps).

TiMax2 Command Programming software version 5.7.x	 "3

	  

xm, xl,
ym, yl,
nm, nl,
ssm, ssl

Panspace point command parameters are: channel, ramp, x coordinate, y coordinate, inclusion range and
subspace number. Panspace point coordinates are expressed in values from 0 to 2896. The firmware calculates
an interpolation based on all the distances from the panspace point to all the image definitions in the panspace.
Other than channel, which is a single byte, each parameter occupies two bytes in the command, with the most
significant byte first. For example, an X coordinate of 1126, which in hex is 0x466, xm would be 0x04 and xl
would be 0x66.

Only image definitions within the inclusion range of the point are included in the interpolation (except that the two
closest image definitions are always included). The inclusion range parameter is sent as an inverse inclusion
distance. The inclusion range is displayed in the user interface as a number between 1 and 100. To generate the
parameter (nm, nl) for the Panspace Point command, this range number is multiplied by the maximum
coordinate value 2896 then divided by 100. The result is the radius of the inclusion range circle in panspace
coordinates. Then the maximum value of an unsigned 16-bit number, 0xFFFF, is divided by the inclusion circle
radius to get the inverse distance. As an example, for an inclusion range number of 5, the radius is 145.
0xFFFF / 145 is 452, which in hex is 0x1C4, so nm would be 0x01 and nl would be 0xC4.

The subspace number specifies the subspace that the panspace point should reference. A subspace in the
TiMax software contains a user-defined subset of the complete set of image definitions that have been placed
on the image definition layer of the panspace. If no subspaces have been defined, then there is only one
subspace: the default “All” subspace which always contains the complete set. In this case the subspace
number should be zero. If subspaces have been defined, then the show file XML should be opened and the
subspace list located (search on <subspaces>). With one subspace defined, it looks something like this:
<subspaces>Space 1,All</subspaces>. The list is in the order of subspace number, starting at zero. In this
case, “Space 1” is subspace zero and “All” is subspace 1.

TiMax2 Command Programming software version 5.7.x	 "4

Ethernet Status Reply Formats All constant values are hexadecimal.

1. Amplitude is expressed in units of 0.1 dB, with an offset of 1000. Thus an amplitude value of 1000 is 0.0 dB. The maximum amplitude
value is 1100, which is +10.0 dB. An amplitude value of 900 is -10.0 dB. An amplitude value of zero is off (minus infinity). The amplitude
value occupies two bytes in the response, with the most significant byte first. For example, the amplitude value for 0.0 dB is 1000,
which in hex is 0x3E8, am would be 0x03 and al would be 0xE8.  
 
The structure of the Get IO Levels data, beginning at byte 7, is expressed in C language syntax as follows (note all short and int values
are in big-endian byte-order; short is 16-bit and int is 32-bit)  
 
struct { 
 short analogSourceLevel[64]; //(0..1000)  
 short moduleSourceLevel[64]; //(0..1000)  
 short playbackSourceLevel[64]; //(0..1000)  
 short inputGainLevel[64]; //(0..1100) 
 short outputGainLevel[64]; //(0..1100)  
 short imageDefinitionNumber[64]; //(0..512) 
 int groupLevel[32]; //(0..1100)  
 char unused[14];  
 };  
Note that the group levels are expressed as 4-byte integers, in big-endian byte-order.

2. The structure of the solo /mute data has not changed from the original TiMax2 firmware.  
Input and output channel mute / solo data is returned as one byte of data per channel. Each byte contains a code in the range 0..7.
Each of the three bits in use encodes mute / solo state information as follows: (1 is on and 0 is off) 
 bit 0: mute 
 bit 1: solo  
 bit 2: solo-muted. A channel is solo-muted when any other input / output channel is soloed. 
Group channel mute / solo data is returned as one byte of data per channel. Each byte contains either a zero or a one (1 is on and 0 is
off). 
 
