
Building modern apps
with Linux containers
Containers—the lightweight, cloud-native
strategy that’s redefining application
development as you know it

See what’s inside

 03 INTRODUCTION

04 LOOKING BACK

05 CHAPTER 1: The basics
 05 What is a Linux container?

 05 Better, faster, cheaper—
you can have all three

 06 Virtualization vs. containers

 07 Containers + Microservices =
The ultimate power couple

 07 Reduce, reuse, recycle with container images

08 CHAPTER 2: Improve your productivity
 08 Containers and you
 08 Be flexible

 08 Think bigger

 08 Work smarter

 09 Achieve (actual) standardization

 09 Write once, run anywhere

 09 Deliver exceptional application quality

 10 Use your favorite tools and languages

 10 Increase your personal value

 11 CHAPTER 3: Containers in the wild
 11 Lift and shift

 11 Refactor

 12 New application development
 12 Microservices

 12 Hybrid applications

 12 Repetitive jobs and tasks

 12 Artificial intelligence and machine learning

 13 CHAPTER 4: Considerations and challenges
 13 Things to consider before you get started
 13 Determine your data strategy

 13 Get your containers communicating

 13 Synchronize and standardize

 14 Capture all the logs

 14 Enhance security

 14 Challenges
 14 Keep ahead of evolving technology

 14 Embrace DevOps culture

 14 Stay on top of security

 14 Manage and monitor

 15 FINAL THOUGHTS
 15 Learn more

 15 Explore additional resources

2Building modern apps with Linux containers

Although containers are a relatively new technology, developers
worldwide are embracing them as valuable and essential
tools for modern development. Rapidly maturing container
technology and advancements in container orchestration and
management tools have allowed container adoption to reach a
tipping point, with 49% of developers now using them, according
to a 2018 Digital Ocean report.1

Introduction

What’s inside the box?

The days of monolithic application development are over.
And while “digital transformation” may sound like a fancy
buzzword that ranks alongside blockchain, agile, and cloud, it’s
not all hype. With transformation comes unprecedented levels
of speed, consistency, and efficiency that are fundamentally
changing the way developers do their jobs.

Yes, that includes you.

Much of the burden and pressure to deliver on the promises made
by the business falls on the shoulders of IT developers. In a world
where users demand new applications, features, and updates
across all their devices in real time, container technology is your
secret weapon. Containers let you work smarter by creating
consistent development environments to rapidly develop and
deliver cloud-native applications that can run anywhere. With
containers, you can also deliver microservices that eliminate
lengthy regression testing cycles, deploy without disruption,
and provide a mechanism for patching or rolling back code on
a feature-by-feature basis.

Learn how to deploy containerized applications.
Register for the training course

24%

23%

10%
4%

Easy scalability

Simplified testing

Faster testing

Avoidance of
vendor lock-in

Other

10%0% 20% 30% 40% 50% 60%

57%

46%

36%

28%

27%

JavaScript

Python

PHP

Go

Java™

39%

LANGUAGES USED TO DEVELOP
ON CONTAINERS1

BENEFITS OF CONTAINERS1

 1 Digital Ocean. Currents. June 2018.

3Building modern apps with Linux containers

https://www.redhat.com/en/services/training/do080-deploying-containerized-applications-technical-overview
https://www.digitalocean.com/currents/june-2018/

 4 Fowler, Martin. “Microservices: a definition of this new architectural term.” March 2014.

Looking back

“Johannes Gutenberg’s printing press created
a surge in demand for spectacles, as the new
practice of reading made Europeans across
the continent suddenly realize that they were
farsighted; the market demand for spectacles
encouraged a growing number of people to
produce and experiment with lenses, which led
to the invention of the microscope, which shortly
thereafter enabled us to perceive that our bodies
were made up of microscopic cells.”

Steven Johnson
How We Got to Now: Six Innovations That Made the Modern World

Like many other great technological advancements, containers
are the culmination of several concepts and technologies
that evolved over time. Back in the 1970s and ’80s, we
started breaking down code into objects, toying with the
ideas of abstraction and isolation. We quickly learned that
securing parts of our code, while exposing others, helped us
maintain greater control over processing and data handling
while allowing us the flexibility to integrate with adjacent
systems. These advancements led to further layering and
abstracting processes and components, and we evolved
toward multi-tiered environments and service-oriented
architectures (SOAs) that further isolated data layers away
from business code and user interfaces. Throughout this time,
we also evolved our methodologies from monolithic waterfall
development, through the software development life cycle
(SDLC), into an era of agile development and scrum, and finally,
to DevOps and continuous delivery.

