CLINICAL VALIDATION OF LOW-VOLTAGE "COMPACT" TRANSMISSION ELECTRON MICROSCOPY FOR ULTRASTRUCTURAL EVALUATION OF KIDNEY AND HEART BIOPSY SAMPLES

Rebecca H Lawrence, Jorge Isaac, MD, Isaac E Lloyd, MD and Dylan V Miller, MD Intermountain Medical Center and Intermountain Central Laboratory, Salt Lake City, Utah, USA

Background:

- Transmission electron microscope (TEM) remains an integral part of the pathologic evaluation of various specimen types, especially renal and cardiac biopsies
- Conventional TEM instruments are costly, occupy a substantial floor space footprint, and have significant overhead costs
- A new "compact" TEM instrument is now available, which circumvents some of the drawbacks posed by conventional TEM
- We report the results of a clinical validation exercise, comparing the diagnostic utility of images obtained on a conventional TEM and compact TEM

Design:

- 90 consecutive clinical biopsies and 10 pre-selected biopsies (known to have certain ultrastructural features of interest) were selected for a parallel testing validation strategy
- These included 85 native kidney, 5 transplant kidney, and 10 heart biopsies; from 98 patients
- Samples were prepared for TEM per routine protocols
- Samples were examined using a JEOL 1010 TEM at 80 kEV using a Veleta side-mount 4MP camera and a Delong Instruments LVEM25 TEM at 25 kEV using its integrated 5.5MP camera
- Three pathologists captured images (in the course of their routine diagnostic work) which were later retrospectively compiled, reviewed, and compared for salient ultrastructural features [Tables 1 & 2]

TABLE 1: Frequency of Findings

Microscopic Disease Process	n=
Mesangial Immune Deposits	26
Subepithelial Immune Deposits	13
Subendothelial Immune Deposits	9
Tubuloreticular Inclusions	1
Thickened Glomerular Basement Membranes	16
Thin Glomerular Basement Membranes	3
Podocyte Foot Process Effacement	15
Fibrillary Deposits	4
Organized Substructure	2

Results:

- Minor qualitative differences in the images were observed between the two TEM instruments, but these did not substantially alter the diagnostic interpretability
- Representative comparisons of ultrastructural findings with each instrument are shown to the right [FIGURES]

Conclusions:

- Compact TEM is a clinically valid means of ultrastructural evaluation of renal and cardiac biopsy specimens
- Compact TEM maintains comparable ability to discriminate key diagnostic findings in these samples

TABLE 2: Cases by Disease Process

Diagnosis	n=
AIN	8
Amyloid	4
ANCA GN	4
ATN	5
Cast Nephropathy	1
Chloroquine cardiotoxicity	1
Chronic TMA	1
Cortical necrosis	1
Diabetes	14
DM + immune complex	1
FSGS	9
HTN	7
IDCM	2
Idiopathic nodular sclerosis	1
IgA	9
IgA + Diabetes	1
IgG-K MPGN w crescents (same pt)	2
Immune complex GN in transplant	1
Immunotactoid (same pt)	2
Lupus	9
Membranous	1
Minimal change disease	4
Minimal change + IgA	1
Myocarditis	2
Negative heart biopsy	3
Postinfectious GN	2
Recurrent IgA in transplant	1
Thin GBM	2
Transplant TCMR	1

Figures: Representative Comparative Case Images

Immunotactoid

IgA Nephropathy

Hydroxychloroquine toxicity

Tubuloreticular Inclusions (Lupus)

Amyloid

Subepithelial Deposits

Normal Myocardium

