
Why the Document Data Model
How JSON Documents Help Developers Innovate Faster

A MongoDB White Paper



Table of Contents
1Introduction

2Intuitive Data Model: Faster and Easier for Developers
3Beyond Developer Speed: Application Speed
3Data Typing

3Flexible Schema: Dynamically Adapt to Change
4Schema Governance

5Universal: JSON Documents for Multi-Model
5Superset of all Data Models

Powerful: Query Data Anyway You Need. ACID without
5Compromise
6Indexing Documents
7Working with Document Data
8Data Consistency and Transactional Integrity

9Distributed: Resilient and Globally Scalable
9Replication: No Single Point of Failure

10Sharding for Horizontal Scale Out

11JSON in Relational Databases

11Use Cases for Document Databases

12Summary

12We Can Help

13Resources



Introduction

Relational databases have a long-standing position in most

organizations. Based on a tabular data model composed of

rows and columns, relational databases – designed back in

the 1970s and popularized in the 80s – became the default

way of managing data.

However as developers build applications for today's digital

economy, they are facing demands that stretch the limits of

what’s possible with relational systems. These demands

include:

• Accelerating developer productivity to keep pace with a

constant stream of ideas from the business,

compressing application release cycles from months to

days and weeks.

• Storing and querying rapidly changing data that arrives

in all shapes and sizes – structured, semi-structured,

and polymorphic – where defining a flat, tabular schema

in advance is not practical.

• Distributing data across multiple servers and regions for

application resilience, scalability, and intelligent

geo-placement.

Meeting these challenges has driven developer adoption of

non-tabular, sometimes called “NoSQL” databases over the

past decade. There are many flavors of non-relational

databases defined by the data model they support –

key-value, wide-column, and graph. But it is document

databases, based on JSON-like documents, that have risen

to become the most popular and widely used alternative to

traditional relational systems. This is because the

document data model is:

• Intuitive:Intuitive: mapping to the way developers think and

code.

• Flexible:Flexible: dynamically adapting to change.

• Universal:Universal: allowing data to be modeled in any shape or

structure (sometimes called “multi-model”).

• PPowerful:owerful: enabling developers to work with data for

almost any class of application using a consistent and

expressive API.

In this guide, we explore why the document data model has

become so widely used by engineering teams building

modern applications. We also discuss those features that

differentiate document databases from one another.

1

https://db-engines.com/en/ranking_categories
https://db-engines.com/en/ranking_categories


Intuitive Data Model: Faster and
Easier for Developers

The tabular row-and-column data model used by relational

databases bears little resemblance to how data is

represented in application code. In modern programming

languages, the entity you want to store in the database (i.e.,

customer, product, order, trade, log message, sensor

reading) is represented as a complete object, with all

related attributes contained in a single data structure.

Typically developers must coordinate with database

administrators (DBAs) to translate that rich structure in the

application to one that fits the rules of the relational model.

Through normalization the object’s data is decomposed

across many separate parent-child tables connected by

foreign keys. The example in Figure 1 shows how even a

lightweight customer record is split across seven separate

tables.

FigurFigure 1:e 1: Customer data modeled across separate tables
in a relational database

Simple applications require tens of tables, escalating to

hundreds or even thousands as the application and its data

becomes more complex.

This difference in data structures, sometimes referred to as

“object-relational impedance mismatch”, makes it difficult

for developers to reason about the underlying data model

while writing code, adding friction to application

development.

One workaround is to introduce an Object-Relational

Mapping (ORM) layer into the development stack. But this

creates its own challenges, including managing the

middleware and revising the mapping whenever either the

application code or the database schema changes. These

changes typically need to be coordinated across multiple

engineering teams – developer, DBA, and Ops – creating

complex dependencies that are at odds with modern

development practices.

A further challenge is that ORMs do not always produce

the most efficient or performant queries, and the

abstraction they present makes it difficult for developers to

optimize the query.

How the Document Data Model is
Different

In contrast to the tabular model, the document data model

presents a much more intuitive and natural way to describe

data. This is because documents are consistent with the

way developers think and code.

Rather than splitting data apart and flattening it out across

multiple tables, documents are closely aligned to the

structure of objects in the programming language.

Documents are single and contained data structures with

related data embedded as subdocuments and arrays. In

more advanced document databases like MongoDB, each

element can be individually indexed and updated, no matter

how deeply nested it is within the document.

The JSON document example below contrasts how our

customer object modeled across separate parent-child

tables in a relational database is modeled in a single, rich

document structure in a document database.