From a business perspective, all these advancements served
to lighten the development process to produce code faster,
cheaper, and better. From a developer’s standpoint, each
new iteration of innovation shortened the development cycle
and demanded more rigorous adherence to patterns and
methodologies. While every advancement was a step in the
right direction, the advent of containers brought everything
together and provided us with the solution that enabled true
flexibility, interoperability, and portability for our code.

The journey is the destination Looking specifically at the evolution of Linux®
containers, you can see how impactful they’ve
become over the last 15-20 years.

2000
Container technology first appeared as FreeBSD
jails, allowing servers to partition into subsystems
where a developer could work and not compromise
the entire system.

2001
The container concept found its way into Linux via the
Linux-VServer project with the goal of running several
general-purpose Linux servers on a single box.

2007
Additional technologies combined to make
containerization a reality. Specifically, control
groups (cgroups), systemd, and kernel/user
namespaces added overall control and
virtualization capabilities that served as the
framework for separating environments.

2008
Docker came onto the scene with its container
technology, which added even more concepts and
tooling that allowed users to quickly build new
layered containers and share them with others.

2012
Microservice architecture evolved as a specialization
and refinement of SOA used to build flexible,
independent, and deployable software.4

2015
Kubernetes was released as an open source container
orchestration system for automating application
deployment, scaling, and management.

4Building modern apps with Linux containers

https://martinfowler.com/articles/microservices.html

Chapter 1: The basics

What is a Linux container?

At its core, a container is simply a new way to abstract one or more processes from the rest of a system. Containers lighten the load, so
to speak, allowing you to work on small subsets of code without impacting the overall runtime environment. They also provide a standard
way to package and isolate application code, configurations, and dependencies into a single object.

Host operating system

Supporting and runtime files

Application and services
C

O
N

T
A

IN
E

R

Better, faster, cheaper—you can have all three

The real value of containers is portability. With all the files
necessary to run a containerized application, feature, or
component in a single, distinct image, Linux containers
provide consistency and predictability as they move from
development to testing, and finally to production. This makes
container deployment much quicker, more reliable, and less
expensive than with monolithic development pipelines that
rely on replicated development, testing, and production
environments. And, you can write and develop containerized
code once and deploy it to multiple operating environments
without the need for additional development time, lengthy
testing cycles, or specific deployment processes.

Containers share an operating system (OS) installed on
the server and run as resource-isolated processes, ensuring
quick, reliable, and consistent deployments, regardless of
the environment.

The real value of containers is portability.

5Building modern apps with Linux containers

Chapter 1: The basics

Virtualization vs. containers

While containers and virtualization seem similar, they are in fact quite different.

Host operating system

Hypervisor

Guest
0S

App App App

Guest
0S

Guest
0S

VIRTUALIZATION

Host operating system

Supporting and
runtime files

Supporting and
runtime files

App App App App App

CONTAINERS

Virtualization lets you run multiple separate
computers on a single piece of hardware.
The OSs and their applications share hardware
resources from a single host server. Each virtual
machine (VM) requires its own underlying OS.
A hypervisor creates and runs the VMs.

A container isolates the application processes from
the rest of the system and includes only what’s
necessary to run a specific application, including
some OS files, supporting programs and libraries,
and system resources. Containers are lightweight,
start much faster than VMs, and use a fraction of
the memory of VMs.

VS.

6Building modern apps with Linux containers

000110010100011011100010010010100011111100010010001010001

01001000111110010010010101010001001001010010101001000100

101011100010001010001010101011001011010100100100100100100

10001001001000100001001001001000111110001011110010010100

000110010100011011100010010010100011111100010010001010001

01001000111110010010010101010001001001010010101001000100

101011100010001010001010101011001011010100100100100100100

10001001001000100001001001001000111110001011110010010100

010111001011101000101110001000100100010101100010010001001

01000100010001100011010010100010010101000100100010011111

00101101100100001000111100010010001001001000011111000101

000110010100011011100010010010100011111100010010001010001

01001000111110010010010101010001001001010010101001000100

101011100010001010001010101011001011010100100100100100100

10001001001000100001001001001000111110001011110010010100

010111001011101000101110001000100100010101100010010001001

01000100010001100011010010100010010101000100100010011111

Reduce, reuse, recycle with container images

If there’s one thing developers love, it’s the ability to reuse code. With containers, you can
create base container images, add them to a repository, and pull them down whenever you’re
ready to start a new project. Because a base container image is an unchangeable, static file
that does not include any executables, it’s both consistent and portable, with the ability to run
an isolated process on any infrastructure. The image consists of system libraries, system tools,
and other platform settings that your applications need to run.

