In-Context Retrieval-Augmented Language Models

Ori Ram∗ Yoav Levine∗ Itay Dalmedigos Dor Muhlgay Amnon Shashua Kevin Leyton-Brown Yoav Shoham
AI21 Labs
{orir,yoavl}@ai21.com

Abstract

Retrieval-Augmented Language Modeling (RALM) methods, that condition the LM on relevant documents from a grounding corpus during generation, have been shown to significantly improve language modeling while also providing a natural source attribution mechanism. Existing RALM approaches focus on modifying the LM architecture in order to facilitate the incorporation of external information, significantly complicating deployment. This paper proposes an under-explored alternative, which we dub In-Context RALM: leaving the LM architecture unchanged and prepending grounding documents to the input. We show that in-context RALM which uses off-the-shelf general purpose retrievers provides surprisingly large LM gains across model sizes and diverse corpora. We also demonstrate that the document retrieval and ranking mechanism can be specialized to the RALM setting to further boost performance. We conclude that in-context RALM has considerable potential to increase the prevalence of LM grounding, particularly in settings where a pretrained LM must be used without modification or even via API access. To that end, we make our code publicly available.1

1 Introduction

Recent advances in language modeling (LM) have dramatically increased the usefulness of machine-generated text across a wide range of use-cases and domains (Brown et al., 2020). However, the mainstream paradigm of generating text with LMs bears inherent limitations in access to external knowledge. First, it is not coupled with any source attribution and it may include factual inaccuracies or errors (Maynez et al., 2020; Huang et al., 2020).

Moreover, in order to incorporate up-to-date information that the LM has not seen during training, it must be retrained. A promising approach for addressing the above is Retrieval-Augmented Language Modeling (RALM), grounding the LM during generation by conditioning on relevant documents retrieved from an external knowledge source. RALM systems include two high level components: (i) document retrieval, or selecting the set of documents upon which to condition; and (ii) document reading, or determining how to incorporate the selected documents into the LM generation process.

Leading RALM systems introduced in recent years tend to be focused on altering the language model architecture (Khandelwal et al., 2020; Borgeaud et al., 2022; Zhong et al., 2022; Levine et al., 2022c; Li et al., 2022). Notably, Borgeaud et al. (2022) introduced RETRO, featuring document reading via nontrivial modifications that require further training to the LM architecture, while using an off-the-shelf frozen BERT retriever. Al-
though the paper’s experimental findings showed impressive performance gains, the need for changes in architecture and dedicated retraining has hindered the wide adoption of such models.

In this paper, we show that substantial gains can also be made by adapting the document selection mechanism to the task of language modeling, making it possible to achieve many of the benefits of RALM while working with off-the-shelf LMs, even via API access. Specifically, we propose a simple but powerful RALM framework, dubbed in-context RALM (presented in Section 3), which employs a zero-effort document integration mechanism: we simply prepend the selected documents to the LM’s input text (Figure 3).

Section 4 describes our experimental setup. To show the wide applicability of our framework, we performed LM experiments on a suite of five diverse corpora: WikiText-103 (Merity et al., 2016), RealNews (Zellers et al., 2019), and three datasets from The Pile (Gao et al., 2021): ArXiv, Stack Exchange and FreeLaw. We use open-source LMs ranging from 110M to 66B parameters (from the GPT-2, GPT-Neo and OPT model families).

In Section 5 we evaluate the application of off-the-shelf retrievers to the In-Context RALM setting, finding in this minimal effort setting that In-Context RALM led to LM performance gains equivalent to increasing the LM’s number of parameters by $2 \sim 3 \times$ across all of the text corpora we examined. In Section 6 we investigate methods for adapting document ranking to the LM task, a relatively under-explored RALM degree of freedom. Our adaptation methods range from using a small LM to perform zero-shot ranking of the retrieved documents, up to training a dedicated bidirectional reranker by employing self-supervision from the LM signal. These methods lead to further gains in the LM task corresponding to an additional size increase of $2 \times$ in the LM architecture. As a concrete example of the gains, a 345M parameter GPT-2 enhanced by in-context RALM outperforms a 762M parameter GPT-2 when employing an off-the-shelf BM25 retriever (Robertson and Zaragoza, 2009), and outperforms a 1.5B parameter GPT-2 when employing our trained LM-oriented reranker (see Figure 1). For large model sizes, In-Context RALM is even more effective: In-Context RALM with an off
the-shelf retriever improved the performance of a 6.7B parameter OPT model to match that of a 66B parameter OPT model (see Figure 2).

