
Project: 
Date:

milestoneBased 
March 23rd, 2022

Smart 
Contract

Audit

01

Table of contents
. .Summary 02

. .Scope of Work 05

. .Workflow of the auditing process 06

. .Structure and organization of the findings 07

. .Manual Report 08

. .Test Results 09

. .Tests are written by milestoneBased 10

. .Tests are written by Vidma 12

02

Summary
Vidma team has conducted a smart contract audit for the given token and vesting
contracts. Both contracts are in excellent condition and are well written.

During the auditing process, the Vidma security team hasn’t found any issues
stating that the audited contracts are fully production-ready and are safe to use.

A detailed summary of the issues and their current state is displayed in the table
below.

The severity of the issue

Critical

High

Medium

Low

Informational

Total

0 issues

0 issues

0 issues

0 issues

0 issues

0 issues

Total found

0 issues

0 issues

0 issues

0 issues

0 issues

0 issues

Resolved

0 issues

0 issues

0 issues

0 issues

0 issues

0 issues

Unresolved

Evaluating the findings, we can assure that the contracts are fully operational,
optimized and have no security issues. Under the given circumstances we can set
the following risk level:

High Confidence

03

Vidma auditors are evaluating the initial commit given for the scope of the audit
and the last commit with the fixes. Hence, it helps to adequately evaluate the
development quality. Code style, optimization of the contracts, amount, and risk
level of the issues are taken into consideration. The Vidma team has developed
the transparent scoring system presented below.

Severity of the issue

Critical

High

Medium

Low

Informational

1

0.8

0.5

0.2

0

Resolved

10

7

5

0.5

0.1

Unresolved

Based on the given findings, risk level,
performance, and code style, the Vidma team
can grant the following overall score: 100

Vidma auditing team has conducted a bunch of integrated autotests to ensure
that the given codebase has decent performance and security levels. The test
results and the coverage can be found in the accompanying section of this audit
report.

04

Please mind that this audit does not certify the
definite reliability and security level of the
contracts. This document describes all
vulnerabilities, typos, performance issues, and
security issues found by Vidma auditing team.
If the code is under development, we
recommend running one more audit once the
code is finalized.

!

05

milestoneBased is on a mission to fix a legacy system of VC capital
inefficiency by revolutionizing collaboration on milestone management
between crypto investors and startups. It is the first company to leverage a
blockchain DAO and escrow smart contract capabilities, in an automated
governance and milestone achievement management platform. Early-stage
investors achieve greater capital and process efficiency, improved security
and transparency, and data-driven insights, for a faster path to liquidity and
monetization of deployed funds. Startup teams become milestone focused
and motivated for strengthened performance.

Within the scope of this audit, two independent auditors deeply investigated the
given codebase and analyzed the overall security and performance of the smart
contracts.

The debrief took place from March 21st to March 23rd, 2022 and the final results
are present in this document.

Vidma auditing team has made a review of the following contracts:

MilestoneBasedVesting;
MilestoneBasedToken.

The source code was taken from the following source: 
https://bitbucket.org/applicature/milestonebased.contracts

Initial commit submitted for the audit: 
92369ff117273eb2bd930a3e490f30f11991e4d2

In order to conduct a more detailed audit, milestoneBased has provided the
following documentation: 
https://drive.google.com/drive/folders/1yqt6Xzr5g8hm-JragY9ow239BoZ6IKkm?
usp=sharing

Scope of work

https://bitbucket.org/applicature/milestonebased.contracts/commits/92369ff117273eb2bd930a3e490f30f11991e4d2
https://bitbucket.org/applicature/milestonebased.contracts/commits/92369ff117273eb2bd930a3e490f30f11991e4d2
https://drive.google.com/drive/folders/1yqt6Xzr5g8hm-JragY9ow239BoZ6IKkm?usp=sharing
https://drive.google.com/drive/folders/1yqt6Xzr5g8hm-JragY9ow239BoZ6IKkm?usp=sharing

Workflow of the auditing
process
During the manual phase of the audit, Vidma team manually looks through the
code in order to find any security issues, typos, or discrepancies with the logic of
the contract.

Within the testing part, Vidma auditors run integration tests using the Truffle
testing framework. The test coverage and the tests themselves are inserted into
this audit report.