You can create your own container images, or you can choose from available public
repositories. Many software vendors, including Red Hat and Microsoft, create publicly
available images of their products.

Microservices are small, self-contained, single-function applications that communicate through
application programming interfaces (APIs). A core principle of microservices architecture is
that each microservice handles one, and only one, function and provides a well-defined API that
allows communication into and out of the code. Microservices are the ultimate encapsulation
mechanism. Because microservices are fully self-contained, making a change to a microservice
introduces less risk to the overall application than changing code in a monolithic code structure.
Also, microservices are faster and more agile than traditional applications because of their
self-contained nature and their independent use of system resources.

Containers and microservices can exist independently and often do. Individually, they
serve different purposes. When they are implemented together, they are a powerful tool
for creating portable, cloud-native applications.

Think of containers as an enabling technology for microservices. Containers are abstracted
away from the host OS and contain all the supporting and runtime files they need to execute
the code contained within them. When you deploy a container, it will run regardless of the
underlying OS. Containers are portable and can be deployed across multiple clouds and
devices without rebuilding or additional testing.

Microservices development with containerized deployment is becoming the norm for
enterprise development. The architecture offers unprecedented levels of agility, speed, and
resource efficiency for many tasks that you, as a developer, work on daily. Using containers and
microservices in a DevOps environment allows developers to deploy each service independently.
This practice eliminates the need to merge code changes, greatly improves testing, and helps
with fault isolation in both testing and production. Also, parallel developer teams can work on the
loosely coupled applications and choose the technology stack best suited for their requirements
without enforcing those requirements on other teams.

Containers + Microservices = The ultimate power couple

Now that you have a general understanding of what a container is, let’s explore the
most important use of containers for developers—microservices development.

Microservices
and containers
are a powerful
combination,
especially when
integrated
into a DevOps
environment.

TOP 5 BENEFITS OF
CONTAINER IMAGES

Automate build and
deployment processes

Tag for ease of location
and download

Simplify vulnerability
scanning

Enforce coding standards
and policies

Save time and
encourage reuse

1

2

3

4

5

Chapter 1: The basics

7Building modern apps with Linux containers

Chapter 2: Improve your productivity

Containers and you

Containers provide a streamlined approach to build, test, deploy,
and redeploy applications, which makes them a great choice for
everything from simple projects to mission-critical applications.
There are several benefits to containers for all of IT and the
business, but let’s take a moment to focus on how they can
enhance your day-to-day success as a developer.

Be flexible

When it comes to development cycles, there’s never enough
time. The business has its roadmap, your test team has a backlog
of nagging defects, operations teams struggle to keep systems
patched and secure, and your customers have their own ideas of
what’s important. Unfortunately, there are only so many hours
in the day, and you have only so many developers working on
any given project. When your applications run on a foundation
of containers, this allows you, the business, and the operations
teams to respond in real time to change logs, defects, security
concerns, patch levels, and new customer feature requests. And
because you can deploy a single container without impacting
the rest of your application architecture, you can make changes
on the fly without waiting on adjacent teams to finish their
development cycles.

Think bigger

Containers are lightweight and can often start in milliseconds.
They do not require an OS boot, and they load only the
dependencies that they need. Creating, replicating, or destroying
containers can also be accomplished in a matter of seconds.
When your customers create seasonal loads, or the business
decides to add new teams of users, your operations team can
respond by adding resources that your containers will naturally
use as needed. Additionally, you can scale out containerized
applications to new users—even globally—by simply deploying
to new clouds.

Work smarter

Containers allow you to focus on your application logic
without worrying about specific OS versions and application
configurations. After all, that’s why you have IT operations, right?
Additionally, containers let you package your code, dependencies,
and configurations into a single, encapsulated piece that can
be easily version-controlled, tested, and deployed. Combining
containers with a service-based architecture also makes it easier
to support, test, and enhance your applications.

