O-RAN ALLIANCE Announces its June 2022 Industry Summit, Progress of its Global PlugFest Spring 2022 and a New Set of O-RAN Demos

- Join us for the O-RAN ALLIANCE Industry Summit on June 29, 2022
- O-RAN Global PlugFest Spring 2022 in progress
- 23 new demos of O-RAN technology at the O-RAN Virtual Exhibition

Bonn/Germany, June 9, 2022

O-RAN ALLIANCE Industry Summit June 2022
The O-RAN ALLIANCE invites all interested public to join its next industry summit to be held on June 29, 2022, as an open virtual event. The 2.5-hour session will bring:
- Latest updates from the O-RAN ALLIANCE leadership
- Updates from the O-RAN ecosystem on RAN openness, intelligence, cloudification, and testing and integration
- Live panel discussion: Accelerating industry adoption for large-scale commercialization

For more details and to join the event, please visit www.o-ran.org/events.

O-RAN Global PlugFest Spring 2022 in Progress
O-RAN ALLIANCE has been sponsoring its global PlugFests to enable efficient testing and integration for the O-RAN ecosystem. O-RAN Global PlugFest Spring 2022, first of the two PlugFests planned for this year, has been progressing at 3 venues:
- Auray OTIC and Security Lab is hosting 21 participants: Alpha Networks, Askey Computer, Calnex Solutions, Foxconn, Institute for Information Industry, Inventec, IP Infusion, ITRI, JPC connectivity, Keysight Technologies, Lions Technology, LITEON, MICAS, NKG, Pegatron, QCT, REIGN Technology, Rohde & Schwarz, Sageran, VIAVI Solutions and WNC.
- Telefonica, at European OTIC in Madrid, is hosting 6 participants: ADVA Optical Networking, Juniper Networks, Keysight Technologies, Precision Optical Transceivers, Ribbon and VIAVI Solutions.
- AT&T and DISH are hosting participants including Analog Devices, Anritsu, Calnex Solutions, Cisco, Fujitsu, HCL, IP Infusion, ITRI, Juniper Networks, Keysight Technologies, META, NSF ARA: Living Wireless Lab, NSF PAWR: AERPAW, NSF PAWR: Colosseum, PHYTunes, Rohde & Schwarz, VIAVI Solutions, VMware and Wind River; with assistance from AT&T Lab, NSF PAWR: COSMOS Lab, NSF PAWR: POWDER Lab and University of New Hampshire Interoperability Lab.

All venues aim to conclude the spring PlugFest by end of June 2022.

23 new demos of O-RAN technology at the O-RAN Virtual Exhibition
O-RAN ALLIANCE member companies have been progressing with their O-RAN based implementations. Latest demonstrations will soon be available at the [O-RAN Virtual Exhibition](http://www.o-ran.org).

Newly added Intelligent RAN control demonstrations include:
- AirHop and VMware demonstrate how automation and programmability efficiently detect and remediate PCI collisions/confusions to optimize RAN performance. The proposal is a solution to current RAN frequency planning, conflict mitigation and optimization methods which are costly and time-consuming, slowing deployment of new services and decreasing performance of existing ones.
- Cellwize and VMware demonstrate how to bring programmability to any type of RAN deployment, including purpose-built RANs. As an example, we demonstrate how Cellwize's
rApp onboarded on VMware Centralized RIC optimizes EN-DC anchoring to maximize spectral usage in purpose-built RANs; leading to monetizable gains in performance.

- China Mobile and Lenovo demonstrate how video experience can be optimized using an xApp to predict the available bandwidth for a UE using the RIC and radio information reported over the E2 from the network and providing this predicted bandwidth to the Application Provider to adjust and optimize the video bitrate.

- Cohere and VMware demonstrate how using RAN programmability, operators can double mobile bandwidth without any changes to antennas, radio or devices. Using Cohere’s Spectrum Multiplier xApp powered by VMware Distributed RIC, now Services Providers can activate broadband in rural areas while avoiding costly changes in handsets or infrastructure.

- GDCNi demonstrates its RF product with high/middle/low transceiver power, performing interoperability testing with other vendors. GDCNi has rich RAN industrial experience and provides private RAN solutions for coal mines, ports, intelligent manufacturing, agriculture, and transportation, and helps to enrich the O-RAN ecosystem.

- Intel demonstrates SLA assurance demonstration with AI/ML-powered Network Slice Radio Resource Manager (NSRRM) xApp in an O-RAN RIC integrated with an Open, virtualized RAN. This demo shows operators the viability of offering revenue-generating business models with optimal radio resources.

- Polte and VMware demonstrate how to leverage RAN programmability to deliver precise sub-meter UE positioning. Using cellular as prime technology (as opposed to GPS or Wi-Fi), Polte’s xApp powered by VMware’s Near Real-time RIC offers global location indoors/outdoors, while lowering cost and extending battery life of the IoT asset tracker.

- Rimedo Labs demonstrates the complete integration of the Traffic Steering xApp into the open-source SD-RAN Near-Real-Time RIC from ONF. The solution highlights the opportunities to control the xApp via the policies through the A1 interface as defined by the O-RAN ALLIANCE, which enables manipulation of the behavior of the corresponding RRM algorithm based on the current strategy coming from the SMO.

Newly added **Open RAN demonstrations** include:

- ArrayComm demonstrates its 5G Distributed Small Cell in a 5G SA E2E network showing its high performance and stability testing with measured downlink and uplink throughputs. It includes white box O-DU, Fronthaul Gateway, and O-RU. The O-DU is a single box built with NXP LX2160A and LA1201 SoC.