2



{
"_id": "5ad88534e3632e1a35a58d00",
"customerID": 12345,
"name": {

"first": "John",
"last": "Doe"

},
"address": [

{
"location": "work",
"address": {

"street": "16 Hatfields",
"city": "London",
"postal_code": "SE1 8DJ"

},
"country": "United Kingdom",
"geo": {

"type": "Point",
"coord": [ 51.5065752,-0.109081 ]

}
}

],
"email": "john.doe@acme.com",
"phone": [

{
"location": "work",
"number": "+44-1234567890"

}
],
"dob": "1977-04-01T05:00:00Z",
"interests": [ "devops", "data science" ],
"annualSpend": 1292815.75

}

As a result of the document model approach it’s simpler

and faster for developers to model how data in the

application will map to data stored in the database. It also

significantly reduces the barrier-to-entry for new

developers who begin working on a project – for example,

adding new microservices to an existing application.

Beyond Developer Speed: Application
Speed

Normalizing data in the tabular model means that

accessing data for an entity, such as our earlier customer

record example, requires JOINing multiple tables together.

JOINs incur a performance penalty, even when optimized –

which takes time, effort, and advanced SQL skills.

Documents, on the other hand, present a single place for

the database to read and write data for an entity – what is

stored together is typically accessed together. This locality

of data ensures the complete document can be returned in

a single database operation, avoiding the need internally to

retrieve data from many different tables and rows.

Should your application access patterns require it, some

document databases like MongoDB provide the ability to

JOIN data between multiple collections (analogous to

tables in a relational database), and to UNION complete

collections. This provides additional flexibility for analytics

workloads, but is generally not required for most

transactional use cases.

Data Typing

Many relational databases that have been retrofitted with

support for JSON columns simply store data as primitive

JSON data types made up of strings and numbers, or even

worse, as opaque BLOBs. There are many native document

databases that do the same.

MongoDB on the other hand extends the JSON

representation with the BSON (Binary JSON) encoding to

include additional data types such as int, long, floating

point, data, and decimal128.

This makes it much easier for developers to reliably index,

process, sort, and compare more advanced data types

representing things like monetary values, geospatial

coordinates, and time-series data. This approach also

improves the portability of documents between different

programming languages.

Flexible Schema: Dynamically
Adapt to Change

The relational data model is built for tabular data where

each record in a table has identical columns. While it’s

possible to handle polymorphism and semi-structured data,

it's inefficient as every row must include columns that may

rarely be populated with data. Working around the basic

structural limitations of flat tables consumes development

time, requiring lots of additional code.

In the relational model, the schema for each table must

also be known in advance and predefined before any data

can be inserted into the database. Practically this means

that developers and DBAs need to define their data model

early in the development cycle. Any subsequent changes to

the data model then requires complex schema migrations

that need to be coordinated across multiple teams. Schema

3

http://bsonspec.org/


changes can add performance overhead during the

migration process, and in some cases, can even take the

database offline.

92% of respondents in a survey of DevOps professionals

reported that it was difficult to accelerate the deployment

of database schema changes in an effort to match the

pace at which they deploy application code changes. The

survey showed that just under 60% of all application

changes require modifications to an existing schema, and

that database changes take longer to deploy than

application changes. Consider also that in the same survey:

• 43% of respondents reported they are releasing

changes daily or weekly.

• Respondents lost hours or days reviewing database

change scripts.

• Even after these reviews, 84% had serious production

issues due to database change errors.

• 88% took more than an hour to resolve these issues.

Even trivial modifications to an existing relational schema

results in a complex dependency chain – from updating

ORM class-table mappings to programming language

classes that have to be recompiled and application code

changed accordingly. All of these steps have to be

coordinated across different engineering teams,

consuming both developer and DBA time and adding

cycles and cost to the release process.

To avoid this complexity, some developers may be tempted,

or even be recommended to overload the meaning of

existing schema attributes rather than adding new ones.

This runs the risk of obfuscating the code and building

technical debt.

What these issues show is that the relational database’s

rigid, tabular data model is a poor match for today’s agile,

iterative development processes and continuous delivery

pipelines.

How the Document Data Model is
Different

The document data model offers a number of properties

that make it flexible and dynamic, but which also enable

you to maintain similar levels of schema control that

relational databases have traditionally afforded.

Firstly the document model is polymorphic – fields can vary

from document to document within a single collection. For

example, you can enforce that all customer documents

contain the customer ID, name, address, and the date they

opened their account. But you may have additional

attributes for only some of your customers such as their

social media handle, interests, or location data from a

mobile app. Documents make modeling such diverse

attributes easy for developers, elegantly handling data of

any structure.

Secondly, there is no need to declare the structure of

documents to the database – documents are

self-describing. Developers can start writing code and

persist objects as they are created.

Thirdly, when you need to make changes to the data model,

the document database continues to store the updated

objects without the need to perform costly ALTER TABLE

operations, update a separate ORM middleware layer, and

coordinate all of these changes across multiple developer,

DBA, and Ops teams. Documents allow multiple versions of

the same schema to exist in the same table space. Old and

new applications can co-exist.

Through these advantages, the flexibility of the document

data model is well suited to the demands of modern

application development practices.