Vidma team uses the most sophisticated and contemporary methods and
techniques to ensure the contract does not have any vulnerabilities or security
risks:

Re-entrancy;
Access Management Hierarchy;
Arithmetic Over/Under Flows;
Unexpected Ether;
Delegatecall;
Default Public Visibility;
Hidden Malicious Code;
Entropy Illusion (Lack of Randomness);
External Contract Referencing;
Short Address/Parameter Attack;
Unchecked CALL Return Values;
Race Conditions / Front Running;
General Denial Of Service (DOS);
Uninitialized Storage Pointers;
Floating Points and Precision;
Tx.Origin Authentication;
Signatures Replay;
Pool Asset Security (backdoors in the underlying ERC-20).

06

Structure and organization of
the findings
For the convenience of reviewing the findings in this report, Vidma auditors
classified them in accordance with the severity of the issues. (from most critical
to least critical). The acceptance criteria are described below.

All issues are marked as "Resolved" or "Unresolved", depending on whether they
have been fixed by milestoneBased or not. The latest commit, indicated in this
audit report should include all the fixes made.

To ease the explanation, the Vidma team has provided a detailed description of
the issues and recommendations on how to fix them.

Hence, according to the statements above, we classified all the findings in the
following way:

Critical

High

Medium

Low

Informational

The issue bear a definite risk to the contract, so it may
affect the ability to compile or operate.

Major security or operational risk found, that may harm
the end-user or the overall performance of the contract.

The issue affects the contract to operate in a way that
doesn’t significantly hinder its performance.

The found issue has a slight impact on the performance
of the contract or its security.

The issue does not affect the performance or security of
the contract/recommendations on the improvements.

Finding Description

07

Manual Report

08

Vidma auditors has conducted a deep analysis of the smart contracts. As the
outcome, no issues were identified. The contracts are in excellent condition and
no fixes were required by the auditing team.

Test results

09

To verify the contract security and performance a bunch of integration tests were
made using the Truffle testing framework.

Tests were based on the functionality of the code, business logic, and
requirements and for the purpose of finding the vulnerabilities in the contacts.

In this section, we provide both tests written by milestoneBased and Vidma
auditors.

It's important to note that Vidma auditors do not modify, edit or add tests to the
existing tests provided in the milestoneBased repo. We write totally separate tests
with code coverage of a minimum of 95%, to meet the industry standards.

milestoneBased Coverage

Vidma Coverage

Industry Standard

0% 25% 50% 100%75%

milestoneBased: 100% Vidma: 100% Standartd: 95%

10

Tests are written by milestoneBased

Test Coverage

File

contracts\

MilestoneBasedToken.sol

MilestoneBasedVesting.sol

All Files

100.00

100.00

% Stmts

100.00

100.00

100.00

100.00

% Branch

100.00

100.00

100.00

100.00

% Funcs

100.00

100.00

100.00

100.00

100.00

% Lines

100.00

Test Results

Contract: MilestoneBasedVesting
Constructor

✓ Must fail if passed zero address of token
✓ Must set up correctly (58ms)

addTokensForVesting
✓ Must fail if sender isn't owner
✓ Must fail if passed amount equal to zero
✓ Must fail if sender hasn't approved tokens for vesting

contract (57ms)
✓ Must add tokens for vesting to vesting contract (62ms)

createVesting
✓ Must fail if sender isn't owner
✓ Must fail if passed zero address of beneficiary
✓ Must fail if amount of vesting equal to 0
✓ Must fail if passed incorrect vesting period (45ms)

✓ Must fail if passed incorrect vesting period (45ms)

✓ Must fail if amount of vesting bigger then allocation (68ms)

✓ Must create vesting correctly (60ms)

createVestingBatch

11

✓ Must fail if sender isn't owner (38ms)

✓ Must fail if passed arrays have different length (38ms)

✓ Must create vesting multiple times for different users (94ms)

✓ Must create vestings with different type for one user (82ms)

emergencyWithdraw
✓ Must fail if sender isn't owner
✓ Must withdraw correct amount of tokens from vesting

contract (215ms)

✓ Must fail if there is no available tokens to withdraw
testing vesting types calculation and withdraw

✓ Withdraw function must fail if user doesn't have vestings
✓ All vesting must return 0 if vestings haven't

started yet (102ms)

✓ Vesting type "Marketing" must give small part of vested
tokens after creation of vesting (55ms)

✓ Vestings with types "Founder" and "Rewards" must return 0
while lock period

✓ Vesting with type "Rewards" must return part of tokens after
lock period

✓ Must return correct amount of withdrawable tokens for user
with multiple vestings after withdraw (141ms)

✓ Vesting type "Founder" must return correct amount of
tokens (433ms)