8Building modern apps with Linux containers

Achieve (actual) standardization

We all know that a standardized set of environments from
development through production is somewhat of a unicorn. Well,
get ready for some magic. One of the most powerful benefits of
containers is that they standardize local, development, test, QA,
and production environments. With this level of predictability,
you’ll be able to spin up isolated environments and spend less
time debugging and diagnosing issues caused by differences in
patch levels, operating systems, and applications. Instead, you’ll
spend your time developing and shipping new functionality.
Additionally, new developers on the team can start working much
faster without having to spend time installing and configuring
their local development environments. They can simply pull down
a container image from a repository and start coding.

Write once, run anywhere

The phrase “write once, run anywhere” has historically come
with caveats, the biggest of which involved the OS where you
developed your application. You could run your application
anywhere—if the target system ran the same OS. With containers,
your code really can run in virtually any environment, regardless
of where it was developed. When you develop inside a container,
you can deploy to Linux, Windows, and Mac OS across bare
metal, virtual machines, public clouds, private clouds, and hybrid
environments. Also, the widespread adoption of the Docker open
source project provides a stable way to automate the deployment
of applications inside containers, freeing up your time to jump
into your next development cycle.

Deliver exceptional application quality

Containers make testing and troubleshooting faster and easier
for everyone involved. For you, the ability to contain development
to a single application feature means less chance of introducing
inadvertent errors in adjacent code. Once you’ve put your
container in version control, QA teams can then test directly
against your container image instead of pulling and building
the entire application from a continuous integration (CI) server,
which simplifies testing and saves time.

Containers can also help QA and support teams identify the root
cause of an application problem faster. Because of the API-
driven, loose coupling of code, there are fewer interdependencies
to sort through when something unexpected happens. Engineers
can get to the bottom of an issue quickly and pinpoint the exact
container that caused the error. Once the problem is identified,
containers make it easy to revert changes. Single containers can
be rolled back without affecting the rest of the application. When
the container comes back to your desk, you’ll spend less time
troubleshooting and fixing the issue and more time developing
features that your business leaders and customers want. With
containers, same-day break-fix becomes a reality, which keeps
your customers and your manager happy.

Chapter 2: Improve your productivity

According to a recent IDC study,

55% of IT leaders deployed containers on-site, whereas 45%
deployed them in a public cloud.5

55%45%

9Building modern apps with Linux containers

 5 IDC Study. “Container Infrastructure Market Assessment: Bridging Legacy and Cloud-Native Architectures — User Survey Summary.” March 2018.

Use your favorite tools and languages

As a developer, you know how liberating it can be when you get to choose the tools or languages you want to use on a project.
Containers give you the flexibility to do that. Some application runtimes are better suited for certain types of workloads or architectures.
For example, vert.x encourages distributed reactive architectures, which can be great for responsive, real-time apps such as the ones
required for Internet of Things (IoT) devices. While you could build this type of app in another language, you’d have to reinvent what
vert.x provides natively. Because containers are truly agnostic, giving you flexibility and control, you can choose the tool that works
for one app without forcing entire application teams to adopt the same tools or languages for their projects.

Increase your personal value

Let’s get real on this last benefit. When it comes to your career, if you don’t evolve your skills with advancing technology, you end up
getting left behind—or worse, getting stuck working on legacy apps until you retire. Opportunities for growth and development are
critical to your success. Plus, developers typically enjoy learning new technology. It’s a perk of the job.

Microservices, containers, and container orchestration technologies offer an attractive combination of being technically challenging
while also being in high demand. Based on a 2018 Red Hat® survey, container usage is expected to increase by 89% in the next two
years and will continue the trend of accelerated mass adoption into the future.6 When you master container-based microservices
development, you give yourself new opportunities to grow your career and deliver value to your company.

