
 THE

API Bu er’s
Gu de
Everything Technical

Leaders Need to Know

About Purchasing APIs

2

OVERVIEW

It’s no secret that businesses need to move fast

to stay competitive. With the pace of innovation

showing no signs of slowing, technical leaders are

tasked with increasing velocity. This imperative

has forced a shift not just in how we work — agile

methodologies, DevOps cultures, and CI/CD

practices — but what technical solutions are used

by engineering teams to quickly build and ship

new products and features.

To complicate matters, products and services are

now hyper-connected. According to Forbes,

“How a business wins or loses

is increasingly dependent

on how well they connect to

external party apps, devices,

and services.”

This forces in-house technical teams to

get creative and either become experts at

technologies that are outside of their core

competencies or adopt API solutions to help

quickly build reliable and secure integrations.

This is the classic “Build vs. Buy” conundrum that

technical leaders face while trying to innovate and

go to market faster. It’s no surprise that adopting

APIs is becoming the de facto solution, as it solves

a host of these challenges — namely, the ability to

build integrations without requiring as much time

and resources from engineering teams.

The demand for speed x reliability x security has

created a surge in API solutions. In this guide,

we’ll outline the key questions technical leaders

should ask when considering an API solution and

provide best practices for evaluating options,

including:

1. The Benefits of API Solutions

2. The Cost of Building an Integration In-House

3. Technical Criteria for Evaluating APIs

4. How to Structure a POC (Proof of Concept)

5. How to Successfully Implement an API

ABOUT NYLAS

Nylas is a pioneer and leading provider

of unified communications APIs that allow

developers to connect their applications

to any inbox, calendar, or contacts book in

the world. Over 22,000 developers around

the globe rely on the Nylas communications

platform to handle over 100 million API

requests per day to Gmail, Microsoft

Exchange, Outlook.com, and more. Nylas’

flagship email API has synced more than 15

billion emails to date and is used by global

enterprises such as Hyundai, Fox News Corp,

and Realtor.com.

3

The Benefits of API
Solutions
The #1 reason technical leaders purchase APIs is to help their teams launch

new features faster. APIs help engineering teams tackle specific, domain-

centric challenges that otherwise require specialized expertise and skill-sets.

However, beyond the ability to build simply integrations quickly, APIs also

help with:

SECURITY

APIs can offer specialized, enhanced security. Reliable providers can tout

security in the form of SOC 2 certification, GDPR compliance, HIPAA and

FINRA readiness, and Privacy Shield Certification. Adopting these solutions

has the carry-over effect of helping you maintain compliance as security

requirements continue to evolve and change, which should help your

engineering teams sleep easier at night.

RELIABILITY

Accelerating growth and expanding to meet the needs of

a booming base of customers is a great challenge to face,

but as products scale, so do bugs and customer support

issues. This is a reason technical leaders tend to adopt

API solutions as they can reduce (or eliminate) the need

for ongoing maintenance, bugs, and support.

INNOVATION

Adopting an API solution gives teams valuable time back to solve other

challenges and focus on building robust, differentiating features. The core

need to increase the speed of innovation is why Gartner VP of Research

Paolo Malinverno (10 Steps to the API Economy) stated, “We already live

in an API economy where CIOs must look beyond APIs as technology and

instead build their company’s business models, digital strategies, and

ecosystems on them.”

We already live in an API

economy where CIOs must look

beyond APIs as technology

and instead build their

company’s business models,

digital strategies, and

ecosystems on them.

https://www.gartner.com/smarterwithgartner/the-road-to-the-api-economy/

4

USER ENGAGEMENT

Integrated products tend to be “sticky” products, as users favor applications

that integrate with the services they rely on, such as SMS, email, or GPS.

Delivering tightly integrated features removes the need for your users to

abandon your “home base” and switch between applications.

REVENUE

Using in-house developers to build direct integrations can be a costly

drain on resources. However, the real problem is when feature and product

launches are delayed due to unforeseen complexities inherent in building

direct integrations. This is where revenue can take a hit; the maxim of

“features = customer acquisition = revenue” almost always holds true. This

is why technical leaders also tend to look to APIs as an investment in both

customer engagement and retention.

The Cost of Building
an Integration In-House
Building an integration in-house requires technical teams to become

experts in specialized areas — such as processing payments or sending and

receiving SMS communications. Depending on the type of integration that

is being built and the data that is processed, engineering teams may also

need to become experts in regulatory practices for processing data in the

banking, healthcare, or legal industries.