- ArrayComm demonstrates its 5G Distributed Small Cell on a Marvell platform consisting of a Marvell CNF95O virtualized O-DU card combined with x86/Arm server, Fronthaul Gateway, and O-RU. This platform can be widely used in the capacity coverage improvement scenarios, and also can be easily deployed as distributed RAN or cloud RAN.

- China Mobile and Lenovo demonstrate a CaaS platform, which followed O-Cloud specs, and pico gNB BBU respectively to form a joint test solution. Hardware construction has been completed; the first call was made in June. 5G performance will be tested in a E2E environment in next stage.

- Comba showcases Open RAN Multi-band Remote Radio Unit with advanced technology that maintains a low power consumption level and better receiver sensitivity. The small form factor and improved Mean Time Before Failure performance contributes to optimized installation and maintenance cost. These features facilitate fronthaul integration with O-DU partners.

- Foxconn, Auray and Calnex demonstrate O-RAN S-Plane Performance Testing with Foxconn’s O-RU in Auray OTIC and Security lab with Calnex’s Paragon-neo. O-RAN.WG4.CONF.0 has recommended the S-Plane performance test and functional test to be mandatory for O-RU S-plane testing and therefore mandatory for O-RAN/OTIC O-RU Badging.
• Intel, Capgemini, AWS and others demonstrate a unified view of end-to-end 5G service orchestration from the network edge to the cloud. Demo highlights agility using service orchestration to support dynamic network slicing for new business and service capabilities - allowing continuous delivery of new services and features. It also demonstrates O-RAN Fronthaul (xRAN) Test as defined by O-RAN ALLIANCE, using a sample application created to execute test scenarios with features of the xRAN library and test external API.

• IS-Wireless showcases a Multi MNO scenario supported in the form of a Neutral Host. The end-to-end Open RAN network is deployable on any cloud in an automated manner as containers and supports both Open Fronthaul Split 7.2x and 3GPP split 2.

• LITEON demonstrates FlexFi indoor small cell system based on open interfaces (e.g. Open Fronthaul Interface) enabling a cost effective deployment at large scale. And we also demonstrate an O-RAN based intelligent RAN management and control solution-LiteNetics. In this Proof of Concept, we verified manage gNB via the Radio Intelligent Controller (RIC) with O1 interfaces. LITEON provides 5G products that meet customer needs.

• MICAS demonstrates two O-RAN Radio Unit solutions, with one sub-6 GHz indoor small cell and one mmW small cell. Both solutions feature O-RAN’s open fronthaul interface technology and enable cost-effective large-scale deployment.

• Pegatron, Auray and Calnex demonstrate O-RAN Fronthaul Latency Testing with Pegatron’s O-DU/O-CU in Auray OTIC and Security lab with Calnex’s Paragon-X in network emulation mode. O-RAN.TIFG.E2E-Test.0 has recommended the xHaul latency to be mandatory for O-RAN E2E testing and therefore mandatory for O-RAN/OTIC Badging.

• Rohde & Schwarz and VIAVI Solutions jointly demonstrate O-RAN open fronthaul (OFH) conformance and 3GPP pre-conformance validation of a Foxconn O-RU at Auray Lab. The Foxconn O-RU is validated by VIAVI’s automated TMS500 O-RU tester with R&S SMW200A vector signal generator, R&S FSVA3000 spectrum analyzer and the R&S VSE signal analysis software. The demonstration highlights a progressive test plan including functional, interoperability, conformance and performance testing, with a single point of control for the entire testbed.

• Spirent demonstrates its end-to-end Open RAN test solution enabling the ability to accomplish functional, interoperability, performance, and compliance testing with either a real or emulated UE. This demo walks through the architecture of the solution and gives an overview of the interface, reporting, and capabilities.

• Spirent demonstrates a flexible, scalable, high-performance solution for comprehensively testing the CU for compliance, functionality, performance, and capacity. This demo walks through the architecture and presents an overview of the interface, reporting, and capabilities through running a test in 5G SA mode (NSA is also available).

• Spirent demonstrates how O-DU is tested with multiple emulated O-RU to verify function, reliability of O-DU & test delay in fronthaul networks. A challenge for O-RAN is long-duration reliability testing. Streamblocks are usually sent once in 5G fronthaul testing. Spirent solution sends continuous traffic to emulate real-world network traffic.

• Deploying a complete Open vRAN network is a daunting task. VMware and Altiostar demonstrate how to greatly reduce this effort by combining the automation capabilities of Altiostar EMS and VMware Telco Cloud Platform RAN over Intel FlexRAN TM architecture.
About O-RAN ALLIANCE
The O-RAN ALLIANCE is a world-wide community of more than 300 mobile operators, vendors, and research & academic institutions operating in the Radio Access Network (RAN) industry. As the RAN is an essential part of any mobile network, the O-RAN ALLIANCE’s mission is to re-shape the industry towards more intelligent, open, virtualized and fully interoperable mobile networks. The new O-RAN specifications enable a more competitive and vibrant RAN supplier ecosystem with faster innovation to improve user experience. O-RAN based mobile networks at the same time improve the efficiency of RAN deployments as well as operations by the mobile operators. To achieve this, the O-RAN ALLIANCE publishes new RAN specifications, releases open software for the RAN, and supports its members in integration and testing of their implementations. For more information, please visit www.o-ran.org.

For more information, contact:
O-RAN ALLIANCE PR Contact

Zbynek Dalecky
pr@o-ran.org
O-RAN ALLIANCE e.V.
Buschkauer Weg 27
53347 Alfter/Germany