CONTAINER CONTAINER CONTAINER CONTAINER

CONTAINER CONTAINER CONTAINER CONTAINER

JBoss DG
datastore

MySQL
datastore

PostgreSQL
datastore

MongoDB
datastore

NodeJS
service

Spring Boot
service

JBoss® EAP
service

Tomcat
service

Mobile

Re
st

 A
P

I

Re
st

 A
P

I

Re
st

 A
P

I

Re
st

 A
P

I

Web app IoT gateway Server

Figure 1: Improve development flexibility and simplify deployment with containers

Chapter 2: Improve your productivity

10Building modern apps with Linux containers

 6 Dawson, Margaret. “Red Hat Global Customer Tech Outlook 2019: Automation, cloud & security lead funding priorities.” Red Hat Blog. Dec. 18, 2018.

https://www.redhat.com/en/blog/red-hat-global-customer-tech-outlook-2019-automation-cloud-security-lead-funding-priorities?source=bloglisting

If you haven’t already, you’ll most likely be asked to deliver your code in containers in the near future. As businesses undergo digital
transformation exercises, leadership teams learn how containers allow IT organizations to better use resources, both human and computer,
to reduce costs, improve efficiency, and deliver value. As you’re planning your projects, keep these use cases in mind, and bring the idea of
containers to the table during your next team meeting.

Lift and shift

While there is much talk about cloud-native applications, most
enterprise applications still tend to be monolithic. Lift and shift
refers to the process of migrating existing applications to a
more modern, cloud-native architecture. Existing applications
are simply migrated to the cloud with the least amount of
code changes as possible. Typically, this process is brief and
preferred by business leaders because they can use their
existing mission-critical applications to drive better value and
performance without heavily investing in a massive redesign.

While lift and shift is simple and fast, it is typically seen as a
stopgap solution because it doesn’t fully take advantage of
cloud-specific tools. If you lift and shift one of your applications,
you will want to re-evaluate at some point to make sure it is still
delivering value and to make recommendations for refactoring
or replacement.

Refactor

Refactoring has been a staple of application modernization
since the first application became obsolete. In this case,
we’re specifically talking about refactoring an application
for containers. While refactoring is much more intensive
than a lift-and-shift migration, it allows the application to
take full advantage of the benefits of containerized and
cloud-native environments.

In the past, refactoring efforts were often overlooked due to
time commitment and complexity. With containers, refactoring
becomes an incremental process. To start, you modify only the
most critical parts of an application and lift and shift the rest.
Then, you can refactor the rest over time, allowing you to keep
business running while making additional improvements as your
schedule allows. You’ll often see this process called “strangling
the monolith” in books and blogs related to microservices.

Of course, you can still refactor the old way, where you modify
the complete application before releasing it for use. There
are advantages and disadvantages to both strategies. The
leading benefit of a gradual refactor is time. The drawback is
a tendency to never fully migrate to a cloud-native platform,
which introduces management complexity and risk.

Chapter 3: Containers in the wild

11Building modern apps with Linux containers

New application development

As you’ve seen, containers are a powerful and flexible tool for developing new cloud-native applications. Developing from scratch
allows you to unlock the full benefits of containers. Containers provide an ideal platform for microservices, hybrid applications,
automation of repetitive jobs and tasks, and future-forward applications such as artificial intelligence (AI) and machine learning (ML).

Chapter 3: Containers in the wild

Microservices

Containers go hand in hand with
microservices architectures.
Distributed applications and
microservices can be easily isolated,
deployed, and scaled using individual
containers as building blocks.

Hybrid applications

Containers let you standardize how
code is deployed, making it easy
to build workflows for applications
that run between on-premise and
cloud environments.

Repetitive jobs and tasks

Repetitive jobs and tasks, such
as batch processing and extract,
transform, and load (ETL) jobs, can
easily be developed on containers to
start jobs quickly. They can then be
automated for ease of operation and
scaled dynamically to meet demand. Artificial intelligence and machine learning

Containers offer a new way to build and
deploy portable cloud applications that
incorporate AI and ML. These containers
can quickly scale the AI and ML models
to accommodate the processing needs
of advanced training algorithms.
Additionally, AI and ML containers can be
deployed close to data sources to improve
performance and shorten training cycles.

12Building modern apps with Linux containers

Chapter 4: Considerations and challenges

We have talked a lot about the impact and power of containers,
but like any other technology, they present challenges that you’ll
have to consider. These challenges can become critical if not
properly addressed, particularly as the number of enterprise
containers deployed into production increases. You’ll want to
keep an eye on the continued evolution of technology and how
well your organization is adopting, managing, and maintaining
your container-based architecture.

Things to consider before you get started …

By this point, you probably have a few ideas in mind for starting a
new project or refactoring a legacy application. There is no better
way to gain experience and knowledge with containers than to get
in there and start coding.