This means the cost of ownership of building and maintaining an integration

in-house can be quite steep. Here’s an estimated breakdown of a few key

areas:

HEADCOUNT

According to Glassdoor, the average level 1 software engineer’s salary in

the US is approximately $103,000 per year. In certain areas (such as the

San Francisco Bay Area) salaries can quickly rise by 50% or greater vs. the

national average.

https://www.glassdoor.com/Salaries/software-engineer-salary-SRCH_KO0,17.htm

5

Ultimately, headcount costs vary depending on the complexity of the

integration. When assessing the integration, take into account everything

from scoping, building, testing, and any ongoing maintenance and support

that is required. In a conservative scenario where an integration takes just

two engineers six weeks to build start-to-finish and another 4 weeks to

maintain in the first 12 months, the headcount costs eclipse $35,000.

SERVERS

Server costs can vary wildly depending on the number of users you have

as well as the type of data you’re processing. Larger data files that update

frequently (like email data, photos, and documents) are the most costly.

Other factors to consider are the service level you request out of your cloud

storage system, as well as the amount of data you’re storing, and the amount

of time you retain that data. AWS charges around $.10 per gigabyte per

month, so if you need to retain and store 50 terabytes of data, that would

cost you $60,000 per year, not inclusive of data processing costs (i.e., the

cost of servers) or additional account services.

SECURITY

If you are processing any user data, you must consider security. Calculate

the cost of the staff you’ll need to oversee the security audits and

implementation of security processes and features. Auditing firms range

wildly depending on the scope of the audit and the prestige of the firm —

this can run anywhere from a few thousand dollars to tens of thousands per

month for the duration of the engagement.

Attaining industry-standard security certifications like SOC 2 runs an

additional $20,000-$30,000 for the most basic certification. This is another

reason why technical leaders look to API vendors as they can help decrease

security costs and drastically reduce the amount of implementation or

oversight needed for the integration.

SUPPORT

The work isn’t done once you’ve built the integration — there are additional

costs required to support the integration over time. This includes debugging

customer issues, managing version updates, and diving into edge case

issues that arise.

*Note that these costs

are estimates based on

industry averages.

https://aws.amazon.com/ebs/pricing/
https://www.trustnetinc.com/pricing/soc-ssae18-report-cost/

6

In some cases, a team of technical support engineers may be required to

debug your customer’s issues. To put this in context, Glassdoor reports that

a single Technical Support Engineer’s salary runs $63,000 on average.

THE BENEFITS AND DRAWBACKS OF “BYO”

The “BYO” approach (Building Your Own) can have its benefits, but the path

is peppered with landmines. Here’s a quick side-by-side comparison of

taking the BYO route.

BENEFITS OF BYO

Full control over your
infrastructure

Decreased vendor reliance

Build expertise and experience
in a niche field/topic

No contracts or subscription fees

DRAWBACKS OF BYO

Difficult and costly to maintain

Increase in customer support
overhead

Separate security infrastructure
needed for integration

Slower time to market for
integrations

Purchasing an API has many benefits including lowering workload, improved

security, and a faster go to market time, but it also comes with some

drawbacks.

BENEFITS OF AN API

Focus on top business priorities:
innovation, revenue, launching
products faster, reaching new
audiences

Free up time for developers and
engineers to build new features

Low maintenance

Security is handled for you

Go to market faster

No breaking changes

DRAWBACKS OF AN API

Loss of complete control over end-
to-end integration

Reliance on third-party vendor

Contracts and subscription fees

https://www.glassdoor.com/Salaries/technical-support-engineer-salary-SRCH_KO0,26.htm

7

COMPLEXITY: THE CASE AGAINST BUILDING
DIRECT INTEGRATIONS

Complexity is one of the biggest reasons direct integrations fail. For

example, if your product is a CRM and you want to integrate your user’s

email accounts so they can send and receive email from within your interface,

you’ll need to build individual, direct integrations for each email service

provider (Gmail, Exchange, Outlook).

Lexicata, a large legal software company based in Los

Angeles, reduced costs by adopting the Nylas email API.

“It would have cost us at least a year to build out just the

Exchange and Google integration,” says Aaron George,

Director of Product Management. By building on top of

an API, the Lexicata team was able to focus on other core

components of their CRM.

The same can be said for financial transactions —building infrastructure in

your app to support connectivity to one bank takes long enough, let alone

adding new banks or different payment options (like PayPal).

Stripe, a payments API founded in 2010, provides a fully integrated

payments platform that helps solve this challenge. Stripe’s customers embed

the API into their platform, allowing them to accept payments from various

payment providers, set up recurring monthly bills, and increase revenue

through a streamlined checkout process, all without dealing with the

complexity of building and managing direct integrations.