✓ Vestings must return all vested tokens after
vesting's end (307ms)

revokeVestingOfUser
✓ Must fail if user's vesting is irrevocable (142ms)

✓ Must revoke vesting correctly (50ms)

✓ Must fail if vesting has been already revoked
✓ Must revoke correct amount of user's tokens if user has c

laimed tokens (103ms)

burn
✓ Must fail if sender doesn't have enough tokens to burn (95ms)

✓ Must burn tokens correctly (48ms)

burnFrom
✓ Must fail if sender doesn't have enough allowance (40ms)

✓ Must fail if owner doesn't have enough tokens
✓ Must burn tokens from another user correctly (47ms)

37 passing (5s)

12

Tests are written by Vidma

Test Coverage

Test Results

Contract: MilestoneBasedToken
✓ has a name
✓ has a symbol
✓ has 18 decimals
total supply

✓ returns the total amount of tokens
balanceOf

when the requested account has no tokens
✓ returns zero

when the requested account has some tokens
✓ returns the total amount of tokens

transfer
when the recipient is not the zero address

when the sender does not have enough balance
✓ reverts (1198ms)

when the sender transfers all balance
✓ transfers the requested amount (1062ms)

✓ emits a transfer event (1063ms)

when the sender transfers zero tokens

File

contracts\

MilestoneBasedToken.sol

MilestoneBasedVesting.sol

All Files

100.00

100.00

% Stmts

100.00

100.00

100.00

100.00

% Branch

100.00

100.00

100.00

100.00

% Funcs

100.00

100.00

100.00

100.00

100.00

% Lines

100.00

13

✓ transfers the requested amount (1156ms)
✓ emits a transfer event (1136ms)

when the recipient is the zero address
✓ reverts (1100ms)

transfer from
when the token owner is not the zero address

when the recipient is not the zero address
when the spender has enough approved balance

when the token owner has enough balance
✓ transfers the requested amount (1088ms)

✓ decreases the spender allowance (1068ms)

✓ emits a transfer event (1070ms)

✓ emits an approval event (1071ms)

when the token owner does not have enough balance
✓ reverts (1063ms)

when the spender does not have enough approved balance
when the token owner has enough balance

✓ reverts (115ms)

when the token owner does not have enough balance
✓ reverts (1076ms)

when the recipient is the zero address
✓ reverts (1088ms)

when the token owner is the zero address
✓ reverts (1049ms)

approve
when the spender is not the zero address

when the sender has enough balance
✓ emits an approval event (1029ms)

when there was no approved amount before
✓ approves the requested amount (1081ms)

when the spender had an approved amount
✓ approves the requested amount and replaces the

previous one (1058ms)

when the sender does not have enough balance
✓ emits an approval event (1049ms)

when there was no approved amount before
✓ approves the requested amount (1048ms)

when the spender had an approved amount
✓ approves the requested amount and replaces the

previous one (1050ms)

when the spender is the zero address
✓ reverts (1076ms)

14

decrease allowance
when the spender is not the zero address

when the sender has enough balance
when there was no approved amount before

✓ reverts (1065ms)

loremipsum
✓ emits an approval event (1043ms)

✓ decreases the spender allowance subtracting the
requested amount (1097ms)

✓ sets the allowance to zero when all allowance is
removed (1054ms)

✓ reverts when more than the full allowance is
removed (1072ms)

when the sender does not have enough balance
when there was no approved amount before

✓ reverts (1070ms)

when the spender had an approved amount
✓ emits an approval event (1065ms)
✓ decreases the spender allowance subtracting the

requested amount (1066ms)

✓ sets the allowance to zero when all allowance is
removed (1048ms)

✓ reverts when more than the full allowance is
removed (1068ms)

when the spender is the zero address
✓ reverts (1067ms)

increase allowance
when the spender is not the zero address

when the sender has enough balance
✓ emits an approval event (1054ms)

when there was no approved amount before
✓ approves the requested amount (1039ms)

when the spender had an approved amount
✓ increases the spender allowance adding the

requested amount (1067ms)

when the sender does not have enough balance
✓ emits an approval event (1071ms)

when there was no approved amount before
✓ approves the requested amount (1070ms)

when the spender had an approved amount
✓ increases the spender allowance adding the

requested amount (1041ms)

15

when the spender is the zero address
✓ reverts (1092ms)

_transfer
when the recipient is not the zero address

when the sender does not have enough balance
✓ reverts (1061ms)

when the sender transfers all balance
✓ transfers the requested amount (1089ms)

