

Forschungscampus Flexible Elektrische Netze FEN

February 15, 2024

Disconnectable DC-Link Capacitors for DC-Grid Protection

Challenges of DC-Fault Interruption

- DC-faults have two phases
 - I. Fault current build up
 - II. Fault current decay
- Unlike ac faults, time interval I is mostly limited by line reactance
 - For short distances, fault current can reach very high values

- Exemplary 5 kV grid:
$$\hat{I} \approx \sqrt{\frac{c_{dc}U_c^2}{L_{line}}} \rightarrow \sqrt{\frac{9 \text{ mF} *5000 \text{ V}^2}{50 \text{ } \mu\text{H}}} \approx 67 \text{ kA}$$

- Fault current rise time is also limited by line reactance
 - For short distances, fault current rise can be the significant challenge for interruption
 - Exemplary 5 kV grid: $t_{rise} pprox \frac{\pi*\sqrt{C_{dc}L_{line}}}{2}
 ightarrow \frac{\pi*\sqrt{9~\mathrm{mF}*50~\mu\mathrm{H}}}{2} \approx 1.05~\mathrm{ms}$

DC Grid Fault-Current Handling

- Three different fault current handling variants
- In-line dc circuit breaker
 - Hybrid or solid-state
 - Needs to carry full current
- Disconnectable dc-link capacitor
 - Disconnects dc-link from line during fault
 - Carries only dc-link ripple current
- Freely circulating fault current
 - No breaker
 - Full fault current

Disconnectable DC-Link Capacitors

- Disconnecting dc-link during a fault to
 - Avoid excessive fault currents (no capacitor discharge)
 - Fast grid restoration after fault (no capacitor recharge)
- Additional switch needed
 - Bidirectional power flow
 - Carriess only ripple current
 - For LVDC, MOSFETs are a promising option
- Low turn-off times for disconnecting switch
 - Disconnecting switch cannot handle full fault current
 - Fast fault-current interruption in low μs range
- Extension of State-of-the-Art
 - Disconnectable storage elements for MMCs proposed by Marquardt
 - Patent US 2018/0109202, granted in 2023

Power Loss during Normal Operation

- Disconnecting switch only carries capacitor ripple current during normal operation
 - 3 phase dual-active bridge (DAB3) features low ripple current
 - Other topologies with low ripple current also suitable
- Overall power loss negligable in comparison to converter power
 - 100 kW converter power at 800 V
 - 4 W losses in total for all disconnecting switches
 - Ripple current mostly independent from dc-link capacitance
- Concept is feasible for application
 - Power loss can be cooled by convection
 - Integration into dc-link capacitor possible

Parameter	3ph DAB
DC-Link Voltage	800 V / 800 V
Output Power	100 kW
Switching Frequency	10 kHz
Leakage Inductance	30 μΗ
Phase Shift (Pmax)	28°
Output Capacitor	6 x 50 μF
Switch Resistance	48 mΩ (6 of)

Experimental Results

- Prototype PCB to check fault interruption
 - 400 V rated voltage
 - SiC MOSFET as disconnecting switch
 - Half-bridge IGBT module for commutation
- First test with varying dc-link voltage and 600 μH current-limiting inductance
 - Trigger current of 10 A
- Fault current measured by 5 m Ω shunt
- Switching overvoltage below 100 V

Fault Turn-Off in Timedomain at $U_{\rm C}=400~{\rm V}$

Linkedin.FENaachen.net

@FENaachen

Vielen Dank für Ihre Aufmerksamkeit!

Kontakt:

M.Sc. Jan Mathé Wiss. Mitarbeiter RWTH Aachen University

Forschungscampus Flexible Elektrische Netze FEN Campus-Boulevard 79 52074 Aachen

Tel.: +49 241 80 224 71 info@FENaachen.net

Image sources (banner)

- Exterior view of building ©FEN GmbH
- Landscape with wind turbine ©DDM Company
- DC-DC converter ©E.ON ERC
- Network iStockphoto.com/studiovision
- Aerial view ©Peter Winandy
- Energiewende ©stockWERK/fotolia.com
- Puzzle ©vege/fotolia.com
- Power grid/Wind turbine/Solar plant –
 ©PhotographyByMK/fotolia.com