However, you should consider a few things before you start.
Creating a containerized application presents some challenges
that don’t exist in a traditional environment. The following
information is a summary of considerations that could impact
your development efforts. Many of the ideas in this section were
inspired by Project Atomic. After you finish reading this e-book,
you’ll want to check it out.

Determine your data strategy

While most cloud-native applications are stateless, many
applications require persistent data storage. Containers have
immutable storage—your data will be lost once the container
spins down. You’ll need to keep this in mind and design your
applications in a way that will allow data to persist regardless
of the state of the container.

If your application data needs to be preserved after a container
terminates, you can assign a storage volume to your container.
These assigned volumes will persist regardless of the state of
the container. Developers should make sure their applications
are designed for writing to a shared datastore. For enterprise
applications, tools such as Red Hat OpenShift® Container Storage
provide software-defined storage specifically built for container

Make life easier—don’t skip this chapter

environments. OpenShift Container Storage gives your data a
permanent place to live—even when containers spin up and down—
and easily scales across bare-metal, virtual, container, and cloud
deployments to further improve the portability of your containers
without constraining them to your storage architecture.

Get your containers communicating

Distributed application components need to communicate with
one another to accomplish workflows. Container technologies
encourage developers to make interconnection points explicit and
provide a mechanism to communicate between containers using
APIs. That’s great for container-to-container communication, but
what about your databases?

Traditional databases typically communicate using a socket
over a network. Because a container namespace changes as its
state changes, this type of legacy communication mechanism
doesn’t work. In a containerized application, you’ll need a
container orchestration platform, such as Kubernetes or
Red Hat OpenShift Container Platform, that facilitates network
communication between your containers, databases, and other
network resources.

Synchronize and standardize

Some containerized applications require the host and container
to be synchronized on certain attributes for uniform behavior.
For example, consider a centralized log server that receives data
from multiple containers deployed across various geographical
regions. The log timestamps and information would be almost
useless to the operations team if each container reported
a different time than the host without also reporting the
server location. By synchronizing and standardizing on a set
of environmental attributes, you can ensure that the data
communicated back to the central datastore is accurate,
relevant, and usable.

13Building modern apps with Linux containers

https://www.projectatomic.io/

Chapter 4: Considerations and challenges

Capture all the logs

Every application should log appropriate information that makes
troubleshooting easier. If your application logs actions, errors, and
warnings to some sort of log mechanism, you will want to consider
how to allow users to obtain, review, and possibly retain those
logs. Because your containers are separated by namespace and
cannot directly access bare-metal components, including local
hard drives, you’ll need to rethink your logging strategy.

The easiest way to collect logs is to use a tool that’s built for
the job. Container orchestration platforms such as OpenShift
Container Storage automatically collect container log data.
You can then save that data to persistent storage or follow
the recommended guideline of sending logs to standard out
or standard error so they can be viewed on the central
management console.

Enhance security

Storing sensitive data, including access credentials, is
essential for a containerized application so that containers can
communicate without repeatedly challenging the user. However,
storing credentials can be tricky and can open up your application
to potential security risks. The most common way to pass
sensitive data in a container is through environment variables
that are not exposed publicly. Container orchestration platforms
such as Kubernetes and OpenShift Container Platform provide
native mechanisms to secure environment variables and pass
sensitive data across a containerized application.

Challenges

Keep ahead of evolving technology

The evolution and expansion of the container ecosystem are
moving extremely fast. This ecosystem includes tools to help
create, deploy, configure, automate, and manage containers. The
open source projects that support this ecosystem are extremely
active. While this is an encouraging sign about the future of the
technology, it can be difficult to maintain the skills needed to
deliver applications using these solutions. As a developer, you’ll
want to stay current with ongoing open source projects, enroll in
training courses, and keep your skills sharp so you can continue
evolving at or ahead of the pace of container technology.

Embrace DevOps culture

As was stated at the beginning of this e-book, containers are
fundamentally changing the way applications are developed.
In response, application teams must adapt by shifting

their processes and culture. To effectively use containers,
organizations must have a healthy DevOps culture without the
traditional separation that formed under the monolithic code
model. To create a fast, reliable, consistent, and security-focused
workflow from development to deployment, organizations must
follow and automate DevOps principles. As a developer, you’ll
become part of the overall process from development, through
deployment, and beyond—to customer satisfaction. Your new role
includes taking responsibility for your containers and ensuring
that any application logic you create runs in production. With the
ability to release fixes in real time, you’ll be expected to quickly
debug, fix, and deploy code to keep your part of the application
working at its optimum potential.