We believe that in-context RALM can play two important roles in making RALM systems more powerful and more prevalent. First, given its simple reading mechanism, in-context RALM can serve as a clean probe for developing document retrieval methods that are specialized for the LM task. These in turn can be used to improve both in-context RALM and other more elaborate RALM methods that currently leverage general purpose retrievers. Second, due to its compatibility with off-the-shelf LMs, in-context RALM can help drive wider deployment of RALM systems.

2 Related Work

RALM approaches can be roughly divided into two families of models: (i) nearest-neighbor language models (also called kNN-LM), and (ii) retrieve and read models. Our work belongs to the second family, but is distinct in that it involves no further training of the LM.

Nearest Neighbor Language Models The kNN-LM approach was first introduced in Khandelwal et al. (2020). The authors suggest a simple inference-time model that interpolates between two next-token distributions: one induced by the LM itself, and one induced by the k neighbors from the retrieval corpus that are closest to the query token in the LM embedding space. Zhong et al. (2022) suggest a framework for training these models. While they showed significant gains from kNN-LM, the approach requires storing the representations for each token in the corpus, an expensive requirement even for a small corpus like Wikipedia. Although numerous approaches have been suggested for alleviating this issue (He et al., 2021; Alon et al., 2022), scaling any of them to large corpora remains an open challenge.

Retrieve and Read Models This family of RALMs creates a clear division between document retrieval and document reading components. All prior work involves training the LM. We begin by describing works that use this approach for tackling downstream tasks, and then mention works oriented towards RALM. Lewis et al. (2020) and Izacard and Grave (2021) fine tuned encoder–decoder architectures for downstream knowledge-intensive tasks, where the encoder is trained to read the documents. Izacard et al. (2022b) explored different ways of pretraining such models, while Levine et al. (2022c) pretrained an autoregressive LM on clusters of nearest neighbors in sentence embedding space. Levine et al. (2022a,b) showed competitive open domain question-answering performance by prompt-tuning a frozen LM as a reader. Guu et al. (2020) pretrained REALM, a retrieval augmented bidirectional, masked LM, later fine-tuned for open-domain question answering. The work closest to this paper—with a focus on the language modeling task—is RETRO (Borgeaud et al., 2022), which modifies an autoregressive LM to attend to relevant documents via chunked cross-attention, thus introducing new parameters to the model. Our In-Context RALM differs from all prior works in this family of models in two key aspects:

- We use off-the-shelf LMs for document reading without any further training of the LM.
- We focus on how to choose documents for improved LM performance.

3 Our Framework

3.1 In-Context RALM

Language models define probability distributions over sequences of tokens. Given such a sequence x_1, \ldots, x_n, the standard way to model its probability is via next-token prediction:

$$p(x_1, \ldots, x_n) = \prod_{i=1}^n p(x_i | x_{<i}),$$

where the conditional probabilities are modeled by employing a causal self-attention mask (Radford et al., 2018). Notably, leading LMs such as GPT-2 (Radford et al., 2019), GPT-3 (Brown et al., 2020), OPT (Zhang et al., 2022) or Jurassic-1 (Lieber et al., 2021) follow this simple parameterization.

Retrieval augmented language models (RALMs) add an operation that retrieves one or more documents from an external corpus C, and condition the above LM predictions on these documents. Specifically, for predicting x_i, the retrieval operation from
FIFA World Cup 2026 will expand to 48 teams. World Cup 2022 was the last with 32 teams, before the increase to __
48 in the 2026 tournament.