✓ emits a transfer event (1075ms)
when the sender transfers zero tokens

✓ transfers the requested amount (1140ms)

✓ emits a transfer event (1108ms)

when the recipient is the zero address
✓ reverts (1047ms)

_approve
when the spender is not the zero address

when the sender has enough balance
✓ emits an approval event (1048ms)
when there was no approved amount before

✓ approves the requested amount (1048ms)

when the spender had an approved amount
✓ approves the requested amount and replaces the

previous one (1066ms)

when the sender does not have enough balance
✓ emits an approval event (1047ms)

when there was no approved amount before
✓ approves the requested amount (1062ms)

when the spender had an approved amount
✓ approves the requested amount and replaces the

previous one (1072ms)

when the spender is the zero address
✓ reverts (1075ms)

burn
when the given amount is not greater than balance of the sender

for a zero amount
✓ burns the requested amount
✓ emits a transfer event

for a non-zero amount
✓ burns the requested amount
✓ emits a transfer event

when the given amount is greater than the balance of the sender
✓ reverts (1065ms)

16

burnFrom
on success

for a zero amount
✓ burns the requested amount
✓ decrements allowance
✓ emits a transfer event

for a non-zero amount
✓ burns the requested amount
✓ decrements allowance
✓ emits a transfer event

when the given amount is greater than the balance of the sender
✓ reverts (2094ms)

when the given amount is greater than the allowance
✓ reverts (2135ms)

Ownable
✓ has an owner (6ms)

transfer ownership
✓ changes owner after transfer (1059ms)

✓ prevents non-owners from transferring (1094ms)

✓ guards ownership against stuck state (1064ms)

lorerenounce ownership
✓ loses owner after renouncement (1066ms)

✓ prevents non-owners from renouncement (1059ms)

Contract: MilestoneBasedVesting
MilestoneBasedVesting Deploy Test Cases

✓ should deploy with with token setted to the zero
address (1145ms)

✓ should deploy with correct owner (191ms)

✓ should deploy with correct tokens (79ms)

✓ should deploy with correct initial total tokens
allocation (110ms)

✓ should deploy with correct initial total tokens in
vesting (79ms)

MilestoneBasedVesting Owner Test Cases
✓ shouldn't create vesting by not the current owner (456ms)

✓ shouldn't create vesting with beneficiary with zero
address (211ms)

✓ shouldn't create vesting with zero amount (246ms)

✓ shouldn't create vesting with duration equal to zero (266ms)

✓ shouldn't create vesting if vesting ends before current
timestamp (191ms)

17

✓ shouldn't create vesting if amount exceed available amount
for vesting (255ms)

✓ shouldn't create vestings if parameters length mismatch (532ms)

✓ shouldn't emergency withdraw tokens by not the current
owner (222ms)

✓ shouldn't emergency withdraw if no available tokens (224ms)

✓ shouldn't add tokens to vesting by not the current
owner (198ms)

✓ shouldn't add tokens to vesting if amount is equal 0 (198ms)

✓ should add tokens to vesting correctly (454ms)

✓ should allow to add tokens to vesting multiple times
correctly (460ms)

✓ should create vesting correctly (595ms)

✓ should allow to create multiple vestings for one user
correctly (558ms)

✓ should create batch of vestings correctly (972ms)

✓ shouldn't revoke vesting by not the current owner (196ms)

✓ shouldn't revoke vesting if vesting is irrevocable (193ms)

✓ should revoke vesting correctly (761ms)

✓ shouldn't revoke vesting if it was already revoked (207ms)

✓ should emergency withdraw all tokens which are not
in vesting correctly (635ms)

MilestoneBasedVesting User Test Cases
✓ should return correct withdrawable amount before vesting

start date (313ms)

✓ should return correct withdrawable amount when vesting is
running (367ms)

✓ should return correct withdrawable amount when vesting is
over (203ms)

✓ should return correct withdrawable amount when vesting is
revoked (391ms)

✓ shouldn't withdraw if user not in vesting (211ms)

✓ should withdraw correctly (883ms)

✓ should withdraw multiple times correctly (907ms)

✓ should withdraw all tokens from vesting (1411ms)

112 passing (3m)

Website:
Email:

vidma.io
security@vidma.io

We are delighted to have a chance to work
together with milestoneBased team and
contribute to their success by reviewing and
certifying the security of the smart contracts.

The statements made in this document should
not be interpreted as investment or legal advice,
nor should its authors be held accountable for
decisions made based on them.

mailto:security@vidma.io