Stay on top of security

Security is always a challenge for application developers,
regardless of whether you are working with containers. While
containers offer the security benefit of application isolation,
the proliferation of containers in an organization poses a new
breed of security risk.

Containers typically require applications to be broken into smaller
microservices, which results in increased data traffic and complex
access control rules. As the number of containers increases,
so does the potential to create loose access controls between
containers. Without proper adherence to security and access
protocols, you could introduce vulnerabilities into your production
environment. Also, many organizations use container image
repositories, but they need to verify that those images meet their
organization’s security and compliance requirements. Be sure you
understand the risks involved with containers, and always adhere
to access control policies.

Manage and monitor

Container monitoring can become increasingly difficult as the
number of deployed containers rise. When you deploy hybrid
cloud solutions, where containers run on both public and private
clouds, the management complexity increases considerably.
Implementing a consistent datastore to accumulate, analyze,
and act on the events being generated from all containers and
applications can be challenging. Additionally, once an event has
been captured, it can be difficult to pinpoint where errors occur.
Fortunately, emerging technologies such as Istio, Prometheus,
and Jaeger can help alleviate some of these challenges.

14Building modern apps with Linux containers

Final thoughts

Containerization is the methodology of choice in just about every modernized enterprise development team, with 91% of cloud
developers and development managers now employing containers in some capacity on-premise.7 Containers allow you to work smarter
and more efficiently, with consistent development environments for rapid development and delivery of cloud-native applications that
can run anywhere.

The purpose of this e-book is to bring you up to speed on the basics of containers and help you understand the impact and potential
they can have for you and your organization. Many resources are available to help you take the knowledge that you have gained here
and apply it to your current projects. Soon, you’ll separate your apps from your architecture, elevate your organization, and accelerate
your own career with the most modern, agile, and future-forward development practice—containerization.

There is no better time to start than now. Good luck on your journey to becoming a cloud-native application developer.

Learn more

Do you want to get a head start learning how to deploy containerized applications? Take a free online course from Red Hat to learn
about the concepts of containerization—and see it in action. You’ll see how to containerize applications and services, test them using
Docker, and deploy them on a Kubernetes cluster using Red Hat OpenShift Container Platform. You will also learn how to build and
deploy an application from source code using the Source-to-Image facility of OpenShift Container Platform.

Explore additional
resources

Udemy
Stack Overflow
Docker
AWS
Google
Red Hat

Learn more and register

About Red Hat

Red Hat is the world’s leading provider of enterprise open source software solutions,
using a community-powered approach to deliver reliable and high-performing Linux,
hybrid cloud, container, and Kubernetes technologies. Red Hat helps customers
integrate new and existing IT applications, develop cloud-native applications,
standardize on our industry-leading operating system, and automate, secure, and
manage complex environments. Award-winning support, training, and consulting
services make Red Hat a trusted adviser to the Fortune 500. As a strategic partner to
cloud providers, system integrators, application vendors, customers, and open source
communities, Red Hat can help organizations prepare for the digital future.

Copyright © 2019 Red Hat, Inc. Red Hat, Red Hat Enterprise Linux, Ansible, Ceph,
CloudForms, Gluster, JBoss, and OpenShift are trademarks of Red Hat, Inc., registered
in the U.S. and other countries. Linux® is the registered trademark of Linus Torvalds in the
U.S. and other countries.

The OpenStack word mark and the Square O Design, together or apart, are trademarks
or registered trademarks of OpenStack Foundation in the United States and other
countries, and are used with the OpenStack Foundation’s permission. Red Hat, Inc.
is not affiliated with, endorsed by, or sponsored by the OpenStack Foundation or the
OpenStack community.

Java and all Java based trademarks and logos are trademarks or registered trademarks
of Oracle America, Inc. in the U.S. and other countries.

 7 Evans Data Corporation. “Cloud Development Survey 2017, Volume 2.”

https://www.udemy.com/courses/search/?ref=home&src=ukw&q=containers
https://stackoverflow.com/search?q=containers
https://www.docker.com/get-started
https://aws.amazon.com/containers/
https://cloud.google.com/containers/
https://www.redhat.com/en/topics/containers
https://www.redhat.com/en/services/training/do080-deploying-containerized-applications-technical-overview