Figure 3: An example of in-context RALM: we simply prepend the retrieved document before the input prefix.

C depends on its prefix: $R_C(x_{<i})$, so the most general RALM decomposition is: $p(x_1, \ldots, x_n) = \prod_{i=1}^{n} p(x_i|x_{<i}, R_C(x_{<i}))$. In order to condition the LM generation on the retrieved document, previous RALM approaches used specialized architectures or algorithms (see §2). In-Context RALM refers to the following specific, simple method of concatenating the retrieved documents within the Transformer’s input prior to the prefix (see Figure 3), which does not involve altering the LM weights θ:

$$p(x_1, \ldots, x_n) = \prod_{i=1}^{n} p_\theta(x_i|\[R_C(x_{<i}); x_{<i}\]),$$

where $[a; b]$ denotes the concatenation of strings a and b.

Since common Transformer-based LM implementations support limited length input sequences, when the concatenation of the document and the input sequence exceed this limit we remove tokens from the beginning of x until the overall input length equals that allowed by the model. Because our retrieved documents are passages of limited length, we have enough context left from x (see §4.3).

3.2 RALM Design Choices

We detail below two practical design choices often made in RALM systems. In §5, we investigate the effect of these in the setting of In-Context RALM.

Retrieval Stride While in the above formulation a retrieval operation can occur at each generation step, we might want to perform retrieval only once every $s > 1$ tokens due to the cost of calling the retriever, and the need to replace the documents in the LM prefix during generation. We refer to s as the retrieval stride. This gives rise to the following In-Context RALM formulation (which reduces back to Eq. 2 for $s = 1$):

$$p(x_1, \ldots, x_n) = \prod_{i=0}^{n-1} \prod_{j=1}^{s} p_\theta(x_{s i+j}|\[R_C(x_{<s i}); x_{<s i+j}\]),$$

(3)

where $n_s = n/s$ is the number of retrieval strides.

Retrieval Query Length While the retrieval query above in principle depends on all prefix tokens $x_{<s i}$, the information at the very end of the prefix is typically the most relevant to the generated tokens. If the retrieval query is too long then this information can be diluted. To avoid this, we restrict the retrieval query at stride i to the last ℓ tokens of the prefix, i.e., we use $q_i^{s, \ell} := x_{s i-\ell}, \ldots, x_{s i-1}$. We refer to ℓ as the retrieval query length. Note that prior RALM work couples the retrieval stride s and the retrieval query length ℓ (Borgeaud et al., 2022). In §5, we show that enforcing $s = \ell$ degrades LM performance. Integrating these hyper-parameters into the In-Context RALM formulation gives

$$p(x_1, \ldots, x_n) = \prod_{i=0}^{n-1} \prod_{j=1}^{s} p_\theta(q_i^{s, \ell}|\[R_C(q_i^{s, \ell}); x_{<s i+j}\]),$$

(4)

4 Experimental Details

We now describe our experimental setup, including all models we use and their implementation details.
4.1 Datasets

We evaluated the effectiveness of in-context RALM across five diverse datasets. The first is WikiText-103 (Merity et al., 2016), which has been extensively used to evaluate RALMs (Khandelwal et al., 2020; He et al., 2021; Borgeaud et al., 2022; Alon et al., 2022; Zhong et al., 2022). Second, we chose three datasets spanning diverse subjects from The Pile (Gao et al., 2021): ArXiv, Stack Exchange and FreeLaw. Finally, we also investigated RealNews (Zellers et al., 2019), since The Pile lacks a corpus focused only on news (which is by nature a knowledge-intensive domain).

4.2 Models

Language Models We performed our experiments using the four models of GPT-2 (110M–1.5B; Radford et al. 2019), three models of GPT-Neo and GPT-J (1.3B–6B; Black et al. 2021; Wang and Komatsuzaki 2021) and eight models of OPT (125M–66B; Zhang et al. 2022). All models are open source and publicly available.