Schema Governance

While a flexible schema is a powerful feature, there may

come a time in an application’s lifecycle – for example

when it’s functionality has reached steady state – that you

want more centralized control over the data structure and

content of your database.

Most document databases push enforcement of these

controls back to the developer to implement in application

code. However more advanced document databases

provide schema validation, using approaches such as the

IETF JSON Schema standard adopted by MongoDB.

Using MongoDB’s schema validation, you can define a

prescribed document structure for each collection, with the

database configured to either reject or log any documents

4

Why_Documents/Output/PDF/(https:/www.zdnet.com/article/databases-slowing-down-application-release-cycles-survey-says/
https://json-schema.org/
https://docs.mongodb.com/manual/core/schema-validation/index.html


that do not conform to it. You can enforce the presence of

mandatory fields, define data types and permissible field

values, and optionally block the addition of new fields that

have not been explicitly approved by the application owner.

With schema validation, you have control to apply data

governance standards to a document schema when an

application is in production, while maintaining the benefits

of a flexible data model in development.

Universal: JSON Documents for
Multi-Model

Lightweight, language-independent, and human readable,

JSON has become an established standard for data

interchange and storage. JSON is used across the

application stack – from frontend web and mobile services,

to inter-service messaging, streaming and APIs, through to

the backend server and data storage. You don’t have to

transpose, serialize and deserialize your data between

different formats in each layer of your application stack,

making development much more fluid.

Superset of all Data Models

Wherever you use them in your application, a major

advantage of JSON documents is that you have the

flexibility to model your data any way your application

needs.

The nesting of arrays and subdocuments makes

documents very powerful at modeling complex

relationships between data. But you can also model flat,

tabular and columnar structures, simple key-value pairs,

text, geospatial and time-series data, or the nodes and

edges of a connected graph data structure. Because of

this flexibility, documents are a superset of all these

different data models.

Rather than use multiple databases each supporting a

specific data model for each part of your application, the

multi-model approach offered by document databases

significantly enhances developer productivity, eliminates

data duplication, and reduces operational costs:

• Developers work with a single query language across all

data models, providing a consistent development

experience.

• Rather than trying to run multiple databases, you

operationalize one platform with consistent controls for

resilience, scalability, and security.

Review our Building with Patterns blog series to learn more

about schema design best practices for different

categories of use-case.

Powerful: Query Data Any Way
You Need. ACID without
Compromise

A major point of differentiation between document

databases is how they allow you to query and manipulate

data. Some offer little more than key-value and range

queries. They also require you to rewrite a complete copy

of the document, even if you are just modifying a single

element in an array.

More advanced document databases offer additional

capabilities that allow you to filter, sort, aggregate and

update any fields, no matter how deeply nested they are

within a document.

The MongoDB Query Language (MQL) and aggregation

pipeline is comprehensive and expressive. You can

compose powerful queries and federate them across all

your data wherever it lives – in databases and search for

transactional applications, and in your data lake for

operational analytics.

As illustrated in Table 1, MQL gives you much more than

just simple lookups. You can create sophisticated

processing pipelines for data analytics and transformations

with aggregations, JOINs, UNIONs, geo, text, and graph

search, and on-demand materialized views.

5

https://www.mongodb.com/blog/post/building-with-patterns-a-summary
https://docs.mongodb.com/manual/crud/
https://docs.mongodb.com/manual/aggregation/#aggregation-pipeline
https://docs.mongodb.com/manual/aggregation/#aggregation-pipeline
https://www.mongodb.com/cloud/atlas
https://www.mongodb.com/atlas/data-lake


ExprExpressive Queriesessive Queries
• Find anyone with phone # “1-212…”
• Check if the person with number “555…” is on the “do not call” list

GeospatialGeospatial • Find the best offer for the customer at geo coordinates of 42nd St. and 6th Ave

TText Searext Searcchh • Find all tweets that mention the firm within the last 2 days

FFaceted Navigationaceted Navigation • Filter results to show only products <$50, size large, and manufactured by ExampleCo

AggrAggregationegation • Count and sort number of customers by city, compute min, max, and average spend

Native Binary JNative Binary JSONSON
SupportSupport

• Add an additional phone number to Mark Smith’s record without rewriting the
document at the client

• Update just 2 phone numbers out of 10
• Sort on the modified date

Fine-grained ArrayFine-grained Array
OperationsOperations

• In Mark Smith’s array of test scores, update every score <70 to be 0

JOIJOIN ($lookup)N ($lookup)
• Query for all San Francisco residences, lookup their transactions, and sum the amount
by person

Graph QueriesGraph Queries
($graphL($graphLookup)ookup)

• Query for all people within 3 degrees of separation from Mark

TTable 1:able 1: MongoDB’s rich query functionality

The SQL to MongoDB mapping chart is a useful resource

for anyone coming to MongoDB from a traditional SQL

development background. It provides examples of SELECT,

INSERT, UPDATE, DELETE and table level SQL

statements and contrasts them directly to the equivalent

MongoDB Query Language syntax.