PersistIQ, a provider of sales engagement tools, used the Nylas APIs to

remove the complexity of managing direct integrations. “At the time, the

decision was ‘We can figure this out, or you guys can.’ It just seemed cleaner

and easier to integrate with one provider,” said Cyrus Karbassiyoon, co-

founder and CTO at PersistIQ. “It was too hard to figure out how to build the

integration ourselves while also figuring out what users want from the rest of

our product.”

The more complex the integration is, and the more products you need

to integrate with, the more daunting the prospect of building direct

integrations becomes. This is where APIs can be a big boon for go-to-market

speed and team efficiency.

“It would have cost us at

least a year to build out

just the Exchange and Google

integration.”

8

Technical Criteria
for Evaluating APIs
Since APIs power critical features within your application, you’ll want to

ensure they measure up in key areas. Here are the criteria you should

consider when assessing API solutions:

PERFORMANCE

A good API should perform well, whether it is your first

request or the millionth request. You should first measure

an API’s performance based on response time — i.e.,

how quickly does the API return data after your platform

requests it? This is critical as users are unforgiving

when it comes to poor performance — in the world of

e-commerce, for example, shoppers usually abandon shopping carts when

they have to wait longer than 3 seconds for web pages to load.

Note that there are factors that could add latency include the server, ISP,

or operating system. On mobile devices, response times are impacted

by the carrier’s network or WiFi speeds. For web apps, the #1 cause of

latency is complexity, or the hodgepodge of third-party services, cloud-

based computing, and self-hosted infrastructure. This is why it is important

to have a robust testing plan in place for any API to ensure it delivers the

performance your users need.

RELIABILITY

APIs should have a guaranteed 99.9% uptime or greater.

When APIs experience downtime, the parts of your

service that the API supports may be temporarily

unavailable, which is why availability metrics are so

important. Even one hour of downtime can cost tens

or hundreds of thousands of dollars of lost revenue.

Demand that any API vendor have an SLA (Service Level

Agreement) in place to guarantee reliability.

A good API should perform

well, whether it is your

first request or the

millionth request.

Demand that any API vendor

have an SLA (Service Level

Agreement) in place to

guarantee reliability.

9

SECURITY

Since APIs transfer a lot of rich data, they’re often secured based upon the

highest standards. Enterprise-grade compliance certifications to look for

include SOC 2 Certification, GDPR Compliance, EU Privacy Shield Certification,

and HIPAA and FINRA readiness. As an extra layer of security, APIs should

undergo third-party audits and rigorous penetration tests. Ask for proof from

a vendor that third parties regularly test their technology for security.

COST

APIs are priced in different ways — typically either the number of API calls,

size of data transferred, the number of packages sent or received, or the

number of synced users. Some even use a combination of these variables

when calculating your monthly cost. Regardless of the model, billing and

pricing should be transparent and predictable. Ask for packages where there

is a monthly or annual commitment that locks in rates, and push for a “flat rate”

option if you have a high number of active users that are using this feature.

EASE OF INTEGRATION

An API should be easy to integrate with. Look for user-friendly, well-

organized documentation, onboarding guides and support, and SDK

(software development kit) availability. Also, ask the vendor for customer

references that attest to the impact of the integration in terms of time

savings and security enhancements.

10 POPULAR BUSINESS APIS

Here are 10 of the top rated APIs for specific business functions:

Send voice, SMS,

and videos from

your platform.

Embed any shipping

provider’s data into

your platform so users

can receive, print, and

track shipments all

from your application.

Process and operate

online payments

- technical, fraud

prevention,

and banking

infrastructure.

Connect consumer’s

bank accounts to

your application for

personal finance

software.

10

In-store and mobile

payment processing

platform, accepting

more than 130

currencies.

Embed reviews and

ratings for more

than 50 million

businesses based

on geographic

regions or specific

locations.

An online

accounting system

that gives users

access to bank

transactions,

invoices, and

reports.

Single-click access

to applications by

eliminating the need

to remember strong

passwords.

Connect your

application to any

inbox, calendar,

or contacts book

in the world.

Deploy user

authentication to

your application in a

matter of minutes.

How to Structure
a POC (Proof of
Concept)
Once you’ve assessed whether an API solution is fit-for-purpose, you need

to go through a test phase to validate the vendor’s claims. Here are the most

important steps for building a robust POC (Proof of Concept) where you can

thoroughly test an API before moving onto a full implementation:

IDENTIFY A USE CASE

The first step in testing an API is to develop a customer use case — for

instance, a feature your customers have been asking for; a disruptive feature

11

your competitors have; or a promising new technology that helps protect

your product’s unique value.

Likewise, you can also consider internal use cases. Is there a significant tool

employees use that needs a specific feature to help improve productivity?