The structure of the Get Solo Mute data, beginning at byte 7, is expressed in C language syntax as follows: 
 
struct { 
 char inputChannels[64]; 
 char outputChannels[64]; 
 char groupMute[32]; 
 char groupSolo[32];  
 };

Reply 1 2 3 4 5 6 7 size

Get IO Levels 7D 00 68 06 00 00 am1 al1 … … … 6+896
+14

Get Solo Mute 7D 00 75 06 00 00 ms2 ms2 … … … 6+192

Inquiry 7D 00 6E A7 00 04 IP3 IP3 … … …

Get Status 7D 00 6F 06 00 00 fr4 fr4 … … … 6+256

TiMax2 Command Programming software version 5.7.x	 "5

3. The structure of the returned Inquiry data, beginning at byte 7, is expressed in C language syntax as follows: (note all short and int
values are in big-endian byte-order; short is 16-bit and int is 32-bit)  
 
struct { 
 int IPaddress;  
 short inputChannels; 
 short outputChannels; 
 char designName[24];  
 char firmwareVersion[4];  
 char firmwareDateTime[16]; 
 char serialNumber[8];  
 char unitName[32];  
 … 
 };

TiMax2 Command Programming software version 5.7.x	 "6

4. The structure of the returned Status data, beginning at byte 7, is expressed in C language syntax as follows: (note all short and int values
are in big-endian byte-order; short is 16-bit and int is 32-bit)  
 
struct { 
 int freeIOQueueEntries; //count of free IO queue entries 
 int freeIOQueueLWM; //low water mark - free IO queue entries
 int timerQueueEntries; //number of entries on the timer queue
 int workQueueEntries; //number of entries on the work queue
 int midi1QueueEntries; //number of entries on the MIDI 1 TX queue
 int midi2QueueEntries; //number of entries on the MIDI 2 TX queue
 int currentTime; //current clock (millisecond count from power on)
 int showClock; //show clock
 int showMemoryUsage; //show memory usage
 int cpuUtilization; //cpu utilization in percent
 int enetCmdMsgs; //ENET cmd string messages received
 int enetCmdMsgsOK; //ENET good cmd string messages received
 int enetCmdMsgsBad; //ENET invalid cmd string messages received
 int midi1RxMsgs; //MIDI port 1 messages received and passed to handler
 int midi1RxMsgsOK; //MIDI port 1 good messages received (unused)
 int midi1RxMsgsBad; //MIDI port 1 bad messages received
 int midi2RxMsgs; //MIDI port 2 messages received and passed to handler
 int midi2RxMsgsOK; //MIDI port 2 good messages received (unused)
 int midi2RxMsgsBad; //MIDI port 2 bad messages received
 int midi1TxMsgs; //MIDI port 1 messages transmitted
 int midi2TxMsgs; //MIDI port 2 messages transmitted
 int unitTemperature; //unit temperature, degrees C
 int taskNoBufferErrors; //task no buffer errors
 int showQueueEntries; //number of entries on the show queue
 int activePlaybackChannels; //number of active playback channels
 int stalledPlaybackBlocks; //blocks not sent waiting for HDD
 char cueClockRunning; //cue clock running
 char showClockRunning; //show clock running
 char graphicInShow; //show contains a graphic file
 char unused;
 int diskRequestQueueCount; //count of entries in disk request queue
 int freeDiskRequestEntries; //number of free DRPBs
 int freeDiskRequestQueueLWM; //number of free DRPBs low water mark
 int badDiskRequestCount; //count of bad disk manager requests
 int GPI_Pins; //current state of GPI port pins
 int bootDelay; //programmed boot up delay, seconds
 int diskReads; //disk read count
 int diskWrites; //disk write count
 int receivedPackets; //received ethernet packet count
 int transmittedPackets; //transmitted ethernet packet count
 int ethernetNoBufferErrors; //ethernet receive no buffer errors
 int ethernetRxOverrunErrors; //ethernet receive overruns
 int ethernetTxBufferAllocations; //ethernet transmit buffer allocations
 int ethernetRxCRCErrors; //ethernet receive CRC errors
 int ethernetRxChecksumErrors; //ethernet checksum errors
 int zeroConfigAttempts; //zero configuration attempts
 int ethernetRxNonOctetErrors; //ethernet receive non-octet errors
 int currentBackupFileNumber; //backup number (0: no backups pending)
 int ethernetRxTooLargeErrors; //ethernet receive packet too large errors
 int cueClock; //cue sequence clock
 int ethernetRxTruncatedErrors; //ethernet receive truncated receive errors
 int showFileFormatErrors; //count of show file format errors
 int numberOfLiveCommands; //entries in the live commands list for show
 char realTimeString[23]; //real time display string
 char batteryLow; //real time clock battery low
 char incomingMTCrunning; //incoming MTC running and valid
 char incomingMTCframeRate; //incoming MTC frame rate bits (0..3)
 char incomingMTChours; //incoming MTC hours
 char incomingMTCminutes; //incoming MTC minutes
 char incomingMTCseconds; //incoming MTC seconds