We elected to study these particular models for the following reasons. The first four (GPT-2) models were trained on WebText (Radford et al., 2019), with Wikipedia documents excluded from their training datasets. We were thus able to evaluate our method’s “zero-shot” performance when retrieving from a novel corpus (for WikiText-103). The GPT-Neo and OPT models brought two further benefits. First, they allowed us to investigate how our methods scale to models larger than GPT-2. Second, the fact that Wikipedia was part of their training data allowed us to investigate the usefulness of in-context RALM for corpora seen during training. We observe that the helpfulness of such retrieval has been demonstrated for previous RALM methods (Khandelwal et al., 2020) and has also been justified theoretically by Levine et al. (2022c).

We ran all models with a maximum sequence length of 1,024, even though GPT-Neo and OPT models support a sequence length of 2,048. In preliminary experiments, we did not witness degradation in their ability to leverage the retrieved documents when using sequence lengths of 2,048, and we capped them at a sequence length of 1,024 in order to facilitate more direct comparison between all models.

Retrievers We experimented with both sparse (word-based) and dense (neural) retrievers. We used BM25 (Robertson and Zaragoza, 2009) as our sparse model. For dense models, we experimented with (i) a frozen BERT-base (Devlin et al., 2019) followed by mean pooling, similar to Borgeaud et al. (2022); and (ii) the Contriever (Izacard et al., 2022a) and Spider (Ram et al., 2022) models, which are dense retrievers that were trained in unsupervised manners.

Reranking When training rerankers (Section 6.2), we initialized from RoBERTa-base (Liu et al., 2019).

4.3 Implementation Details

We implemented our code base using the Transformers library (Wolf et al., 2020). We based our dense retrieval code on the DPR code repository (Karpukhin et al., 2020).

Retrieval Corpora For WikiText-103, we used the Wikipedia corpus from Dec. 20, 2018, standardized by Karpukhin et al. (2020) using the preprocessing from Chen et al. (2017). To avoid contamination, we found and removed all 120 articles of the development and test set of WikiText-103 from the corpus. For the remaining datasets, we used their training data as the retrieval corpus. Similar to Karpukhin et al. (2020), our retrieval corpora consist of non-overlapping passages of 100 words.
(which translate to less than 150 tokens for the vast majority of passages). Thus, we truncate our retrieved passages at 256 tokens when input to the models, but they are usually much smaller.

Retrieval For sparse retrieval, we used the Pyserini library (Lin et al., 2021). For dense retrieval, we applied exact search using FAISS (Johnson et al., 2019).

5 The Effectiveness of In-Context RALM with Off-the-Shelf Retrievers

We now empirically show that despite its simple document reading mechanism, in-context RALM leads to substantial LM gains across our diverse evaluation suite. We begin in this section by investigating the effectiveness of off-the-shelf retrievers for in-context RALM; we go on in §6 to show that further LM gains can be made by tailoring document ranking functions to the LM task.

The experiments in this section provided us with a recommended configuration for applying in-context RALM: applying a BM25 retriever that receives \(ℓ = 32 \) query tokens, with a retrieval frequency of every \(s = 4 \) tokens (\(ℓ \) and \(s \) are defined in §3). Table 1 shows for the GPT-2 models that across all the examined corpora, employing In-Context RALM with an off-the-shelf retriever improved LM perplexity to a sufficient extent that it matched that of a 2–3× larger model. Figure 2 shows for the the OPT models that this improvement trend holds across all model sizes up to 66B parameters, for both WikiText-103 and RealNews datasets. Table 3 in the Appendix shows a similar trend for the GPT-Neo and GPT-J models.

5.1 BM25 Outperforms Off-the-Shelf Neural Retrievers in Language Modeling

We experimented with different off-the-shelf general purpose retrievers, and found that the sparse (lexical) BM25 retriever (Robertson and Zaragoza, 2009) outperformed three popular dense (neural) retrievers: the self-supervised retrievers Contriever (Izacard et al., 2022a) and Spider (Ram et al., 2022), as well as a retriever based on the average pooling of BERT embeddings that was used in the RETRO system (Borgeaud et al., 2022). We conducted a minimal hyper-parameter search on the query length \(ℓ \) for each of the retrievers, and found that \(ℓ = 32 \) was optimal for BM25 (Figure 6), and \(ℓ = 64 \) worked best for all dense retrievers (Figures 8, 9, 10).