The SQL to Aggregation mapping chart provides an

overview of common SQL aggregation terms, functions,

and concepts and the corresponding MongoDB

aggregation operators. MongoDB’s aggregation framework

is modeled on the concept of data processing pipelines.

Documents enter a multi-stage pipeline that transforms the

documents into an aggregated result. If you have a query

that returns a set of documents and you then want to

transform them, you simply add new stages as needed. In

the case of SQL, you’d need to rewrite the entire query

from scratch.

For the purposes of illustration, consider the final example

in the SQL to Aggregation mapping chart where you are

looking to count the number of distinct customer IDs and

order_date groupings.

Using SQL, you would first have to write a subquery to

count the distinct groupings. If you then wanted to group

the output into buckets – for example counting all

customers who place one order per day, counting those

who place two to five orders per day, etc – it becomes

highly complex in SQL. Using the MongoDB aggregation

pipeline, you simply add a new stage.

Indexing Documents

For your queries to efficiently access data, you should be

able to declare indexes on any field within your documents,

including fields nested within arrays.

Some document databases support only indexes against a

document’s primary key, limiting how you can access data

without resorting to slow full table scans. Other document

databases support only a limited range of secondary

indexes that are maintained asynchronously from base

document data, introducing the complexity of eventual

consistency to your applications.

MongoDB overcomes these limitations by offering a broad

range of index types and features with language-specific

sort orders to support complex access patterns to your

data. MongoDB indexes can be created and dropped

on-demand to accommodate evolving application

requirements and query patterns.

6

https://docs.mongodb.com/manual/reference/sql-comparison/
https://docs.mongodb.com/manual/reference/sql-aggregation-comparison/
https://docs.mongodb.com/manual/reference/sql-aggregation-comparison/#examples
https://docs.mongodb.com/manual/indexes/


Index TIndex Typesypes Index FIndex Featureatureses

Primary IndexPrimary Index: Every Collection has a primary key
index

TTTL IndexesTL Indexes: Single Field indexes, when expired delete the
document

Compound IndexCompound Index: Index against multiple keys in the
document

Unique IndexUnique Index: Ensures value is not duplicated

MultiKMultiKey Indexey Index: Index into arrays Partial IndexPartial Index: Expression based indexes, allowing indexes on
subsets of data

Lucene IndexLucene Index: Support for full-text search (MongoDB
Atlas)

Case Insensitive IndexesCase Insensitive Indexes: supports text search using case
insensitive search

GeoSpatial IndexesGeoSpatial Indexes: 2d & 2dSphere indexes for
spatial geometries

Sparse IndexSparse Index: Only index documents which have the given
field

WWildcildcarard Indexd Index: Auto-index all matching fields &
nested elements

TTable 2:able 2: MongoDB offers fully-featured secondary indexes

Working with Document Data

To accelerate developer productivity, MongoDB provides

native drivers for all popular programming languages and

frameworks.

Supported drivers include Java, Javascript, C#/.NET, Go,

Python, PHP, Rust, Scala and others. All supported

MongoDB drivers are designed to be idiomatic for the

given programming language – with syntax and behaviors

that are familiar to developers using those languages. This

makes it much more natural for you to work with the

database than string-based languages like SQL.

The documentation includes examples of MongoDB

operations in supported languages – for example inserting

one or multiple documents into a collection. In addition, our

Developer Quick Start channel provides deeper tutorials in

using the MongoDB Query Language with our drivers

across all of the leading programming languages.

Beyond programmatic access, you can also interact with

MongoDB graphically using MongoDB Compass, the free

GUI for MongoDB. Through Compass you can explore your

schema with histograms that show your documents’ fields,

data types, and values. You can visually create queries and

aggregation pipelines from the GUI and then export them

as code to your app; manipulate data, view and create

indexes; build schema validation rules and views; and more.

Much of this functionality is also available to you directly

within your favorite IDEs, including VS Code. These

integrations enable MongoDB to fit seamlessly into your

native workflow and development tools.

Tools and Connectors

In the digital economy, it is vital that developers, business

analysts, and data scientists can extract insights from data

– whether that is for traditional reporting and BI or to build

more intelligent applications with machine learning.

MongoDB provides a range of visualization tools and

connectors to make this straightforward:

• MongoDB Charts is the fastest and easiest way to

create visualizations of MongoDB data. You can

construct graphs and build dashboards, sharing them

with other users for collaboration, and embed them

directly into your web apps to create engaging,

data-driven user experiences.

• The MongoDB Connector for BI lets you use MongoDB

as a data source for your existing SQL-based BI and

analytics platforms such as Tableau, Microstrategy,

Looker, Excel, and more, without having to perform any

ETL operations.