TiMax2 Command Programming software version 5.7.x	 "7

 char incomingMTCdframes; //incoming MTC frames
 char MTCGeneratorRunning; //MTC generator running
 char MTCGeneratorFrameRate; //MTC generator frame rate type (0..3)
 char MTCGeneratorHours; //MTC generator hours
 char MTCGeneratorMinutes; //MTC generator minutes
 char MTCGeneratorSeconds; //MTC generator seconds
 char MTCGeneratorFrames; //MTC generator frames
 int currentShow; //file number of currently loaded show (0 means none)
 int currentCueNumber; //current cue number (last cue to be triggered)
 int numberOfLiveCues; //entries in the live cues list
 int DHCPLeaseTime; //DHCP lease time
 int incomingMTCtime; //incoming MTC in milliseconds
};

(For cue number format, see Go Cue, above, bytes 7 through 10.)

TiMax2 Command Programming software version 5.7.x	 "8

MIDI Commands
This section specifies TiMax2 SoundHub MIDI commands. The TiMax2 responds to a subset of standard MIDI commands (MSC and sysex
strings are ignored). MIDI commands are received over the two ‘MIDI IN’ ports on the rear panel of the TiMax2. Some commands are only
received on one or the other port, others are received over either port.

MIDI Command Format Table All constant values in hexadecimal
Command Port MIDI Message Type 2nd byte 3rd byte

Set Group Level 1 Controller (Bx)1 Group2 0..1F Amplitude3 0..7F

Image Definition Recall 2 Controller (Bx)1 Channel4 0..63 Image Definition 0..7F

Trigger Cue either Note On (9n)5 trigger setting Amplitude > 40

Trigger Cue either Program Change (Cn)5 trigger setting none

1 The MIDI channel number is ignored. The range 0xB0..0xBF is valid as the first byte for controller message.

2 Group numbers are 0..31 (0x00..0x1F). Group number zero is normally labeled “1” to the user, etc.

3 Amplitude is expressed in the standard MIDI range 0..7F. This is mapped onto the native TiMax amplitude range 0..1100.

4 TiMax channel numbers are 0..63 (0x00..0x3F). Channel number zero is normally labeled “1” to the user, etc.

5 Cues are triggered using either Note On or Program Change messages. The MIDI message to trigger a particular
cue is set in the trigger section of the cue editor in the TiMax2 software by specifying (1) either Note On or Program
Change, (2) the MIDI channel number and (3) the value in the second byte of the MIDI message. The MIDI channel
number (0x00..0x0F) is the lower four bits of the first byte of the MIDI message (‘n’ in the table). A Program Change
message is two bytes in length. A Note On message has a third byte which can be any value greater than 64
(0x40).

TiMax2 Command Programming software version 5.7.x	 "9