Figure 4 compares the performance gains of in-context RALM with these four general-purpose retrievers. The BM25 retriever clearly outperformed all dense retrievers. This outcome is consistent with prior work showing that BM25 outperforms neural retrievers across a wide array of tasks, when applied in zero-shot settings (Thakur et al., 2021).

5.2 Frequent Retrieval Improves Language Modeling

We investigated the effect of varying the retrieval stride \(s \) (i.e., the number of tokens between consecutive retrieval operations). Figure 5 shows that LM performance improved as the retrieval operation became more frequent. This supports the intuition that retrieved documents become more relevant the closer the retrieval query becomes to the gener-
Table 1: Perplexity on the test set of WikiText-103, RealNews and three datasets from the Pile, with and without using the top-scored passage retrieved by BM25. All models share the same vocabulary, thus token-level perplexity (token ppl) numbers are comparable. For WikiText we follow prior work and report word-level perplexity (word ppl). *Result is not consistent with Radford et al. (2019), please see Footnote 2.

<table>
<thead>
<tr>
<th>Model</th>
<th>Retrieval</th>
<th>Reranking</th>
<th>WikiText-103</th>
<th>RealNews</th>
<th>ArXiv</th>
<th>Stack Exch.</th>
<th>FreeLaw</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>word ppl</td>
<td>token ppl</td>
<td>token ppl</td>
<td>token ppl</td>
<td>token ppl</td>
</tr>
<tr>
<td>GPT-2 110M (S)</td>
<td>–</td>
<td>–</td>
<td>37.5</td>
<td>21.3</td>
<td>12.0</td>
<td>12.8</td>
<td>13.0</td>
</tr>
<tr>
<td></td>
<td>BM25 §5</td>
<td>–</td>
<td>29.6</td>
<td>16.1</td>
<td>10.9</td>
<td>11.3</td>
<td>9.6</td>
</tr>
<tr>
<td></td>
<td>BM25</td>
<td>Zero-shot §6.1</td>
<td>28.6</td>
<td>15.5</td>
<td>10.1</td>
<td>10.6</td>
<td>8.8</td>
</tr>
<tr>
<td></td>
<td>BM25</td>
<td>Predictive §6.2</td>
<td>26.8</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>GPT-2 345M (M)</td>
<td>–</td>
<td>–</td>
<td>26.3</td>
<td>15.7</td>
<td>9.3</td>
<td>8.8</td>
<td>9.6</td>
</tr>
<tr>
<td></td>
<td>BM25 §5</td>
<td>–</td>
<td>21.5</td>
<td>12.4</td>
<td>8.6</td>
<td>8.1</td>
<td>7.4</td>
</tr>
<tr>
<td></td>
<td>BM25</td>
<td>Zero-shot §6.1</td>
<td>20.8</td>
<td>12.0</td>
<td>8.0</td>
<td>7.7</td>
<td>6.9</td>
</tr>
<tr>
<td></td>
<td>BM25</td>
<td>Predictive §6.2</td>
<td>19.7</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>GPT-2 762M (L)</td>
<td>–</td>
<td>–</td>
<td>22.0</td>
<td>13.6</td>
<td>8.4</td>
<td>8.5</td>
<td>8.7</td>
</tr>
<tr>
<td></td>
<td>BM25 §5</td>
<td>–</td>
<td>18.1</td>
<td>10.9</td>
<td>7.8</td>
<td>7.8</td>
<td>6.8</td>
</tr>
<tr>
<td></td>
<td>BM25</td>
<td>Zero-shot §6.1</td>
<td>17.6</td>
<td>10.6</td>
<td>7.3</td>
<td>7.4</td>
<td>6.4</td>
</tr>
<tr>
<td></td>
<td>BM25</td>
<td>Predictive §6.2</td>
<td>16.6</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>GPT-2 1.5B (XL)</td>
<td>–</td>
<td>–</td>
<td>20.0*</td>
<td>12.4</td>
<td>7.8</td>
<td>8.0</td>
<td>8.0</td>
</tr>
<tr>
<td></td>
<td>BM25 §5</td>
<td>–</td>
<td>16.6</td>
<td>10.1</td>
<td>7.2</td>
<td>7.4</td>
<td>6.4</td>
</tr>
<tr>
<td></td>
<td>BM25</td>
<td>Zero-shot §6.1</td>
<td>16.1</td>
<td>9.8</td>
<td>6.8</td>
<td>7.1</td>
<td>6.0</td>
</tr>
<tr>
<td></td>
<td>BM25</td>
<td>Predictive §6.2</td>
<td>15.4</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