• The MongoDB Connector for Apache Spark exposes

MongoDB data to all of Spark’s libraries, including

7

https://docs.mongodb.com/drivers/
https://docs.mongodb.com/manual/tutorial/insert-documents/
https://docs.mongodb.com/manual/tutorial/insert-documents/
https://developer.mongodb.com/type/quickstart
https://www.mongodb.com/products/compass
https://marketplace.visualstudio.com/items?itemName=mongodb.mongodb-vscode
https://www.mongodb.com/products/charts
https://www.mongodb.com/products/bi-connector
https://www.mongodb.com/products/spark-connector


FigurFigure 2:e 2: Creating rich visualizations of your data with MongoDB Charts

Scala, Java, Python and R. MongoDB data is

materialized as DataFrames and Datasets for

integration with machine learning frameworks.

To make it easy for businesses to act on data in real time,

many developers are building fully reactive, event-driven

data pipelines. MongoDB goes beyond many other

databases with features like Change Streams that allow

applications to access real-time data changes in the

database, while MongoDB Atlas Triggers allow you to

execute server-side logic in response to database change

events. This might be updating related data in other

documents, or calling functions that, for example, send an

email to a new customer when they sign up to your service,

or firing an alert to a user’s mobile app when a large

charge is made to their account.

With the MongoDB Connector for Apache Kafka, you can

build robust data pipelines that move events between

systems in real time, using MongoDB as both a source and

sink for Kafka. The connector is supported by MongoDB

and verified by Confluent.

Data Consistency and Transactional
Integrity

While documents make it much easier and faster to model

an application’s data, developer productivity can be

compromised if they then have to struggle to enforce data

consistency. Some document databases are designed on a

concept of “eventual consistency”, where there are no

guarantees that the application will read the latest version

of the data written to the database. This forces you to write

complex correctness code if you want to ensure data

quality.

More advanced document databases like MongoDB

enforce strong consistency, applying consistency

guarantees to both base data, as well as to native

secondary indexes. Strong consistency ensures the

application can not read data that is potentially stale or that

was previously deleted by another client.

8

https://docs.mongodb.com/manual/changeStreams/
https://docs.atlas.mongodb.com/triggers/index.html
https://www.mongodb.com/kafka-connector


ACID Transactions

Most document databases offer atomic guarantees for

writes to a single document. This is suitable for many

applications because the document model brings together

related data that would otherwise be modeled across

separate parent-child tables in a tabular schema.

With single document atomicity, one or more fields may be

written in a single operation, including updates to multiple

subdocuments and elements of an array. These guarantees

ensure complete isolation as the document is updated; any

errors cause the operation to roll back so that clients

receive a consistent view of the document.

However not every application can be served with atomicity

that is scoped to only a single document. This is why some

document databases go further by offering support for

multi-document ACID transactions. Many implement

multi-document transactions via server-side stored

procedures or in client-side code. In both cases, the

developer still has to write the logic to control the

consistency and isolation necessary to enforce ACID

properties.

MongoDB takes a different approach by implementing

multi-document transactions in a way that is consistent

with relational databases, making them familiar to

developers coming from a SQL background.

• They are fully conversational from the application

(whereas some databases insist that all reads are made

before the first write).

• They also present a similar syntax, supporting multiple

statements with all-or-nothing execution and snapshot

isolation. To ensure these guarantees, it is important

developers apply the appropriate read and write

concerns for their transactions.

To show how straightforward it is to use transactions in

MongoDB, the following code snippets compare the

transactions syntax for a relational database and the

MongoDB Query Language

SQLSQL

START TRANSACTION;
INSERT INTO orders (...) VALUES (...);
UPDATE stock SET quantity=... WHERE ...;
COMMIT;

MongoDB Query Language (MQL)MongoDB Query Language (MQL)

session.startTransaction();
db.orders.insert ({....})
db.stock.update ({ ... } },

{ $set: { quantity: ... } }})
session.commitTransaction();

The availability of multi-document ACID transactions

makes it even easier for developers to address a complete

range of use cases with MongoDB.

Foreign Keys and Referential Integrity

Foreign keys are necessary to maintain referential integrity

in tabular schema models that split data and its

relationships up across multiple tables.

With documents, referential integrity is in-built to the rich,

hierarchical structure of the data model. When modeling a

parent-child or 1:many relationship with subdocuments or

arrays, there is no way you can have an orphan record –

related data is embedded inside a document so you know

the parent exists.

Another use of foreign keys is to verify that the value of a

specific field conforms to a range of permissible values –

e.g., country names or user status. You can do this with

MongoDB’s schema validation as data is written to the

database, avoiding the need to re-verify the data whenever

you retrieve it.

Distributed: Resilient and
Globally Scalable

Unlike monolithic, scale-up relational databases, most

document databases are distributed systems by design.

As illustrated earlier, rather than the flat tabular data model

with masses of inter-relationships between tables and

rows, documents are single, self contained data structures.

Therefore it is much easier to distribute documents across

multiple servers while preserving the locality of related data

in a single, rich document structure and maintaining

performance as the application scales.