For example, finding an API that could collect and unify all invoice

attachments across every department into one unified source could save

your accounting team hundreds of hours of work per year.

DEFINE METRICS FOR SUCCESS

Allocate the timeframe in which you’d like to test the API. Be sure to give the

engineering team ample notice, so they can complete their current projects

before starting on the POC. Clearly define how many resources you’ll need

to allocate to test the product, and set a hard deadline for the test to be

complete.

INTERVIEW INTERNAL STAKEHOLDERS

A great API should have excellent, clear documentation

that’s easy to understand. However, this alone is not

enough to ensure a successful POC. As your engineering

team starts building out the implementation, ask them

about their expectations. Document and share their

feedback with the API vendor, so they understand your

team’s needs. Check in frequently to ensure the POC is

progressing according to their expectations.

SECURE A SUPPORT CONTACT

As you start your trial of the product, you may have questions for the

support team. How responsive is the API provider’s customer support team?

Do they offer support SLAs with response times? Establish regular check-ins

to discuss any difficulties the team has with the vendor so they can quickly

provide support.

GET ARMED WITH SDKS (SOFTWARE DEVELOPMENT KITS)

Every credible API provider should offer SDKs and polished documentation

that accelerates the integration. SDKs can make integrating as quick as a week

A great API should

have excellent, clear

documentation that’s

easy to understand.

12

or two (depending on the complexity of your integration) — saving a few

months over building your integration without an API or SDKs. Be sure that the

vendor provides you with their SDKs before officially launching the POC.

LAUNCH THE TEST

You’ll always want to test drive an API before buying it. Most APIs offer full-

featured trials that allow your developers to test the API before signing a

contract. Test the API for the primary use case you have in mind, as well as

for any adjacent use cases.

For example, if most of your customers pay via ACH, you want to ensure the

ACH integration works smoothly across providers. If only a small portion of

users pay via credit card, you’ll still want to stress test at least 1-2 different

credit card payments via the API.

How to Successfully
Implement an API
Once you’ve tested the API and you’re happy with the results, follow these

steps to fully implement the API:

DEFINE THE PROTOTYPE

With the POC completed, you’re now ready to create a proper prototype.

While the POC shows us whether or not a product or feature can be

developed, a prototype shows how it will be developed.

Gather the key team leads involved in the project and decide what the POC

should look like. Bring in technical team members who are building the

integration to understand how long the POC takes to build. Depending on

the complexity of the project, this could be anywhere from a few days to a

few weeks.

13

ASSIGN ROLES

Larger, more complex integrations require more team

members than smaller ones. At a minimum, you’ll want

one engineer and an Engineering or Product Manager to

manage timelines and to select the significant milestones.

You’ll also want to bring in a UX/design resource to

design the interface for the features that the API powers

(like your billing/invoicing portal). If the project specs are

documented, the UX design can take place in parallel

with the implementation of the API.

BUILD & TEST

An API integration can take anywhere from a few days to a few weeks,

depending on the scope and complexity of the project. Once the prototype

is ready, share it amongst a select pool of customers with the expectation

that this is a beta test. Collect qualitative and quantitative data on how the

features powered by the API are used. Is the interface intuitive? Are there

any bugs or snags? Relay this feedback to the engineering team. Once the

prototype is smoothed out, you’re ready to complete the MVP (minimum

viable product).

RELEASE THE MVP

An MVP is a functional solution that’s ready for your full set of customers

to use. The MVP gives you the ability to collect even more data from your

broader customer pool, and — perhaps most importantly —to start earning

revenue from these new features.

ANALYZE

Track the adoption of the new integration against the success metrics you set

out at the onset of the project. Has the API increased user engagement? Has

it increased revenue/sales? How can you continue to add value to your users

around this feature? This feedback should work as a constant loop that helps

inform iterations including additional features that can be built on top of the

integration.

If the project specs are

documented, the UX design

can take place in parallel

with the implementation of

the API.

CITATIONS

1. �Gartner

2. �Gartner 2019 SaaS
spend

3. �Blissfully: “2019
Annual SaaS Trends
Report”

https://www.gartner.com/smarterwithgartner/the-road-to-the-api-economy/

https://www.gartner.com/smarterwithgartner/cloud-to-represent-75-of-total-spend-on-crm-in-2019/
https://www.gartner.com/smarterwithgartner/cloud-to-represent-75-of-total-spend-on-crm-in-2019/
https://www.blissfully.com/saas-trends/2019-annual/

https://www.blissfully.com/saas-trends/2019-annual/

https://www.blissfully.com/saas-trends/2019-annual/

Nylas.com Github.com/Nylas @Nylas

https://www.nylas.com/
https://github.com/Nylas
https://twitter.com/nylas