5.3 A Contextualization vs. Recency Tradeoff in Query Length

We also investigated the effect of varying ℓ, the length of the retrieval query for BM25. Figure 6 reveals an interesting tradeoff and a sweet spot around a query length of 32 tokens. Similar experiments for dense retrievers are given in App. B. We conjecture that when the retriever query is too short, it does not include enough of the input context, decreasing the retrieved document’s relevance. Conversely, excessively growing the retriever query deemphasizes the tokens at the very end of the prefix, diluting the query’s relevance to the LM task.

6 Improving In-Context RALM with LM-Oriented Reranking

Since in-context RALM uses a fixed document reading component by definition, it is natural to ask whether performance can be improved by specializing its document retrieval mechanism to the LM task. Indeed, there is considerable scope for improvement: the previous section considered conditioning the model only on the first document retrieved by the BM25 retriever. This permits very limited semantic understanding of the query, since BM25 is based only on the bag of words signal. Moreover, it offers no way to accord different degrees of importance to different query tokens, such as recognizing that later query tokens are more relevant to the generated text.

In this section, we focus on choosing which document to present to the model, reranking the top k documents returned by the BM25 retriever. Figure 7 shows the large potential for improvement among the top 16 documents returned by the BM25 retriever. Specifically, in Section 6.1, we show per-
formance gains across our evaluation suite obtained by using an LM to perform zero-shot reranking of the top-k BM25 retrieved documents (results in third row for each of the models in Table 1). Then, in Section 6.2, we show that training a specialized bidirectional reranker of the top-k BM25 retrieved documents in a self-supervised manner via the LM signal can provide further LM gains (results in forth row for each of the models in Table 1).

6.1 LMs as Zero-Shot Rerankers

We used language models as document rerankers for the In-Context RALM setting. Formally, for a query q consisting of the last ℓ tokens in the prefix of the LM input x, let $\{d_1, ..., d_k\}$ be the top k documents returned by BM25. For retrieval iteration i, the text for generation is $y := x_{si+1}, ..., x_{si+8}$. Ideally, we would like to find the document d_{j^*} that maximizes the probability of the text for generation, i.e.,

$$ j^* = \arg \max_{j \in [k]} p(y|x_{\leq si}, d_j). \quad (5) $$

However, at test time, we do not have access to the tokens of y. Instead, we used the last ℓ prefix tokens, which are available at test time. Formally, we define a hyper-parameter s' that determines the number of the prefix tokens by which to rerank, choosing document $d_{j'}$ such that

$$ j' = \arg \max_{j \in [k]} p_{\phi}(x_{si-s'+1}, ..., x_{si}|x_{\leq (si-s')}^s, d_j). \quad (6) $$

The main motivation is that since BM25 is a lexical retriever, we want to incorporate a semantic signal induced by the LM. Also, this reranking shares conceptual similarities with the reranking framework of Sachan et al. (2022) for open-domain question answering, where our prefix $x_{\leq si}$ can be thought of as their “question”.