9

https://www.mongodb.com/transactions
https://docs.mongodb.com/manual/core/transactions/#read-concern-write-concern-read-preference
https://docs.mongodb.com/manual/core/transactions/#read-concern-write-concern-read-preference


FigurFigure 3:e 3: Serving always-on, globally distributed, write-everywhere apps with MongoDB Atlas Global Clusters

Through replication and sharding, high availability,

horizontal scaling, and geographic distribution are all built

into the database and easy to use.

Replication: No Single Point of Failure

MongoDB replica sets enable you to create up to 50

copies of your data, which can be provisioned across

separate servers and geographic regions. With self-healing

recovery, you have resilience to outages and planned

maintenance events. Replica sets also enable you to:

• Scale read operations, intelligently routing queries to a

copy of the data that is physically closest to the user.

• Isolate different workloads on a single cluster. With

MongoDB Atlas Analytics Nodes you can share the

same data in real time across transactional and

analytical applications, isolating the workloads so they

never contend for resource with one another.

Sharding for Horizontal Scale Out

Through native sharding, MongoDB can scale your

database out across multiple nodes to handle

write-intensive workloads and growing data sizes. Sharding

with MongoDB allows you to seamlessly scale the

database as your applications grow beyond the hardware

limits of a single server, and it does so without adding

complexity to the application.

To respond to evolving workload demands, you can add

and remove shards at any time. You also have the flexibility

to refine your shard key on demand, without impacting

system availability. As your shard key is modified or as you

change the cluster topology, MongoDB will automatically

rebalance data across shards as needed without manual

intervention.

By simply hashing a primary key value, most document

databases randomly spray data across a cluster of nodes.

This imposes performance penalties when data is queried,

and adds application complexity when data needs to be

localized to a specific region.

10

https://docs.atlas.mongodb.com/workload-isolation/index.html#analytics-nodes-for-workload-isolation
https://docs.mongodb.com/manual/sharding/


By exposing multiple sharding policies, MongoDB offers

you a better approach. With ranged, hashed, and zoned

sharding, you can partition your data based on query

patterns or data placement requirements, giving you much

higher scalability across a diverse set of workloads.

Global Clusters in MongoDB Atlas – the fully managed

cloud database service – allows you to quickly implement

zoned sharding using a visual UI or the Atlas API. You can

easily create distributed databases to support

geographically distributed apps, with policies enforcing

data residence within specific regions.

Tiered Scaling

Beyond horizontal scaling, MongoDB also offers tiered

scaling. When working in the cloud, MongoDB Atlas Online

Archive will automatically tier aged data out of the

database onto cloud object storage in the Atlas Data Lake.

Archived data remains fully accessible with federated

queries that span both object and database storage in a

single connection string.

This approach enables you to more economically scale

data storage by moving it to a lower cost storage tier

without losing access to the data, and without grappling

with slow and complex ETL pipelines.

JSON in Relational Databases

With document databases empowering developers to move

faster, most relational databases have added support for

JSON columns. However, simply adding a JSON data type

does not bring the benefits of a native document database.

This is because the relational approach detracts from

developer productivity, rather than improving it. These are

some of the things you will have to deal with:

• PrProprietoprietary Extensionsary Extensions: Working with documents

means using custom, vendor-specific SQL functions

which will not be familiar to most developers, and which

don’t work with the broad ecosystem of SQL tools. Add

low-level JDBC/ODBC drivers and ORMs and you face

complex development processes and low productivity.

• Primitive DatPrimitive Data Handlinga Handling: Presenting JSON data as

simple strings and numbers rather than the rich data

types supported by native document databases such as

MongoDB makes computing, comparing, and sorting

data complex and error prone.

• PPoor Datoor Data Quality & Rigid Ta Quality & Rigid Tablesables: Relational

databases offer little to validate the schema of

documents, so you have no way to apply quality controls

against your JSON data. And you still need to define a

schema for your regular tabular data, with all the

overhead that comes when you need to alter your tables

as your application features evolve.

• LLow Pow Performanceerformance: Most relational databases do not

maintain statistics on JSON data, preventing the query

planner from optimizing queries against documents, and

you from tuning your queries.

• No scNo scale-outale-out: Traditional relational databases offer no

way for you to partition (“shard”) the database across

multiple instances to scale as workloads grow. Instead

you have to implement sharding yourself in the

application layer, or rely on expensive scale-up systems.

Use Cases for Document
Databases

With the ability to work natively with JSON, web and mobile

backends were some of the first use cases for document

databases. The flexibility of the data model and distributed

systems design also appealed to developers working on

fast evolving applications – domains such as content

management, product catalogs, user profiles, and logging,

represented the next wave of use cases.

All of these remain important applications. But as

document databases have rapidly matured – adding more

powerful query engines, offering stronger durability and

transactional guarantees, hardened security controls, and

more – so document databases are now being used for an

even broader range of applications.

Common use cases for MongoDB include the following:

• Customer data management and personalization:

Expedia, YouGov

• Single view (of customer, of city): Barclays, City of

Chicago

11

https://docs.atlas.mongodb.com/global-clusters/
https://docs.atlas.mongodb.com/online-archive/manage-online-archive/
https://docs.atlas.mongodb.com/online-archive/manage-online-archive/
https://docs.mongodb.com/datalake/reference/config-files/data-lake-configuration
https://docs.mongodb.com/datalake/reference/config-files/data-lake-configuration
https://www.mongodb.com/customers/expedia
https://www.mongodb.com/blog/post/leaf-in-the-wild-yougov-powers-market-research-with-globally-distributed-mongodb
https://www.mongodb.com/blog/post/2017-mongodb-innovation-award-winners
https://www.mongodb.com/presentations/launchpad-mongodb-and-the-city-of-chicago
https://www.mongodb.com/presentations/launchpad-mongodb-and-the-city-of-chicago


• IoT and time-series data: Bosch, Mercedes-Benz

• Trading and payments: HSBC, Coinbase

• Ecommerce: Cisco, OTTO

• Product catalogs and content management: eBay,

Adobe

• Gaming: Sega, EA

• Mobile Apps: 7-Eleven, ADP

• Mainframe Offload: Alight Solutions, formerly Aon

Hewitt, LCL

• Online Analytics and AI: KPMG, Continental AG

You can learn more about use cases that are a good fit for

MongoDB, and those where you should evaluate

alternative solutions from our Use Case Guide.

Summary

The use of document databases such as MongoDB has

exploded over the past decade, supporting a range of

transactional, operational, and analytical workloads.

The document data model is intuitive, flexible, universal,

and powerful, enabling developers to build applications

faster, and scale them further than traditional relational

databases. This is why MongoDB has been rated as the

database developers most want to work with in the Stack

Overflow Developer Survey for the past four years.

As most technologies in use today have moved on from the

designs of the 1970s and 80s, it’s about time your

databases did as well. This is why documents represent the

largest advance in database design in a generation.

Getting Started

The best way to explore the power of the document model

is to spin up MongoDB on the fully-managed Atlas cloud

service. Our documentation steps you through how to

create a free MongoDB database cluster in the region and

on the cloud provider of your choice. It includes steps on

how to load our pre-prepared sample datasets, providing

you with a simple way of getting started with documents.

You should also register for the MongoDB University which

provides no-cost, web-based training on the basics of

MongoDB, and provides a curated learning path for

developers covering data modeling through to building your

first application using the most popular programming

languages.

We Can Help

We are the company that builds and runs MongoDB. Over

18,400 organizations rely on our commercial products. We

offer cloud services and software to make your life easier:

MongoDB Atlas is the global cloud database service for

modern applications. Deploy fully managed MongoDB

across AWS, Azure, or Google Cloud with best-in-class

automation and proven practices that guarantee availability,

scalability, and compliance with security standards.

MongoDB Enterprise Advanced is the best way to run

MongoDB on your own infrastructure. It's a finely-tuned

package of advanced software, support, certifications, and

other services designed for the way you do business.

MongoDB Atlas Data Lake allows you to quickly and easily

query data in any format on Amazon S3 using the

MongoDB Query Language and tools. You don’t have to

move data anywhere, you can work with complex data

immediately in its native form, and with its fully-managed,

serverless architecture, you control costs and remove the

operational burden.

MongoDB Charts is the best way to create, share and

embed visualizations of MongoDB data. Build visualizations

quickly and easily to analyze complex, nested data. Embed

individual charts into any web application or assemble them

into live dashboards for sharing.

Realm Mobile Database allows developers to store data

locally on iOS and Android devices using a rich data model

that’s intuitive to them. Combined with the MongoDB

Realm sync-to-Atlas, Realm makes it simple to build

reactive, reliable apps that work even when users are

offline.