Note that our zero-shot reranking does not require that the LM used for reranking is the same model as the LM used for generation (i.e., the LM in Eq. (6), parameterized by ϕ, does not need to be the LM in Eq. (2), parameterized by θ). This observation unlocks the possibility of reranking with smaller (and thus faster) models, which is important for two main reasons: (i) Reranking k documents requires k forward passes; and (ii) it allows our methods to be used in cases where the actual LM’s log probabilities are not available (for example, when the LM is accessed through an API).

Results

A minimal hyper-parameter search on the development set of WikiText-103 revealed that the optimal query length is $s' = 16,^4$ so we proceed with this value going forward. Table 1 shows the results of letting the LM perform zero-shot reranking on the top-16 documents retrieved by BM25 (third row for each of the models). Table 2 in the appendix shows that a small LM (GPT-2 117M) can be used to re-rank the documents for larger LMs (GPT-2 345M-1.5B), with roughly the same performance as having each LM perform reranking for itself, supporting the applicability of this method for LMs that are only accessible via an API. Indeed, it is evident that reranking yielded consistently better results than simply taking the first result returned by the retriever.

6.2 Training LM-dedicated Rerankers

Next, we trained a reranker to choose the documents from the top-k documents retrieved by BM25. We refer to this as Predictive Reranking, since the reranker learns to choose which document will help in predicting the upcoming text. For this process, we assume availability of training data from the target corpus. Our reranker is a classifier that gets a document d_j (for $j \in [k]$) and a prefix $x_{\leq si}$, and produces a scalar $f(x_{\leq si}, d_j)$ that should resemble the relevance of d_j for the continuation of $x_{\leq si}$.

We then normalize these relevance scores:

$$ p_{\text{rank}}(d_j|x_{\leq si}) = \frac{\exp(f(x_{\leq si}, d_j))}{\sum_{j'=1}^k \exp(f(x_{\leq si}, d_{j'}))}, \quad (7) $$

and choose the document d_j such that

$$ j = \arg \max_{j \in [k]} p_{\text{rank}}(d_j|x_{\leq si}). \quad (8) $$

Training Process

Our reranker was a fine-tuned RoBERTa-base (Liu et al., 2019) that trained as follows. Let $x_{\leq si}$ be a prefix we sample from the training data, and $y := x_{si+1}, ..., x_{si+8}$ be the text for generation upcoming in its next stride. We run BM25 on the query q derived from $x_{\leq si}$ and get k documents $\{d_1, ..., d_k\}$. For each document d_j, we then run the LM to compute $p_\theta(y|x_{\leq si}, d_j)$ according to Eq. 2. The loss function we use to train the reranker follows previous work (Guu et al., 2020; Lewis et al., 2020):

$$ -\log \sum_{j=1}^k p_{\text{rank}}(d_j|x_{\leq si}) \cdot p_\theta(y|x_{\leq si}, d_j). \quad (9) $$

4We experimented with $s' \in \{4, 8, 16, 32\}$.
Note that unlike these two works, we train only the reranker (P_{rank}), while the LM weights θ are kept frozen.

Results Table 1 shows the result of training a predictive reranker on the training set of WikiText-103. Specifically, we train it with data produced by GPT-2 110M (S), and test its effectiveness for all GPT-2 models. We observed significant gains obtained from Predictive Reranking. For example, the perplexity of GPT-2 110M (S) improved from 29.6 to 26.8, and that of GPT-2 1.5B (XL) improved from 16.6 to 15.4. This trend held for the other two models as well. Overall, these results demonstrate that training a reranker with domain-specific data was more effective than zero-shot reranking (Section 6.1). Note that these results—while impressive—still leave room for further improvements, compared to the top-16 BM25 Oracle results (see Figure 7). Moreover, the Oracle results themselves can be improved by retrieving $k > 16$ documents via a BM25 retriever, or by training stronger retrievers dedicated to the RALM task. We leave this direction for future work.