MongoDB Realm allows developers to validate and build

key features quickly. Application development services like

Realm Sync for mobile and Realm’s GraphQL service, can

12

https://www.mongodb.com/customers/bosch
https://www.mongodb.com/presentations/telediagnosis-mercedes-benz-powered-by-mongodb
https://www.mongodb.com/blog/post/how-devops-microservices-and-mongodb-are-making-hsbc-simpler-better-and-faster
https://www.mongodb.com/customers/coinbase
https://www.mongodb.com/blog/post/cisco-and-mongodb-e-commerce-transformation
https://www.mongodb.com/customers/otto
https://www.mongodb.com/blog/post/ebay-building-mission-critical-multi-data-center-applications-with-mongodb
https://www.mongodb.com/press/mongodb-delivers-multi-petabyte-data-store-option-adobe-experience-manager
https://www.mongodb.com/blog/post/sega-hardlight-migrates-to-mongodb-atlas-simplify-ops-improve-experience-mobile-gamers
https://www.mongodb.com/blog/post/ea-scores-mongodb-based-fifa-online-3
https://www.mongodb.com/blog/post/2018-mongodb-innovation-award-winners
https://www.mongodb.com/customers/adp
https://www.mongodb.com/blog/post/how-alight-solutions-aon-hewitt-improved-customer-experience-by-over-250x-with-mainframe-offload-and-single-view
https://www.mongodb.com/blog/post/how-alight-solutions-aon-hewitt-improved-customer-experience-by-over-250x-with-mainframe-offload-and-single-view
https://www.mongodb.com/presentations/major-french-bank-lcl-modernises-with-mongodb-to-enhance-customer-experience-and-improve-time-to-market-by-40-percent
https://www.mongodb.com/blog/post/kpmg-france-enters-the-cloud-era-with-new-mongodb-data-lake
https://www.mongodb.com/blog/post/mongodb-helps-bring-new-era-of-safety-and-autonomous-driving-to-continental-ag
https://www.mongodb.com/collateral/use-case-guidance-where-to-use-mongodb
https://www.mongodb.com/blog/post/stack-overflow-research-most-wanted-database
https://www.mongodb.com/blog/post/stack-overflow-research-most-wanted-database
https://docs.atlas.mongodb.com/getting-started/
https://university.mongodb.com/
https://www.mongodb.com/cloud/atlas
https://www.mongodb.com/products/mongodb-enterprise-advanced
https://www.mongodb.com/cloud/data-lake
https://www.mongodb.com/products/charts
https://www.mongodb.com/realm
https://www.mongodb.com/realm


be used with Realm Functions, Triggers, and Data Access

Rules – simplifying the code required to build secure and

performant apps.

MongoDB Cloud Manager is a cloud-based tool that helps

you manage MongoDB on your own infrastructure. With

automated provisioning, fine-grained monitoring, and

continuous backups, you get a full management suite that

reduces operational overhead, while maintaining full control

over your databases.

MongoDB Consulting packages get you to production

faster, help you tune performance in production, help you

scale, and free you up to focus on your next release.

MongoDB Training helps you become a MongoDB expert,

from design to operating mission-critical systems at scale.

Whether you're a developer, DBA, or architect, we can

make you better at MongoDB.

Resources

For more information, please visit mongodb.com or contact

us at sales@mongodb.com.

Case Studies (mongodb.com/customers)

Presentations (mongodb.com/presentations)

Free Online Training (university.mongodb.com)

Webinars and Events (mongodb.com/events)

Documentation (docs.mongodb.com)

MongoDB Atlas database as a service for MongoDB

(mongodb.com/cloud)

MongoDB Enterprise Download (mongodb.com/download)

MongoDB Realm (mongodb.com/realm)

US 866-237-8815 • INTL +1-650-440-4474 • info@mongodb.com
© 2020 MongoDB, Inc. All rights reserved.

13

https://www.mongodb.com/cloud/cloud-manager
https://www.mongodb.com/products/consulting
https://www.mongodb.com/products/training/private
http://www.mongodb.com/
mailto:sales@mongodb.com
http://mongodb.com/customers
http://mongodb.com/presentations
http://university.mongodb.com/
http://mongodb.com/events
http://docs.mongodb.com/
https://www.mongodb.com/cloud
http://mongodb.com/download
https://www.mongodb.com/realm

	Table of Contents
	Introduction1
	Intuitive Data Model: Faster and Easier for Developers2
	Beyond Developer Speed: Application Speed3
	Data Typing3

	Flexible Schema: Dynamically Adapt to Change3
	Schema Governance4

	Universal: JSON Documents for Multi-Model5
	Superset of all Data Models5

	Powerful: Query Data Anyway You Need. ACID without Compromise5
	Indexing Documents6
	Working with Document Data7
	Data Consistency and Transactional Integrity8

	Distributed: Resilient and Globally Scalable9
	Replication: No Single Point of Failure9
	Sharding for Horizontal Scale Out10

	JSON in Relational Databases11
	Use Cases for Document Databases11
	Summary12
	We Can Help12
	Resources13
	Introduction
	Intuitive Data Model: Faster and Easier for Developers
	How the Document Data Model is Different
	Beyond Developer Speed: Application Speed
	Data Typing

	Flexible Schema: Dynamically Adapt to Change
	How the Document Data Model is Different
	Schema Governance

	Universal: JSON Documents for Multi-Model
	Superset of all Data Models

	Powerful: Query Data Any Way You Need. ACID without Compromise
	Indexing Documents
	Working with Document Data
	Tools and Connectors

	Data Consistency and Transactional Integrity
	ACID Transactions
	Foreign Keys and Referential Integrity


	Distributed: Resilient and Globally Scalable
	Replication: No Single Point of Failure
	Sharding for Horizontal Scale Out
	Tiered Scaling


	JSON in Relational Databases
	Use Cases for Document Databases
	Summary
	Getting Started

	We Can Help
	Resources