7 Discussion

Retrieval from external sources has become a common practice in knowledge-intensive tasks (such as factual question answering, fact checking, and more; Petroni et al. 2021). In parallel, recent breakthroughs in LM generation capabilities has led to LMs that can generate useful long texts. However, factual inaccuracies remain a common way in which machine-generated text can fall short, and lack of direct provenance makes it hard to trust machine generated text. This makes language modeling both a promising and an urgent new application area for knowledge grounding, and motivates promoting RALM approaches. Prior research has already investigated RALM, of course, but it is not yet widely deployed. One likely reason is that existing approaches rely upon fine-tuning the LM, which is typically difficult and costly, and is even impossible for LMs which are accessible only via API access.

This paper presented the framework of *in-context RALM*, enabling frozen, off-the-shelf LMs to benefit from retrieval. We demonstrated that substantial performance gains can be achieved by using general purpose retrievers, and showed that additional gains can be achieved by tailoring the document selection to the LM setting.

Several directions for further improvement remain for future work. First, this paper considers only the case of prepending a single external document to the context; adding more documents could drive further gains. Second, we retrieved documents every fixed interval of s tokens during generation, but see potential for large latency and cost gains by retrieving more sparsely, such as only when a specialized model predicts that retrieval is needed. Finally, Ratner et al. (2022) recently propose a method of parallelizing the input sequence when generating with off-the-shelf LMs. This can potentially be applied in order to show retrieved documents in parallel to the prefix, rather than before it, possibly improving the utilization of the external knowledge during text generation. We release all resources used for this paper, for the community to use and improve over. We hope that these resources will drive further research of RALM, that will enable its wider adoption.

References

Yoav Levine, Itay Dalmedigos, Ori Ram, Yoel Zeldes, Daniel Jannai, Dor Muhligay, Yoni Osin, Opher Lieber, Barak Lenz, Shai Shalev-Shwartz, Amnon Shashua, Kevin Leyton-Brown, and Yoav Shoham. 2022a. Standing on the shoulders of giant frozen language models.

Yoav Levine, Ori Ram, Daniel Jannai, Barak Lenz, Shai Shalev-Shwartz, Amnon Shashua, Kevin Leyton-Brown, and Yoav Shoham. 2022b. Huge frozen language models as readers for open-domain question answering. In ICML 2022 Workshop on Knowledge Retrieval and Language Models.

Yoav Levine, Noam Wies, Daniel Jannai, Dan Navon, Yedid Hoshen, and Amnon Shashua. 2022c. The inductive bias of in-context learning: Rethinking pre-training example design. In International Conference on Learning Representations.

Nir Ratner, Yoav Levine, Yonatan Belinkov, Ori Ram, Omri Abend, Ehud Karpas, Amnon Shashua, Kevin Leyton-Brown, and Yoav Shoham. 2022. Parallel context windows improve in-context learning of large language models.

A GPT-Neo Results

Table 3 gives the results of GPT-Neo and WikiText-103 and RealNews. The same trend observed in Section 5 holds for these models as well.

B Query Length Ablations

Figure 8, Figure 9 and Figure 10 show ablations on the optimal query length ℓ for off-the-shelf dense retrievers (BERT, Contreiver and Spider, respectively). Consistently, using $\ell = 64$ (tokens) is optimal. This is in contrast to similar experiments we conducted for BM25 (cf. Figure 6), where $\ell = 32$ is optimal.
Table 2: Perplexity for zero-shot reranking (§6.1) where the reranking models is smaller than the LM, or the LM itself. Reranking is performed on the top 16 documents retrieved by BM25. Using a GPT-2 110M (S) instead of a larger language model as a reranker leads to only a minor degradation.

Table 3: The performance of models from the GPT-Neo family, measures by word-level perplexity on the test set of WikiText-103 and token-level perplexity on the development set of RealNews.

Figure 8: An analysis of perplexity as a function of the number of tokens in the query for an off-the-shelf BERT retriever on the development set of WikiText-103.

Figure 9: An analysis of perplexity as a function of the number of tokens in the query for Contriever on the development set of WikiText-103.

Figure 10: An analysis of perplexity as a function of the number of tokens in the query for Spider on the development set of WikiText-103.